TMA4275 LIFETIME ANALYSIS

Slides 14: Recurrent events; Repairable systems

Bo Lindqvist Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim

> https://www.ntnu.edu/employees/bo bo.lindqvist@ntnu.no

> > NTNU, Spring 2020

CONTENTS OF SLIDES 14

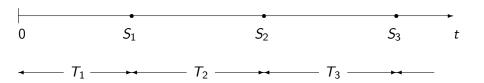
- Repairable systems
 - Definition
 - Notation
 - Real life examples
- Probabilistic modeling of repairable systems
 - Rate of Occurrence of Failures (ROCOF)
- Basic models for repairable systems
 - Perfect repair: Renewal Process (RP)
 - Minimal repair: Nonhomogneous Poisson Process (NHPP)
- Nonparametric estimation of ROCOF
 - Theory
 - MINITAB

REPAIRABLE SYSTEMS/RECURRENT EVENTS/ COUNTING PROCESSES

Definition of repairable system (Ascher and Feingold 1984):

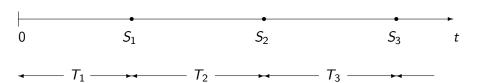
"A repairable system is a system which, after failing to perform one or more of its functions satisfactorily, can be restored to fully satisfactory performance by any method, other than replacement of the entire system".

TYPICAL EXAMPLES



- System is repaired and put into use again.
- Machine part is replaced.
- Relapse from disease (epileptic seizures, recurrence of tumors)

NOTATION



Modeling as a *counting process*; i.e. counting events on a time axis.

$$N(t) = \#$$
 events in $(0,t]$.

$$N(s,t) = \#$$
 events in $(s,t] = N(s) - N(t)$.

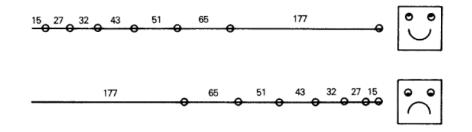
 S_1, S_2, \cdots are event times.

 T_1, T_2, \cdots are times *between* events; also called "sojourn times".

NOTE: It is common to disregard *repair times*, but one could have situations where "up times" alternate with "down times" of a system.

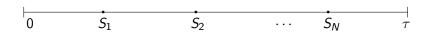
"HAPPY" AND "SAD" SYSTEMS

Ascher and Feingold presented the following example of a "happy" and "sad" system:



- Their claim: Reliability engineers do not recognize the difference between these cases since they always treat times between failures as i.i.d. and fit probability models like Weibull.
- Their conclusion: Use point process models to analyze repairable systems data!

APPLICATIONS

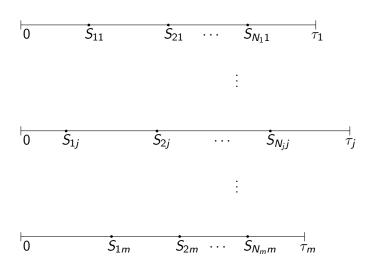


• Applications: engineering and reliability studies, public health, clinical trials, politics, finance, insurance, sociology, etc.

Reliability applications:

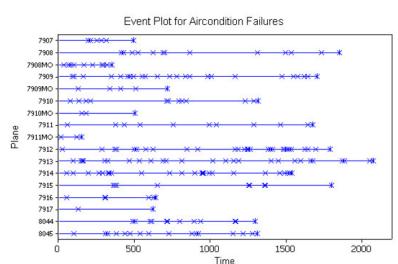
- breakdown or failure of a mechanical or electronic system
- discovery of a bug in an operating system software
- the occurrence of a crack in concrete structures
- the breakdown of a fiber in fibrous composites
- Warranty claims of manufactured products

TYPICAL DATA FORMAT; EVENT PLOT



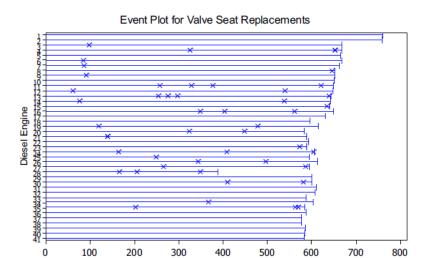
PROSCHAN (1963) AIRCONDITIONER DATA

Times of failures of aircondition system in a fleet of Boeing 720 airplanes



NELSON (1995) VALVESEAT DATA

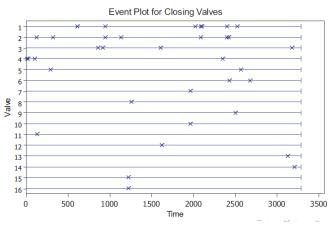
Times of valve-seat replacements in a fleet of 41 diesel engines



Time

BHATTACHARJEE ET AL. (2003) NUCLEAR PLANT FAILURE DATA

 Failure data for closing valves in safety systems at two nuclear reactor plants in Finland. Failures type: External Leakage, follow-up 9 years for 104 valves. 88 valves had no failures



AALEN AND HUSEBYE (1991) MMC DATA

Aalen and Husebye (1991): Migratory motor complex (MMC) periods in 19 patients, 1-9 events per individual.

Individual						
1	112 33	145 51	39 (54)	52	21	34
2	206	147	(30)			
3	284	59	186	(4)		
4	94	98	84	(87)		
5	67	(131)				
6	124 58	34 142	87 75	75 (23)	43	38
7	116	71	83	68	125	(111)
8	111	59	47	95	(110)	
9	98	161	154	55	(44)	
10	166	56	(122)			
11	63	90	63	103	51	(85)
12	47	86	68	144	(72)	
i			;			

Bo Lindqvist

PROBABILISTIC MODELING OF RECURRENT EVENTS

Definition: $W(t) =_{def} E[N(t)] = \text{expected } \# \text{ events (failures) in (0,t]}.$

 $w(t) =_{def} W'(t) =$ Rate of Occurrence of Failures (ROCOF).

$$w(t) = \lim_{h \to 0} \frac{W(t+h) - W(t)}{h}$$

$$= \lim_{h \to 0} \frac{E[N(t+h)] - E[N(t)]}{h}$$

$$= \lim_{h \to 0} \frac{E[N(t+h) - N(t)]}{h}$$

$$= \lim_{h \to 0} \frac{E[N(t,t+h)]}{h}$$

$$= \lim_{h \to 0} \frac{\exp(t+h)}{h}$$

So expected number of events in $(t, t + h) \approx w(t)h$

PROBABILISTIC MODELING OF RECURRENT EVENTS

Definition: Counting process is regular if

$$P(N(t,t+h)\geq 2)=o(h)$$

i.e. small, even compared to h, meaning that $\frac{o(h)}{h} \to 0$, as $h \to 0$ In practice regular means "No simultaneous events". So:

$$E[N(t,t+h)] = 0 \cdot P(N(t,t+h) = 0) + 1 \cdot P(N(t,t+h) = 1) + 2 \cdot P(N(t,t+h) = 2) + \cdots$$

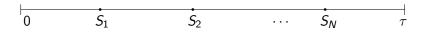
Hence

$$\frac{E[N(t,t+h)]}{h} \approx \frac{P(N(t,t+h)=1)}{h} + \frac{o(h)}{h},$$

so $w(t) = \lim_{h\to 0} \frac{P(N(t,t+h)=1)}{h}$ or $P(N(t,t+h)=1) \approx w(t) \cdot h$ (for a regular process).

This is analogous to $P(t < T \le t + h|T > t) \approx z(t)h$ for hazard rates (which sometimes are called FOM = Force of Mortality)

BASIC MODELS FOR REPAIRABLE SYSTEMS



• RP(F): Renewal process with interarrival distribution F.

Defining property:

- Times between events are i.i.d. with distribution F
- NHPP($w(\cdot)$): Nonhomogeneous Poisson process with intensity w(t).

Defining property:

- **1** Number of events in (0, t] is Poisson-distributed with expectation $\int_0^t w(u)du = W(t)$
- Number of events in disjoint time intervals are stochastically independent

THE NONHOMOGENEOUS POISSON PROCESS

The NHPP is given by

- Specifying the ROCOF (intensity) w(t),
- which has the basic property that $P(N(t, t + h) = 1) \approx w(t)h$
- assuming regularity of point process
- assuming independence of number of events in disjoint intervals

Properties of NHPP:

- N(s,t) = # events in (s,t] is $Poisson(\int_s^t w(u)du)$
- N(t) = # in (0,t] is Poisson $(\int_0^t w(u)du)$, i.e. Poisson(W(t)).
- $P(N(t) = j) = \frac{W(t)^j}{j!} e^{-W(t)}$, for $j = 0, 1, \cdots$ and E(N(t)) = W(t) so w(t) = W'(t) is really the ROCOF.
- $E[N(s,t)] = \int_s^t w(u)du = W(t) W(s)$

MODELING OF TREND

Advantage of NHPP and reason for its extensive use:

Can model a *trend* in the rate of failures, because $P(\text{failure in } (t, t+h)) \approx w(t)h$.

- $w(t) \nearrow$ deteriorating system ("sad system") e.g. aging of a mechanical system
- $w(t) \setminus \text{improving system}$ ("happy system") e.g. software reliability.
- $w(t) = \lambda$ (constant): Homogeneous Poisson process (HPP)

MORE PROPERTIES OF NHPP

Let S_1 is the time to first failure. For HPP, this is $expon(\lambda)$.

For NHPP,
$$P(T_1 > t) = P(N(t) = 0)$$
,

so since $N(t) \sim Poisson(W(t))$,

$$R_{T_1}(t) = P(T_1 > t) = \frac{W(t)^0}{0!}e^{-W(t)} = e^{-W(t)}$$

Thus,
$$Z_{T_1}(t) = W(t)$$
, so

$$z_{T_1}(t) = w(t),$$

i.e. the ROCOF w(t) for an NHPP equals the hazard rate for the time to first failure.

EXAMPLE

Suppose S_1, S_2, \ldots is and NHPP with w(t) = 2t and $W(t) = t^2$.

What is the expected # of failures in the time intervals [0,1],[1,2],[2,3],all having length 1?

$$E[N(0,1)] = W(1) - W(0) = 1$$

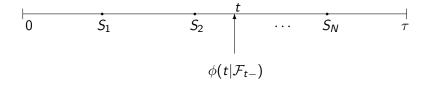
 $E[N(1,2)] = W(2) - W(1) = 2^2 - 1^2 = 3$
 $E[N(2,3)] = W(3) - W(2) = 9 - 4 = 5$

Time to the first failure:

$$R_{T_1}(t) = P(T_1 > t) = P(N(0, t) = 0) = \frac{W(t)^0}{0!} e^{-W(t)} = e^{-t^2}$$

 $\Rightarrow f_{T_1}(t) = -R'_{T_1}(t) = 2te^{-t^2} = w(t)e^{-W(t)}$, which is a Weibull distribution.

POINT PROCESS MODELING OF RECURRENT EVENTS



- \mathcal{F}_{t-} = history of events until time t.
- Conditional intensity at t given history until time t,

$$\phi(t|\mathcal{F}_{t-}) = \lim_{h \downarrow 0} \frac{\Pr(\text{failure in } [t, t+h)|\mathcal{F}_{t-})}{h}$$

SPECIAL CASES: THE BASIC MODELS

• NHPP(*w*(⋅)):

$$\phi(t|\mathcal{F}_{t-})=w(t)$$

so conditional intensity is independent of history. *Interpreted as "minimal repair" at failures*

• RP(F) (where F has hazard rate $z(\cdot)$):

$$\phi(t|\mathcal{F}_{t-}) = z(t - S_{N(t-)})$$

so conditional intensity depends (only) on time since last event. Interpreted as "perfect repair" at failures

 Between minimal and perfect repair? So called imperfect repair models.

PERFECT AND MINIMAL REPAIR

Assume that we have a component or system with lifetime T, and corresponding hazard rate z(t).

Perfect repair: Assume that the component at each failure is repaired to as good as new (or, possibly, is replaced). Then we can consider the inter-failure times T_1, T_2, \ldots as independent realizations of T, hence S_1, S_2, \ldots is a renewal process.

Thus, conditional ROCOF at t is z(time since last failure) = $z(t - S_{N(t)})$

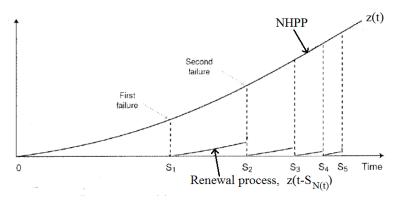
Minimal repair: Assume that the system at each failure is repaired only to the same state as immediately before the failure. Then the probability of failing in (t, t + h) will always be the same as for a system starting at time 0 which never has failed, namely $\approx z(t)h$. Thus rate of occurrence of failures is independent of the history.

Can be shown that minimal repair as defined above, corresponds to the property of an NHPP with ROCOF w(t) = z(t).

CONDITIONAL INTENSITY FOR REPAIRED COMPONENT

Consider a component with hazard rate z(t), which is repaired at failures.

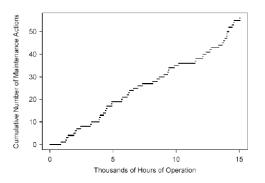
CONDITIONAL ROCOF BY MINIMAL REPAIR (NHPP) AND PERFECT REPAIR (RENEWAL PROCESS)



NONPARAMETRIC ESTIMATION OF CUMULATIVE ROCOF W(t)

First: Assume that we have data for one system only. Then since W(t) = E[N(t)], we estimate W(t) by $\hat{W}(t) = N(t)$.

Cumulative Number of Unscheduled Maintenance
Actions Versus Operating Hours
for a USS Grampus Diesel Engine
Lee (1980)



NONPARAMETRIC ESTIMATION OF CUMULATIVE ROCOF W(t)

Assume now, more generally:

- ullet m processes are observed, assumed to have the same W(t)
- processes are not necessarily NHPPs
- first process is observed on time interval $(0, \tau_1]$ second process on $(0, \tau_2]$:
 Let $\tau_{max} = \text{largest } \tau_j$
- Y(t) = # processes under observation at time t.

We want to estimate W(t)

TOWARDS THE NELSON-AALEN ESTIMATOR FOR W(t)

Divide the time axis at $h_0 = 0, h_1, h_2, ...$ up to τ_{max} . Assume for simplicity that all the τ_j are among the h_j .

Let $D_i = \#$ events in $(h_{i-1}, h_i]$ (total for all systems) and $y_i = \text{value of } Y(t) \text{ in } (h_{i-1}, h_i]$

For each process:

$$E[N(h_{i-1}, h_i)] = E[N(h_i)] - E[N(h_{i-1})] = W(h_i) - W(h_{i-1})$$

Thus when all processes are considered:

$$E(D_i) = y_i(W(h_i) - W(h_{i-1})),$$

and $E(\frac{D_i}{y_i}) = W(h_i) - W(h_{i-1})$ for $i = 1, 2, ...$

But then

$$E\left[\frac{D_{1}}{y_{1}}\right] + E\left[\frac{D_{2}}{y_{2}}\right] + \dots + E\left[\frac{D_{k}}{y_{k}}\right]$$

$$= W(h_{1}) - W(h_{0}) + W(h_{2}) - W(h_{1}) + \dots + W(h_{k}) - W(h_{k-1})$$

$$= W(h_{k}) - W(h_{0}) = W(h_{k})$$

THE NELSON-AALEN ESTIMATOR

Recall
$$E[\frac{D_1}{y_1}] + E[\frac{D_2}{y_2}] + \ldots + E[\frac{D_k}{y_k}] = W(h_k)$$

This suggests the estimator

$$\hat{W}(h_k) = \sum_{i=1}^k \frac{D_i}{y_i}$$
 for $k = 1, 2 \dots$

Suppose the failure times, when joined for all the m processes, are ordered as $t_1 < t_2 < \ldots < t_n$

Then by letting the h_i be more and more dense, we get contributions for at most *one* failure time in each interval (h_{i-1}, h_i) .

Then we get, letting $d(t_i) = \#$ events at t_i (so $d(t_i) = 1$ if regular process) $Y(t_i) = \#$ processes observes at t_i

$$\hat{W}(t) = \sum_{t_i \leq t} \frac{d(t_i)}{Y(t_i)}$$

4 □ ト 4 □ ト 4 亘 ト 4 亘 ト 9 Q @

THE NHPP CASE

Going back to the first estimator $\hat{W}(h_k) = \sum_{i=1}^k \frac{D_i}{y_i}$ for k = 1, 2..., if the processes are *NHPPs* with CROCOF W(t), then

- ② The D_i are independent (very important implication of NHPP)

Now
$$Var(\frac{D_i}{y_i}) = \frac{1}{y_i^2} Var(D_i) = \frac{E(D_i)}{y_i^2}$$
 and hence

$$Var(\hat{W}(h_k)) = \sum_{i=1}^{k} Var(\frac{D_i}{y_i}) = \sum_{i=1}^{k} \frac{Var(D_i)}{y_i^2} = \sum_{i=1}^{k} \frac{E(D_i)}{y_i^2}$$

So an estimator is

$$Var(\widehat{\hat{W}}(h_k)) = \sum_{i=1}^k \frac{D_i}{y_i^2}$$

which in the limit gives

$$\widehat{Var(\hat{W}(t))} = \sum_{t_i \leq t} \frac{d(t_i)}{Y(t_i)^2}$$

NELSON-AALEN ESTIMATOR FOR CUMULATIVE ROCOF W(t)

- Order all failure times as $t_1 < t_2 < \dots t_n$.
- 2 Let $d_i(t_i) = \#$ events in system j at t_i .
- 3 Let $d(t_i) = \sum_{i=1}^m d_i(t_i) = \#$ events in all systems at t_i .
- 4 Let $Y_j(t) = \begin{cases} 1 & \text{if system } j \text{ is under observation at time } t \\ 0 & \text{otherwise} \end{cases}$
- **6** Let $Y(t) = \sum_{i=1}^{m} Y_i(t) = \#$ systems under observation at time t.

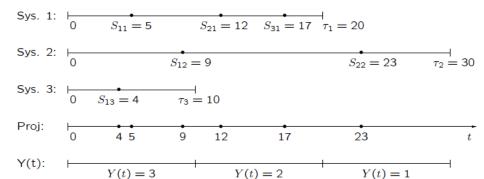
Then

Under general assumptions:
$$\widehat{W}(t) = \sum_{t_i < t} \frac{d(t_i)}{Y(t_i)}$$
.

$$\text{Assuming NHPP: } \widehat{\widehat{W}(t)} = \sum_{t_i \leq t} \frac{d(t_i)}{\{Y(t_i)\}^2}$$

$$\text{Under general assumptions (MINITAB): } \widehat{\text{Var }\widehat{W}(t)} = \sum_{j=1}^m \left\{ \sum_{t_j \leq t} \frac{Y_j(t_i)}{Y(t_i)} \left[d_j(t_i) - \frac{d(t_i)}{Y(t_i)} \right] \right\}^2$$

SIMPLE EXAMPLE WITH THREE SYSTEMS

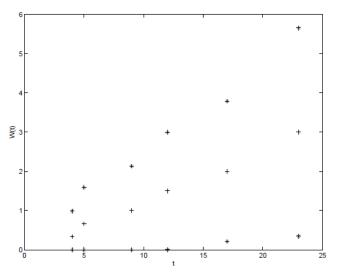


COMPUTATIONS FOR THE NELSON-AALEN ESTIMATOR

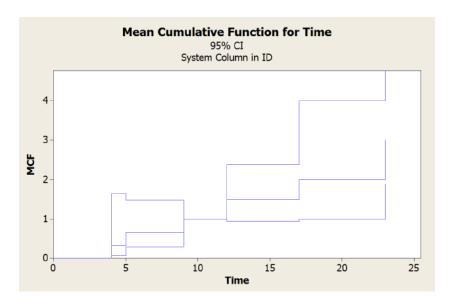
t	1/Y(t)	$1/Y(t)^{2}$	$\hat{W}(t)$	$\widehat{Var\hat{W}(t)}$	$\widehat{SDW}(t)$
4	1/3	1/9	1/3	1/9	0.3333
5	1/3	1/9	2/3	2/9	0.4714
9	1/3	1/9	1	1/3	0.5774
12	1/2	1/4	3/2	7/12	0.7638
17	1/2	1/4	2	5/6	0.9129
23	1	1	3	11/6	1.3540

ESTIMATED W(t) WITH CONFIDENCE LIMITS (NHPP)

ESTIMATED W(t) with 95% confidence limits (Nelson-Aalen)



ESTIMATED W(t) WITH CONFIDENCE LIMITS (GENERAL)



COMPUTATION BY GENERAL VARIANCE FORMULA

Compare with MINITAB Output:

$$\widehat{\text{Var }\widehat{W}}(4) = \left\{ \frac{1}{3} \left[0 - \frac{1}{3} \right] \right\}^2 + \left\{ \frac{1}{3} \left[0 - \frac{1}{3} \right] \right\}^2 + \left\{ \frac{1}{3} \left[1 - \frac{1}{3} \right] \right\}^2$$
$$= \frac{6}{81} = 0.2722^2$$

$$\widehat{\widehat{W}(5)} = \left\{ \frac{1}{3} \left[0 - \frac{1}{3} \right] + \frac{1}{3} \left[1 - \frac{1}{3} \right] \right\}^{2}$$

$$+ \left\{ \frac{1}{3} \left[0 - \frac{1}{3} \right] + \frac{1}{3} \left[0 - \frac{1}{3} \right] \right\}^{2}$$

$$+ \left\{ \frac{1}{3} \left[1 - \frac{1}{3} \right] + \frac{1}{3} \left[0 - \frac{1}{3} \right] \right\}^{2}$$

$$= \frac{6}{81} = 0.2722^{2}$$

COMPUTATION BY GENERAL VARIANCE FORMULA

$$\widehat{W}(9) = \left\{ \frac{1}{3} \left[0 - \frac{1}{3} \right] + \frac{1}{3} \left[1 - \frac{1}{3} \right] + \frac{1}{3} \left[0 - \frac{1}{3} \right] \right\}^{2}$$

$$+ \left\{ \frac{1}{3} \left[0 - \frac{1}{3} \right] + \frac{1}{3} \left[0 - \frac{1}{3} \right] + \frac{1}{3} \left[1 - \frac{1}{3} \right] \right\}^{2}$$

$$+ \left\{ \frac{1}{3} \left[1 - \frac{1}{3} \right] + \frac{1}{3} \left[0 - \frac{1}{3} \right] + \frac{1}{3} \left[0 - \frac{1}{3} \right] \right\}^{2}$$

$$= 0$$

$$\widehat{Var W}(12) = \left\{ \frac{1}{3} \left[0 - \frac{1}{3} \right] + \frac{1}{3} \left[1 - \frac{1}{3} \right] + \frac{1}{3} \left[0 - \frac{1}{3} \right] + \frac{1}{2} \left[1 - \frac{1}{2} \right] \right\}^{2}$$

$$+ \left\{ \frac{1}{3} \left[0 - \frac{1}{3} \right] + \frac{1}{3} \left[0 - \frac{1}{3} \right] + \frac{1}{3} \left[1 - \frac{1}{3} \right] + \frac{1}{2} \left[0 - \frac{1}{2} \right] \right\}^{2}$$

$$+ \left\{ \frac{1}{3} \left[1 - \frac{1}{3} \right] + \frac{1}{3} \left[0 - \frac{1}{3} \right] + \frac{1}{3} \left[0 - \frac{1}{3} \right] \right\}^{2}$$

$$= \frac{1}{9} = 0.3536^{2}$$

VALVESEAT DATA: DESCRIPTION

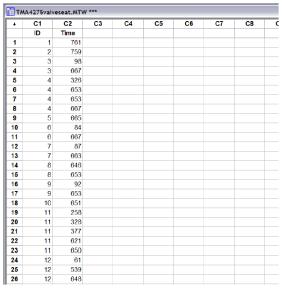
Valve Seat Replacement Times (Nelson and Doganaksoy 1989)

Data collected from valve seats from a fleet of 41 diesel engines (days of operation)

- Each engine has 16 valves
- Does the replacement rate increase with age?
- How many replacement valves will be needed in the future?
- Can valve life in these systems be modeled as a renewal process?

VALVESEAT DATA: WORKSHEET

VALVESEAT DATA

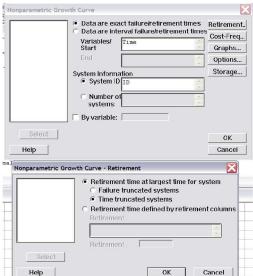


Bo Lindqvist

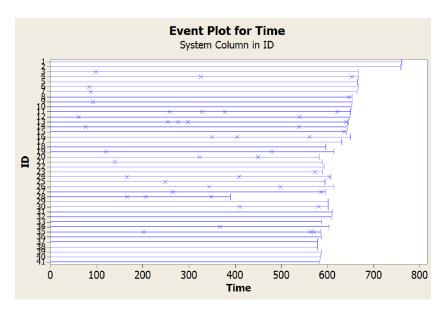
VALVESEAT DATA: MINITAB SETUP

Reliability/Survival > Repairable System Analysis

> Nonparametric Growth Curve



VALVESEAT DATA: MINITAB EVENT PLOT



VALVESEAT DATA: MINITAB OUTPUT

Nonparametric Growth Curve: Time

System: ID

Nonparametric Estimates

Table of Mean Cumulative Function

	Mean				
	Cumulative	Standard	95% No	rmal CI	
Time	Function	Error	Lower	Upper	System
61	0,02439	0,024091	0,00352	0,16903	12
76	0,04878	0,033641	0,01262	0,18848	14
84	0,07317	0,040670	0,02462	0,21750	6
87	0,09756	0,046340	0,03846	0,24750	7
92	0,12195	0,051105	0,05364	0,27726	9
98	0,14634	0,055199	0,06987	0,30650	3
120	0,17073	0,058764	0,08696	0,33519	19
139	0,19512	0,061891	0,10479	0,36333	21
139	0,21951	0,073270	0,11411	0,42226	21
165	0,24390	0,075417	0,13305	0,44711	24
166	0,26829	0,077317	0,15251	0,47196	28
202	0,29268	0,078988	0,17246	0,49672	35
206	0,31707	0,087527	0,18458	0,54467	28
249	0,34146	0,088680	0,20525	0,56807	25
254	0,36585	0,089656	0,22631	0,59143	13
258	0,39024	0,090461	0,24775	0,61468	11
265	0,41463	0,091101	0,26955	0,63780	27
276	0,43902	0,097858	0,28363	0,67955	13
298	0,46341	0,109607	0,29150	0,73671	13
323	0,48780	0,109740	0,31387	0,75812	20
326	0,51220	0,109740	0,33656	0,77949	4
200	0 50650	0 111007	0 05066	0.01640	

VALVESEAT DATA: MINITAB ESTIMATION OF W(t)

