TMA4275 LIFETIME ANALYSIS

Slides 6: Nelson-Aalen estimator and TTT plot

Bo Lindqvist
Department of Mathematical Sciences
Norwegian University of Science and Technology Trondheim

http://www.math.ntnu.no/~bo/ bo@math.ntnu.no

NTNU, Spring 2014

Note first that $Z^{\prime}(t)=z(t)$. Thus,

- T is IFR $\Leftrightarrow z(t)$ is increasing $\Leftrightarrow Z(t)$ is convex
- T is DFR $\Leftrightarrow z(t)$ is decreasing $\Leftrightarrow Z(t)$ is concave

Thus a plot of an estimate $\hat{Z}(t)$ can give us information on whether the distribution of T is IFR (increasing failure rate) or DFR (decreasing failure rate).

ESTIMATING $Z(t)$ BY THE KM-ESTIMATOR

Recall that $R(t)=e^{-Z(t)}$, so

$$
Z(t)=-\ln R(t)
$$

Thus - if $\hat{R}_{K M}(t)$ is the KM-estimator for $R(t)$, then we can define,

$$
\begin{aligned}
\hat{Z}_{K M}(t) & =-\ln \hat{R}_{K M}(t) \\
& =-\ln \prod_{T_{(i)} \leq t} \frac{n_{i}-d_{i}}{n_{i}} \\
& =-\sum_{T_{(i)} \leq t} \ln \left(1-\frac{d_{i}}{n_{i}}\right) \\
& \approx \sum_{T_{(i)} \leq t} \frac{d_{i}}{n_{i}}
\end{aligned}
$$

where we used that for small x is

$$
-\ln (1-x) \approx x
$$

The Nelson-Aalen estimator (NA-estimator) is simply defined by

$$
\hat{Z}_{N A}(t)=\sum_{T_{(i)} \leq t} \frac{d_{i}}{n_{i}}
$$

It can then be shown that its variance can be estimated by

$$
\left.\operatorname{Var} \widehat{\left(\hat{Z}_{N A}\right.}(t)\right)=\sum_{T_{(i)} \leq t} \frac{d_{i}}{n_{i}^{2}}
$$

Note: The Nelson-Aalen estimator is not included in MINITAB (only "hazard plot" which is in fact not a correct). For this course has been made a MINITAB Macro (see MINITAB Macros on the Software webpage).

In the following we shall have a closer look at how the Nelson-Aalen estimator can be motivated from properties of the exponential distribution.

EXAMPLE: NELSON-AALEN ESTIMATOR

1	31,7	1
2	39,2	1
3	57,5	1
4	65,0	0
5	65,8	1
6	70,0	1
7	75,0	0
8	75,2	0
9	87,5	0
10	88,3	0
11	94,2	0
12	101,7	0
13	105,8	1
14	109,2	0
15	110,0	1
16	130,0	0

Row

Numb at risk
1/Numb at risk Cum Haz Nelson Survival Nelson
31,7
0,062500
0,066667
0,071429
0,083333
0,090909
0,250000
0,500000

0,06250	0,939413
0,12917	0,878827
0,20060	0,818244
0,28393	0,752820
0,37484	0,687401
0,62484	0,535348
1,12484	0,324705

Nelson Plot

Suppose an item with lifetime T is still alive at time s. The probability of surviving an additional t time is then

$$
\begin{aligned}
R(t \mid s) & \equiv P(T>s+t \mid T>s) \\
& =\frac{P(T>s+t \cap T>s)}{P(T>s)} \\
& =\frac{R(s+t)}{R(s)}
\end{aligned}
$$

This is called the conditional survival function of the item at time t, or the distribution of the residual life. The following is its expectation, called Mean Residual Life:

$$
\begin{aligned}
\operatorname{MRL}(t) & =\int_{0}^{\infty} R(t \mid s) d t=\int_{0}^{\infty} \frac{R(s+t)}{R(s)} d t \\
& =\frac{1}{R(s)} \int_{s}^{\infty} R(t) d t
\end{aligned}
$$

1. The memoryless property

Write $T \sim \operatorname{expon}(\lambda)$ if $f(t)=\lambda e^{-\lambda t} ; R(t)=P(T>t)=e^{-\lambda t}, t>0$.
For $T \sim \operatorname{expon}(\lambda)$ we therefore have

$$
R(t \mid s)=P(T>s+t \mid T>s)=\frac{R(s+t)}{R(s)}=\frac{e^{-\lambda(s+t)}}{e^{-\lambda s}}=e^{-\lambda t}=R(t) .
$$

This is called the memoryless property of the exponential distribution.
For any age s, the remaining life has same distribution as for a new item.
2. Let $T \sim \operatorname{expon}(\lambda)$ and let $W=a T$. Then $W \sim \operatorname{expon}(\lambda / a)$. Proof:

$$
P(W>w)=P(a T>w)=P\left(T>\frac{w}{a}\right)=e^{-\left(\frac{\lambda}{a}\right) w}
$$

3. Let T_{i} for $i=1, \ldots, n$ be independent, with $T_{i} \sim \operatorname{expon}\left(\lambda_{i}\right)$. Let $W=\min \left(T_{1}, \ldots, T_{n}\right)$.. Then $W \sim \operatorname{expon}\left(\sum_{i=1}^{n} \lambda_{i}\right)$.
Proof:

$$
\begin{aligned}
P(W>w) & =P\left(\min \left(T_{1}, \cdots, T_{n}\right)>w\right) \\
& =P\left(T_{1}>w, T_{2}>w, \cdots, T_{n}>w\right) \\
& =P\left(T_{1}>w\right) P\left(T_{2}>w\right) \cdots P\left(T_{n}>w\right) \\
& =e^{-\left(\lambda_{1}+\cdots+\lambda_{n}\right) w},
\end{aligned}
$$

so $W \sim \operatorname{expon}\left(\lambda_{1}+\cdots+\lambda_{n}\right)$
4. In particular if T_{1}, \ldots, T_{n} are independent each with distribution expon (λ), then

$$
W=\min \left(T_{1}, \ldots, T_{n}\right) \sim \operatorname{expon}(n \lambda)
$$

So a series system of n components with lifetimes that are independent and exponentially distributed with hazard rate λ, has a lifetime which is exponenital with hazard rate $n \lambda$ and hence

$$
\text { MTTF }=\frac{1}{n \lambda}=\frac{\text { Component MTTF }}{n}
$$

5. Let T_{1}, \ldots, T_{n} be independent each with distribution expon (λ). Let the ordering of these be

$$
T_{(1)}<T_{(2)}<\cdots<T_{(n)}
$$

Then

$$
\begin{gathered}
n T_{(1)} \\
(n-1)\left(T_{(2)}-T_{(1)}\right) \\
(n-2)\left(T_{(3)}-T_{(2)}\right) \\
\vdots \\
(n-i+1)\left(T_{(i)}-T_{(i-1)}\right) \\
\vdots \\
\left(T_{(n)}-T_{(n-1)}\right)
\end{gathered}
$$

are independent and identically distributed as expon (λ).

5b. Let T_{1}, \ldots, T_{n} be independent each with distribution expon (λ). Let the ordering of these be

$$
T_{(1)}<T_{(2)}<\cdots<T_{(n)}
$$

Then

$$
\begin{aligned}
T_{(1)} & \sim \operatorname{expon}(n \lambda) \\
T_{(2)}-T_{(1)} & \sim \operatorname{expon}((n-1) \lambda) \\
T_{(3)}-T_{(2)} & \sim \operatorname{expon}((n-2) \lambda) \\
& \vdots \\
T_{(i)}-T_{(i-1)} & \sim \operatorname{expon}((n-i+1) \lambda) \\
\vdots & \\
T_{(n)}-T_{(n-1)} & \sim \operatorname{expon}(\lambda)
\end{aligned}
$$

are independent with the displayed exponential distributions.

PROOF OF THE EQUIVALENT CLAIMS OF 5 AND 5b

To go from 5b to 5, we use property 2 of the exponential distribution. Thus we prove only 5b here.

Assume that n units are put on test at time 0 . Potential lifetimes of these are T_{1}, \ldots, T_{n}, and hence $T_{(1)}=\min \left(T_{1}, \ldots, T_{n}\right)$, so by property 4 above we already have $T_{(1)} \sim \operatorname{expon}(n \lambda)$.
After time $T_{(1)}$ there are $n-1$ unfailed units. At time $s=T_{(1)}$ each of these has by property 1 a remaining lifetime which is expon (λ). It follows from this that we from time $T_{(1)}$ and onwards have the same situation as at time 0 , only that there are now $n-1$ instead of n units on test. Therefore the time to next failure, $T_{(2)}-T_{(1)}$, is distributed as the minimum of $n-1$ expon (λ) variables and hence is expon $((n-1) \lambda)$. That $T_{(2)}-T_{(1)}$ is independent of $T_{(1)}$ follows from property 1 which says that, for the exponential distribution, the distribution of the remaining lifetime is the same whatever be the age of the item.
This reasoning can be continued at time $T_{(2)}$ in an obvious fashion, and we finish by concluding that $T_{(n)}-T_{(n-1)}$ is expon (λ).

