TMA4275 LIFETIME ANALYSIS Slides 6: Nelson-Aalen estimator and TTT plot

Bo Lindqvist Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim

http://www.math.ntnu.no/~bo/ bo@math.ntnu.no

NTNU, Spring 2014

Note first that Z'(t) = z(t). Thus,

- T is IFR $\Leftrightarrow z(t)$ is increasing $\Leftrightarrow Z(t)$ is convex
- T is DFR $\Leftrightarrow z(t)$ is decreasing $\Leftrightarrow Z(t)$ is concave

Thus a plot of an estimate $\hat{Z}(t)$ can give us information on whether the distribution of T is IFR (*increasing failure rate*) or DFR (*decreasing failure rate*).

ESTIMATING Z(t) BY THE KM-ESTIMATOR

Recall that $R(t) = e^{-Z(t)}$, so

 $Z(t) = -\ln R(t)$

Thus - if $\hat{R}_{KM}(t)$ is the KM-estimator for R(t), then we can define,

$$egin{aligned} \hat{Z}_{\mathcal{KM}}(t) &= -\ln \hat{R}_{\mathcal{KM}}(t) \ &= -\ln \prod_{\mathcal{T}_{(i)} \leq t} rac{n_i - d_i}{n_i} \ &= -\sum_{\mathcal{T}_{(i)} \leq t} \ln \left(1 - rac{d_i}{n_i}
ight) \ &pprox \sum_{\mathcal{T}_{(i)} \leq t} rac{d_i}{n_i} \end{aligned}$$

where we used that for small x is

$$-\ln(1-x)\approx x$$

THE NELSON-AALEN ESTIMATOR FOR Z(t)

The Nelson-Aalen estimator (NA-estimator) is simply defined by

$$\hat{Z}_{NA}(t) = \sum_{T_{(i)} \leq t} rac{d_i}{n_i}$$

It can then be shown that its variance can be estimated by

$$\widehat{Var(\hat{Z}_{NA}(t))} = \sum_{\mathcal{T}_{(i)} \leq t} \frac{d_i}{n_i^2}$$

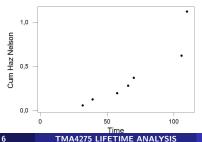
Note: The Nelson-Aalen estimator is *not* included in MINITAB (only "hazard plot" which is in fact not a correct). For this course has been made a *MINITAB Macro* (see MINITAB Macros on the Software webpage).

In the following we shall have a closer look at how the Nelson-Aalen estimator can be motivated from properties of the exponential distribution,

EXAMPLE: NELSON-AALEN ESTIMATOR

Row	C1	C2						
1	31,7	1						
2	39,2	1						
3	57,5	1						
4	65,0	0						
5	65,8	1						
6	70,0	1						
7	75,0	0						
8	75,2	0						
9	87,5	0	Row	Time	Numb at risk	1/Numb at risk	Cum Haz Nelson	Survival Nelson
10	88,3	0						
11	94,2	0	1	31,7	16	0,062500	0,06250	0,939413
12	101,7	0	2	39,2 57,5	15 14	0,066667 0,071429	0,12917 0,20060	0,878827 0,818244
13	105,8	1						
		1	4	65,8	12	0,083333	0,28393	0,752820
14	109,2	0	5	70,0	11	0,090909	0,37484	0,687401
15	110,0	1	6	105,8	4	0,250000	0,62484	0,535348
16	130,0	0	7	110,0	2	0,500000	1,12484	0,324705

Nelson Plot



Bo Lindqvist

Slides 6

· 문 · · · 문 ·

æ

RESIDUAL LIFETIME

Suppose an item with lifetime T is still alive at time s. The probability of surviving an additional t time is then

$$R(t \mid s) \equiv P(T > s + t \mid T > s)$$

$$= \frac{P(T > s + t \cap T > s)}{P(T > s)}$$

$$= \frac{R(s + t)}{R(s)}$$

This is called the *conditional survival function* of the item at time *t*, or *the distribution of the residual life*. The following is its expectation, called *Mean Residual Life*:

$$MRL(t) = \int_0^\infty R(t \mid s) dt = \int_0^\infty \frac{R(s+t)}{R(s)} dt$$
$$= \frac{1}{R(s)} \int_s^\infty R(t) dt$$

1. The memoryless property

Write $T \sim \exp(\lambda)$ if $f(t) = \lambda e^{-\lambda t}$; $R(t) = P(T > t) = e^{-\lambda t}$, t > 0.

For $T \sim expon(\lambda)$ we therefore have

$$R(t\mid s)=P(T>s+t\mid T>s)=rac{R(s+t)}{R(s)}=rac{e^{-\lambda(s+t)}}{e^{-\lambda s}}=e^{-\lambda t}=R(t).$$

This is called the memoryless property of the exponential distribution.

For any age s, the remaining life has same distribution as for a new item.

Let T ~ expon(λ) and let W = aT. Then W ~ expon(λ/a).
 Proof:

$$P(W > w) = P(aT > w) = P(T > \frac{w}{a}) = e^{-(\frac{\lambda}{a})w}$$

3. Let T_i for i = 1, ..., n be independent, with $T_i \sim \operatorname{expon}(\lambda_i)$. Let $W = \min(T_1, ..., T_n)$. Then $W \sim \operatorname{expon}(\sum_{i=1}^n \lambda_i)$. *Proof:*

$$P(W > w) = P(\min(T_1, \dots, T_n) > w)$$

= $P(T_1 > w, T_2 > w, \dots, T_n > w)$
= $P(T_1 > w)P(T_2 > w) \dots P(T_n > w)$
= $e^{-(\lambda_1 + \dots + \lambda_n)w}$,

so $W \sim \operatorname{expon}(\lambda_1 + \cdots + \lambda_n)$

4. In particular if T_1, \ldots, T_n are independent each with distribution expon(λ), then

$$W = \min(T_1, \ldots, T_n) \sim \exp(n\lambda)$$

So a series system of n components with lifetimes that are independent and exponentially distributed with hazard rate λ , has a lifetime which is exponenital with hazard rate $n\lambda$ and hence

$$\mathsf{MTTF} = \frac{1}{n\lambda} = \frac{\mathsf{Component MTTF}}{n}$$

5. Let T_1, \ldots, T_n be independent each with distribution expon(λ). Let the ordering of these be

$$T_{(1)} < T_{(2)} < \cdots < T_{(n)}$$

Then

$$nT_{(1)}$$

$$(n-1)(T_{(2)} - T_{(1)})$$

$$(n-2)(T_{(3)} - T_{(2)})$$

$$\vdots$$

$$(n-i+1)(T_{(i)} - T_{(i-1)})$$

$$\vdots$$

$$(T_{(n)} - T_{(n-1)})$$

are independent and identically distributed as $expon(\lambda)$.

Bo Lindqvist

5b. Let T_1, \ldots, T_n be independent each with distribution $expon(\lambda)$. Let the ordering of these be

$$T_{(1)} < T_{(2)} < \cdots < T_{(n)}$$

Then

$$T_{(1)} \sim \exp(n\lambda)$$

$$T_{(2)} - T_{(1)} \sim \exp((n-1)\lambda)$$

$$T_{(3)} - T_{(2)} \sim \exp((n-2)\lambda)$$

$$\vdots$$

$$T_{(i)} - T_{(i-1)} \sim \exp((n-i+1)\lambda)$$

$$\vdots$$

$$T_{(n)} - T_{(n-1)} \sim \exp(\lambda)$$

are independent with the displayed exponential distributions.

Bo Lindqvist

PROOF OF THE EQUIVALENT CLAIMS OF 5 AND 5b

To go from 5b to 5, we use property 2 of the exponential distribution. Thus we prove only 5b here.

Assume that *n* units are put on test at time 0. Potential lifetimes of these are T_1, \ldots, T_n , and hence $T_{(1)} = \min(T_1, \ldots, T_n)$, so by property 4 above we already have $T_{(1)} \sim \exp(n\lambda)$.

After time $T_{(1)}$ there are n-1 unfailed units. At time $s = T_{(1)}$ each of these has by property 1 a remaining lifetime which is $expon(\lambda)$. It follows from this that we from time $T_{(1)}$ and onwards have the same situation as at time 0, only that there are now n-1 instead of n units on test. Therefore the time to next failure, $T_{(2)} - T_{(1)}$, is distributed as the minimum of n-1 expon (λ) variables and hence is $expon((n-1)\lambda)$. That $T_{(2)} - T_{(1)}$ is independent of $T_{(1)}$ follows from property 1 which says that, for the exponential distribution, the distribution of the remaining lifetime is the same whatever be the age of the item.

This reasoning can be continued at time $T_{(2)}$ in an obvious fashion, and we finish by concluding that $T_{(n)} - T_{(n-1)}$ is $expon(\lambda)$.