# TMA4275 LIFETIME ANALYSIS Slides 13: Accelerated lifetime models

#### Bo Lindqvist Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim

https://www.ntnu.edu/employees/bo bo.lindqvist@ntnu.no

NTNU, Spring 2020

## **CONTENTS OF SLIDES 13**

#### Accelerated Life Testing

- Regression models
  - Arrhenius
  - Inverse temperature
  - Ln (power)
  - Linear
- Plots
  - Probability plots
  - Relation plot

Suppose we want to find the distribution (R(t), MTTF, etc.) for the lifetime of a product.

**Problem**: MTTF may be so *large* that one would need to let experiments last several years.

**Solution:** Increase stress, use a regression model, and then extrapolate to normal conditions.

Suppose you want to investigate the deterioration of an insulation used for electric motors. The motors normally run between 80 and 100 degrees Celsius.

To save time and money, you decide to use accelerated life testing.

First you gather failure times for the insulation at abnormally high temperatures: 110, 130, 150, and 170 degrees Celsius, to speed up the deterioration. With failure time information at these temperatures, you can then extrapolate to 80 and 100 degrees.

It is known that an *Arrhenius* relationship exists between temperature and failure time.

This is an example which is included in MINITAB.

### THE ARRHENIUS MODEL

We need a connection between T = lifetime; s = stress (temperature).

Some standard relations are known to be useful in accelerated testing:

 $\ln T = \beta_0 + \beta_1 (\text{function of stress}) + \sigma U$ 

i.e. In  $T = \beta_0 + \beta_1 g(s) + \sigma U$  for some function  $g(\cdot)$  of the stress.

The model used in the example is the Arrhenius model:

$$\ln T = \beta_0 + \beta_1 \cdot \frac{11604.83}{s + 273.16} + \frac{1}{\alpha}W$$

where W is Gumbel distributed and s = temperature in °C, so s + 273.16 = temp in °K (absolute temperature).

This is the same as computing a transformed covariate

$$x = g(s) = \frac{11604.83}{s + 273.16}$$

Inverse temperature:

$$\ln T = \beta_0 + \beta_1 \cdot \frac{1}{\text{temperature in }^\circ\text{C} + 273.16} + \sigma U$$
  
e.  $g(s) = \frac{1}{s+273.16}$   
n (power):

 $\ln T = \beta_0 + \beta_1 \ln(\text{accelerating variable}) + \sigma U$ 

i.e. 
$$g(s) = \ln s$$

3 Linear:

i.

In  $T = \beta_0 + \beta_1 \cdot \text{accelerating variable} + \sigma U$ 

i.e. g(s) = s

We could have done all this with ordinary lifetime regression in MINITAB, but the ALT module has in addition some intersting *plots*.

#### MINITAB INSULATION EXAMPLE

- Open the worksheet INSULATE.MTW (from where you installed MINITAB)
- Ochoose Stat > Reliability/Survival > Accelerated Life Testing.
- In Variables/Start variables, enter FailureT. In Accelerating variable, enter Temp.
- **④** From Relationship, choose Arrhenius.
- **O** Click Censor. In Use censoring columns, enter Censor, then click OK.
- Click Graphs. In Enter design value to include on plot, enter 80. Click OK.
- Click Estimate. In Enter new predictor values, enter Design, then click OK in each dialog box.

# MINITAB WORKSHEET

| Insulate.MTW *** |      |         |       |          |        |        |         |         |          |     |     |
|------------------|------|---------|-------|----------|--------|--------|---------|---------|----------|-----|-----|
| ÷                | C1   | C2      | C3    | C4       | C5-T   | C6     | C7      | C8      | C9       | C10 | C11 |
|                  | Temp | ArrTemp | Plant | FailureT | Censor | Design | NewTemp | ArrNewT | NewPlant |     |     |
| 1                | 170  | 26,1865 | 1     | 343      | F      | 80     | 80      | 32,8600 | 1        |     |     |
| 2                | 170  | 26,1865 | 1     | 869      | F      | 100    | 80      | 32,8600 | 2        |     |     |
| 3                | 170  | 26,1865 | 1     | 244      | С      |        | 100     | 31,0988 | 1        |     |     |
| 4                | 170  | 26,1865 | 1     | 716      | F      |        | 100     | 31,0988 | 2        |     |     |
| 5                | 170  | 26,1865 | 1     | 531      | F      |        |         |         |          |     |     |
| 6                | 170  | 26,1865 | 1     | 738      | F      |        |         |         |          |     |     |
| 7                | 170  | 26,1865 | 1     | 461      | F      |        |         |         |          |     |     |
| 8                | 170  | 26,1865 | 1     | 221      | F      |        |         |         |          |     |     |
| 9                | 170  | 26,1865 | 1     | 665      | F      |        |         |         |          |     |     |
| 10               | 170  | 26,1865 | 1     | 384      | С      |        |         |         |          |     |     |
| 11               | 170  | 26,1865 | 2     | 394      | С      |        |         |         |          |     |     |
| 12               | 170  | 26,1865 | 2     | 369      | F      |        |         |         |          |     |     |
| 13               | 170  | 26,1865 | 2     | 366      | F      |        |         |         |          |     |     |
| 14               | 170  | 26,1865 | 2     | 507      | F      |        |         |         |          |     |     |
| 15               | 170  | 26,1865 | 2     | 461      | F      |        |         |         |          |     |     |
| 16               | 170  | 26,1865 | 2     | 431      | F      |        |         |         |          |     |     |
| 17               | 170  | 26,1865 | 2     | 479      | F      |        |         |         |          |     |     |
| 18               | 170  | 26,1865 | 2     | 106      | F      |        |         |         |          |     |     |
| 19               | 170  | 26,1865 | 2     | 545      | F      |        |         |         |          |     |     |
| 20               | 170  | 26,1865 | 2     | 536      | F      |        |         |         |          |     |     |
| 21               | 150  | 27,4242 | 1     | 2134     | С      |        |         |         |          |     |     |
| 22               | 150  | 27,4242 | 1     | 2746     | F      |        |         |         |          |     |     |
| 23               | 150  | 27,4242 | 1     | 2859     | F      |        |         |         |          |     |     |
| 24               | 150  | 27,4242 | 1     | 1826     | С      |        |         |         |          |     |     |

**Bo Lindqvist** 

æ

<ロ> <同> <同> < 同> < 同>

| 🗞 NTNITAB Help                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| File Edit Bookmark Options Help                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Hep_Topics Back Print ≤< ≥> Glossary Egit                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| Example of Accelerated Life Testing<br>main topic interpreting results session command see also                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Suppose you want to investigate the deterioration of an insulation used for electric motors. The motors normally run between 80 and 100° C. To save time and money, you decide to use accelerated life testing.                                                                                                                        |  |  |  |  |  |  |
| First you gather failure times for the insulation at abnormally high temperatures – 110, 130, 150, and 170° C – to speed up the deterioration. With failure time information at these temperatures, you can then extrapolate to 80 and 100° C. It is known that an Arrhenius relationship exists between temperature and failure time. |  |  |  |  |  |  |
| To see how well the model fits, you will draw a probability plot based on the standardized residuals.                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| 1 Open the worksheet INSULATE.MTW.                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| 2 Choose Stat > Reliability/Survival > Accelerated Life Testing.                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| 3 In Variables/Start variables, enter Failure T. In Accelerating variable, enter Temp.                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| 4 From Relationship, choose Arrhenius.                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| 5 Click Censor. In Use censoring columns, enter Censor, then click OK.                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| 6 Click Graphs. In Enter design value to include on plot, onter 80. Click OK.                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| 7 Click Estimate. In Enter new predictor values, enter Design, then click OK in each dialog box.                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Session window output                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Regression with Life Data: FailureT versus Temp                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Response Variable: FailureT                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Censoring Information Count   Uncensored value 66   Right censored value 14   Censoring value: Censor - C                                                                                                                                                                                                                              |  |  |  |  |  |  |
| Estimation Method: Maximum Likelihood<br>Distribution: Weibull<br>Transformation on accelerating variable: Arrhenius                                                                                                                                                                                                                   |  |  |  |  |  |  |

#### Regression Table

|           |          | Standard |        |       | 95.0%    | Normal CI |
|-----------|----------|----------|--------|-------|----------|-----------|
| Predictor | Coef     | Error    | Z      | P     | Lower    | Upper     |
| Intercept | -15.1874 | 0.9862   | -15.40 | 0.000 | -17.1203 | -13.2546  |
| Temp      | 0.83072  | 0.03504  | 23.71  | 0.000 | 0.76204  | 0.89940   |
| Shape     | 2.8246   | 0.2570   |        |       | 2.3633   | 3.3760    |

Log-Likelihood = -564.693

Anderson-Darling (adjusted) Goodness-of-Fit

| At each | n accelerating level |
|---------|----------------------|
| Level   | Fitted Model         |
| 110     | *                    |
| 130     | *                    |
| 150     | *                    |
| 170     | *                    |

Table of Percentiles

|         |          |            | Standard | 95.0%    | Normal CI |
|---------|----------|------------|----------|----------|-----------|
| Percent | Temp     | Percentile | Error    | Lower    | Upper     |
| 50      | 80.0000  | 159584.5   | 27446.85 | 113918.2 | 223557.0  |
| 50      | 100.0000 | 36948.57   | 4216.511 | 29543.36 | 46209.94  |

3

・ロン ・雪 と ・ ヨ と ・ ヨ と …

Recall the Arrhenius model:

$$\ln T = \beta_0 + \beta_1 \cdot \frac{11604.83}{s + 273.16} + \frac{1}{\alpha}W$$

where W is Gumbel and s = temperature in °C.

Estimated model:

$$\ln T = -15.874 + 0.83072 \cdot \frac{11604.83}{s + 273.16} + \frac{1}{2.8246} W$$

- ( ∃ )

## PROBABILITY PLOTS



Percent

12 / 15

Normal temperature is 80-100C.

Experiment temperatures: 110, 130, 150, 170. Needs to extrapolate to 80-100, using Arrhenuis model.

Recall probability plot for Weibull:

$$\ln(-\ln R(t)) = \alpha \ln t - \alpha \ln \theta$$

So:

- Slope  $\alpha$  is the same for all lines
- Scale  $\theta = \exp\{\beta_0 + \beta_1 \cdot \frac{11604.83}{s+273.16}\}$  depends on temperature *s*.

# RELATION PLOT

Relation Plot (Fitted Arrhenius) for FailureT

Weibull Distribution - ML Estimates - 95,0% Cl Censoring Column in Censor



Bo Lindqvist

Plot  $\hat{t}_p(s)$  as function of s.

Recall general formula:

$$\ln \hat{t}_{\rho}(\mathbf{x}) = \beta_0 + \beta' \mathbf{x} + \sigma \Psi^{-1}(\rho)$$

where for Weibull/Gumbel we have  $\Psi^{-1}(p) = \ln(-\ln(1-p))$ .

In example:

$$\ln \hat{t}_p(s) = -15.1874 + 0.83072 \cdot \frac{11.60483}{s + 273.16} + \frac{1}{2.8246} \cdot \ln(-\ln(1-p))$$

Figure shows median, p = 0.50, together with 95% confidence curves; and in addition the curves for p = 0.10 and p = 0.90.