TMA4275 LIFETIME ANALYSIS

Slides 4: Gumbel distribution. Log-location-scale families

Bo Lindqvist Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim

http://www.math.ntnu.no/~bo/ bo@math.ntnu.no

NTNU, Spring 2014

EXTREME VALUE DISTRIBUTIONS

Let T_1, T_2, \dots, T_n be lifetimes of *n* components, with ordered values denoted by $T_{(1)} < T_{(2)} < \dots < T_{(n)}$. Thus $T_{(1)}$ is the minimum and corresponds to the lifetime of a series system.

For large *n*, $T_{(1)}$ is approximately Weibull-distributed. This motivates the widespread use of the Weibull-distribution!

If the T_i are no longer lifetimes, but have support in $(-\infty, \infty)$, then the limiting distribution of a properly normalized version of $T_{(1)}$ equals the distribution of a random variable Y with cdf

$$F_Y(y) = 1 - e^{-e^{rac{y-\mu}{\sigma}}}, \qquad -\infty < y < \infty$$

This is the so called "Distribution of smallest extreme", or "Extreme value distribution of type I", or (which we will call it) the **Gumbel-distribution**; $Y \sim \text{Gumbel}(\mu, \sigma)$.

We write $Y \sim \mathsf{Gumbel}(\mu, \sigma)$

▲口▼ ▲□▼ ▲目▼ ▲目▼ ▲□▼ ④へ⊙

Show that

$$F_{\mathbf{Y}}(y) = 1 - e^{-e^{\frac{y-\mu}{\sigma}}}, \qquad -\infty < y < \infty$$

satisfies the requirements for a cdf, i.e.

- Increasing in y
- $\lim_{y\to -\infty} F_Y(y) = 0$
- $\lim_{y\to\infty} F_Y(y) = 1$

э

- ∢ ⊒ →

WHY ARE WE INTERESTED IN THE GUMBEL DISTRIBUTION?

If T is Weibull-distributed, $T \sim Weib(\alpha, \theta)$, then $Y = \ln T$ is Gumbel-distributed, $Y \sim Gumbel(\mu, \sigma)$, with $\mu = \ln \theta$, $\sigma = 1/\alpha$.

Proof: Note first that $T = e^{Y}$ and $R(t) = P(T > t) = e^{-\left(\frac{t}{\theta}\right)^{\alpha}}$. Then:

$$P(Y > y) = P(e^{Y} > e^{y}) = P(T > e^{y}) = R(e^{y})$$
$$= e^{-\left(\frac{e^{y}}{\theta}\right)^{\alpha}} = e^{-\left(\frac{e^{y}}{e^{\ln\theta}}\right)^{\alpha}}$$
$$= e^{-(e^{y-\ln\theta})^{\alpha}} = e^{-e^{\left(\frac{y-\ln\theta}{1/\alpha}\right)}}$$

Thus, $F_Y(y) = 1 - P(Y > y) = 1 - e^{-e^{\left(\frac{y - \ln \theta}{1/\alpha}\right)}}$, which shows that $Y \sim \text{Gumbel}(\ln \theta, 1/\alpha)$.

We shall see later why this is a useful and interesting result (and not just a curiosity...)

THE GUMBEL DISTRIBUTION

Let $Y \sim \text{Gumbel}(\mu, \sigma)$ and recall the cdf

$$F_Y(y) = P(Y \le y) = 1 - e^{-e^{rac{y-\mu}{\sigma}}}$$
 for $-\infty < y < \infty$

The cdf of Gumbel(0,1), called the standard Gumbel distribution, is

$$G(w) = 1 - e^{-e^w}$$
 for $-\infty < w < \infty$

It is seen that

$$F_Y(y) = P(Y \le y) = G\left(rac{y-\mu}{\sigma}
ight)$$

This defines the cdf of the Gumbel(μ, σ) in terms of the cdf of the standard Gumbel, in the same way as the cdf of $Y \sim N(\mu, \sigma)$ can be expressed by the cdf, $\Phi(\cdot)$, of the standard normal. How?

THE GUMBEL DISTRIBUTION (CONT.)

Let again $Y \sim \text{Gumbel}(\mu, \sigma)$, and define

$$W = rac{Y-\mu}{\sigma}$$
 (*)

Then W has the standard Gumbel distribution. This is seen as follows:

$$P(W \le w) = P\left(\frac{Y-\mu}{\sigma} \le w\right)$$

= $P(Y \le \mu + \sigma w) = F_Y(\mu + \sigma w)$
= $1 - e^{-e^w} \equiv G(w)$

By solving (*) for Y it follows that we have the representation for $Y \sim \text{Gumbel}(\mu, \sigma)$:

$$Y = \mu + \sigma W$$

where $W \sim Gumbel(0,1)$.

MORE ON THE STANDARD GUMBEL DISTRIBUTION

Recall once more that if $W \sim \text{Gumbel}(0,1)$, then W has the cdf

$$G(w) = 1 - e^{-e^w}$$

The pdf of W is hence

$$g(w) = G'(w) = -e^{-e^w}(-e^w) = e^w e^{-e^w}$$

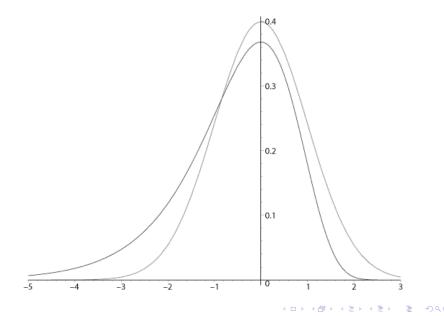
We also have

$$E(W) = \int_{-\infty}^{\infty} w e^w e^{-e^w} dw = -\gamma,$$

where $\gamma = -0.5772$ is *Euler's constant*.

< Ξ > < Ξ > ...

STANDARD GUMBEL AND NORMAL DISTRIBUTIONS



GENERAL LOG-LOCATION-SCALE FAMILIES

We have seen:

 $T \sim \operatorname{lognorm}(\mu, \sigma) \Longleftrightarrow Y = \operatorname{ln} T \sim N(\mu, \sigma)$

 $T \sim \mathsf{Weib}(\alpha, \theta) \iff Y = \ln T \sim \mathsf{Gumbel}(\mu, \sigma)$, with $\mu = \ln \theta$, $\sigma = 1/\alpha$.

 Both distributions thus define log-location-scale families, which are characterized by the fact that Y = In T has a cdf which can be expressed as

$$F_Y(y) = P(Y \le y) = \Psi\left(rac{y-\mu}{\sigma}
ight)$$

where $\Psi(\cdot)$ is the cdf of some "standardized distribution" on $(-\infty,\infty).$

• Equivalently, log-location-scale families are characterized by representations

$$\ln T = \mu + \sigma U$$

where U has cdf $\Psi(\cdot)$ as described above.

イロト 不得 トイヨト イヨト 二日

Generally, $\mu \in (-\infty, +\infty)$ is called the *location parameter*, and $\sigma > 0$ is called the *scale parameter*.

THE LOGISTIC AND LOG-LOGISTIC DISTRIBUTIONS

A random variable Y has the logistic distribution with location parameter μ and scale parameter σ , written $Y \sim logistic(\mu, \sigma)$, if

$$F_Y(y) = P(Y \le y) = H\left(rac{y-\mu}{\sigma}
ight) \quad \textit{for } -\infty < y < \infty$$

where

$$H(v) = P(V \le v) = rac{e^v}{1+e^v}$$
 for $-\infty < v < \infty$

is the cdf of the standard logistic distribution, logistic(0,1).

A lifetime T has the **log-logistic** distribution with location parameter μ and scale parameter σ if $Y = \ln T \sim logistic(\mu, \sigma)$. In this case we have the representation

$$\ln T = \mu + \sigma V$$

where $V \sim logistic(0, 1)$.

THE STANDARD LOGISTIC DISTRIBUTION

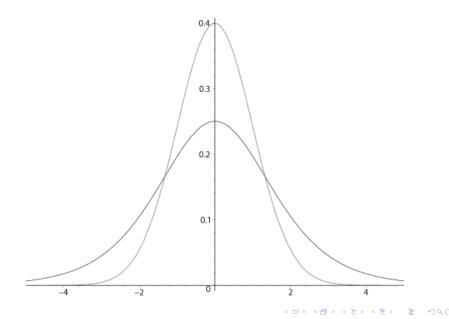
Recall that if $V \sim \text{logistic}(0, 1)$, then the cdf of V is $H(v) = P(V \le v) = \frac{e^v}{1+e^v}$ for $-\infty < v < \infty$.

Hence the pdf of V is

$$h(v) = H'(v) = rac{e^v}{(1+e^v)^2}$$
 (do the differentiation!)

Like the standard normal, this density is symmetric around the *y*-axis (which is not the case for the standard Gumbel). Check this by showing that h(-v) = h(v) for all *v*.

STANDARD LOGISTIC AND STANDARD NORMAL



Bo Lindqvist

FUNCTIONS FOR LOG-LOCATION-SCALE FAMILIES

By assumption, $Y = \ln T$ has a cdf which can be expressed as

$$F_Y(y) = P(Y \le y) = \Psi\left(rac{y-\mu}{\sigma}
ight) \quad ext{for } -\infty < y < \infty$$

where $\Psi(\cdot)$ is the cdf of a standard distribution. Let further $\psi(u) = \Psi'(u)$. Then

$$R(t) = P(T > t) = P(\ln T > \ln t) = 1 - \Psi\left(\frac{\ln t - \mu}{\sigma}\right)$$

$$f(t) = -R'(t) = \psi\left(\frac{\ln t - \mu}{\sigma}\right) \cdot \frac{1}{t\sigma}$$

$$z(t) = \frac{f(t)}{R(t)} = \frac{\psi(\frac{\ln t - \mu}{\sigma})/(t\sigma)}{1 - \Psi(\frac{\ln t - \mu}{\sigma})}$$

(as already obtained for the lognormal distribution).