TMA4275 LIFETIME ANALYSIS Slides 17: Trend testing for NHPP

Bo Lindqvist Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim

http://www.math.ntnu.no/~bo/ bo@math.ntnu.no

NTNU, Spring 2014

TREND TESTING FOR NHPP

Consider an NHPP with intensity (ROCOF) w(t).

Can see "trend" of w(t) by considering W(t):

- if W(t) is **convex**, then $w(t) \nearrow$
- if W(t) is **concave**, then $w(t) \searrow$
- if W(t) is linear, then w(t) is constant (so we have an HPP).

Trend tests are tests for:

 $H_0: w(t)$ is constant

versus, alternatives such as

$$H_1 : w(t) \nearrow$$

$$H_1 : w(t) \searrow$$

$$H_1 : w(t) \text{ is not constant}$$

THE LAPLACE TEST

Basic result for an HPP on the interval $[0, \tau]$, with events at S_1, S_2, \ldots, S_N :

Given N = n, the n events are distributed uniformly on the interval $[0, \tau]$, i.e. they are the orderings of n independent variables, uniformly distributed on $[0, \tau]$.

These variables have mean equal to $\tau/2$ and variance $\tau^2/12$. Thus

$$\sum_{i=1}^n S_i \approx N(n\tau/2, n\tau^2/12)$$

Thus

$$W = \frac{\sum_{i=1}^{n} S_i - n\tau/2}{\tau \sqrt{n/12}} = \frac{\sum_{i=1}^{n} (S_i - \tau/2)}{\tau \sqrt{n/12}} \approx N(0, 1)$$

This is the test statistic of the Laplace test!

Why is this a reasonable test statistic, and for which values of W should we reject the null hypothesis?

MOTIVATION FOR THE LAPLACE TEST

Recall

$$W = \frac{\sum_{i=1}^{n} (S_i - \tau/2)}{\tau \sqrt{n/12}}$$

Now:

- If H₁ : w(t) ≯, then most failures are above τ/2, and W has a tendency to be large and positive.
- If H₁: w(t) ∖, then most failures are below τ/2, and W has a tendency to be small and negative.
- If $H_1: w(t)$ is not constant, then
 - if the alternative is that of a *monotone* w(t), the W has a tendency to be either too large or too small
 - if the alternative is, e.g., a bathtub w(t), then W may still be moderate, so that the test is not good in this case!

TREND TESTING IN SIMPLE EXAMPLE WITH THREE SYSTEMS

• system 1:
$$W_1 = \frac{(5-10)+(12-10)+(17-10)}{20\sqrt{3/12}} = \frac{4}{20\sqrt{3/12}} = 0.40$$

• system 2: $W_2 = \frac{(9-15)+(23-15)}{30\sqrt{2/12}} = 0.1633$
• system 3: $W_3 = \frac{4-5}{10\sqrt{1/12}} = -0.3464$
Sys. 1: $0 \qquad S_{11} = 5 \qquad S_{21} = 12 \qquad S_{31} = 17 \quad \tau_1 = 20$
Sys. 2: $0 \qquad S_{12} = 9 \qquad S_{22} = 23 \qquad \tau_2 = 30$
Sys. 3: $0 \qquad S_{13} = 4 \qquad \tau_3 = 10$
Proj: $0 \qquad 4 \ 5 \qquad 9 \qquad 12 \qquad 17 \qquad 23 \qquad t$
Y(t): $Y(t) = 3 \qquad Y(t) = 2 \qquad Y(t) = 1$

Bo Lindqvist

Basic result for an HPP stopped at the *n*th event, for a given *n*, with events at S_1, S_2, \ldots, S_n :

Given the value $S_n = s_n$, the n - 1 first events are distributed uniformly on the interval $[0, s_n]$, i.e. they are the orderings of n - 1 independent variables, uniformly distributed on $[0, s_n]$.

This leads to the test statistic

$$W = \frac{\sum_{i=1}^{n-1} (S_i - S_n/2)}{S_n \sqrt{(n-1)/12}}$$

which is approximately N(0,1) under the null hypothesis of HPP.

A PRELIMINARY RESULT

Now use the following result:

If $S \sim U[0, \tau]$, then

$$Z = 2\ln\frac{\tau}{S} \sim \chi_2^2$$

which is proved as follows:

$$P(Z \le z) = P(2 \ln \frac{\tau}{S} \le z)$$
$$= P(\ln \frac{\tau}{S} \le \frac{z}{2})$$
$$= P(\frac{\tau}{S} \le e^{\frac{z}{2}})$$
$$= P(S \ge \tau e^{-\frac{z}{2}})$$
$$= 1 - e^{-\frac{z}{2}}$$

Thus
$$f_Z(z) = \frac{1}{2}e^{-\frac{z}{2}} \sim \chi_2^2$$

< □ ▶ < @

► < Ξ ►</p>

The test statistic is

$$Z = 2\sum_{i=1}^{n} \ln \frac{\tau}{S_i} \sim \chi_{2n}^2 \text{ under } H_0 \text{ (time censoring at } \tau\text{)}$$

$$Z = 2\sum_{i=1}^{n-1} \ln \frac{S_n}{S_i} \sim \chi_{2(n-1)}^2 \text{ under } H_0 \text{ (failure censoring at } n \text{th failure)}$$

(the distributions under H_0 are exact distribution, not only "approximately")

MOTIVATION FOR THE MILITARY HANDBOOK TEST

Recall

$$Z = 2\sum_{i=1}^{n} \ln \frac{\tau}{S_i}$$

Now:

- If $H_1: w(t) \nearrow$, then many of the τ/S_i are close to 1, and hence Z has a tendency to be small (note $\ln 1 = 0$).
- If $H_1: w(t) \searrow$, then many of the S_i are small, so many of the τ/S_i are large, and hence Z has a tendency to be large.
- If $H_1: w(t)$ is not constant, then
 - if the alternative is that of a *monotone* w(t), the Z has a tendency to be either too large or too small
 - if the alternative is, e.g., a bathtub w(t), then Z may still be moderate, so that the test is not good in this case!

Recall: This system has failures at 5, 12, 17; time censoring at $\tau = 20$.

$$Z = 2(\ln\frac{20}{5} + \ln\frac{20}{12} + \ln\frac{20}{17}) = 5.14$$

If H_0 holds (HPP), then $Z \sim \chi_6^2$ (i.e. E(Z) = 6), so the tendency is towards "small" value, i.e. increasing w(t).

BUT: If $H_1: w(t) \nearrow$, then we should reject at 5% level if $Z < \chi_6^2(0.05) = 1.64$, so we are frar from rejecting the HPP!

Suppose we have *m* processes which each are NHPPs

- H_0 : the *m* processes are all HPP.
- H_1 : the *m* processes have increasing trend (at least one of them); or
- H_1 : the *m* processes have decreasing trend (at least one of them); or
- H_1 : not all of the *m* processes are HPP.

æ

THE POOLED LAPLACE TEST

Under the null hypothesis of m HPP, we have for each j:

Given $N_j = n_j$, the S_{1j}, \dots, S_{N_jj} are orderings of n_j uniforms on $(0, \tau_j)$. Thus, $E(S_{ij}) = \frac{\tau_j}{2}$, $Var(S_{ij}) = \frac{\tau_j^2}{12}$.

The pooled Laplace test is defined by the test statistic

$$W_{pooled} = \frac{\sum_{j=1}^{m} \sum_{i=1}^{N_j} S_{ij} - E\left[\sum_{j=1}^{m} \sum_{i=1}^{N_j} S_{ij}\right]}{\sqrt{Var\left[\sum_{j=1}^{m} \sum_{i=1}^{N_j} S_{ij}\right]}}$$

$$E[\sum_{j=1}^{m} \sum_{i=1}^{N_j} S_{ij}] = \sum_{j=1}^{m} \sum_{i=1}^{N_j} \frac{\tau_j}{2} = \sum_{j=1}^{m} \frac{n_j \tau_j}{2}$$

$$Var[\sum_{j=1}^{m} \sum_{i=1}^{N_j} S_{ij}] = \sum_{j=1}^{m} \sum_{i=1}^{N_j} \frac{\tau_j^2}{12} = \sum_{j=1}^{m} \frac{n_j \tau_j^2}{12}$$

$$\Rightarrow W_{pooled} = \frac{\sum_{j=1}^{m} \sum_{i=1}^{N_j} S_{ij} - \sum_{j=1}^{m} \frac{n_j \tau_j}{2}}{\sqrt{\sum_{j=1}^{m} \frac{n_j \tau_j^2}{12}}} \approx N(0, 1) \quad \text{under } H_0$$

Here

POOLED LAPLACE TEST FOR SIMPLE SYSTEMS

$$W_{pooled} = \frac{5 + 12 + 17 + 9 + 23 + 4 - \frac{1}{2}(3 \cdot 20 + 2 \cdot 30 + 1 \cdot 10)}{\sqrt{\frac{1}{12}[3 \cdot 20^2 + 2 \cdot 30^2 + 1 \cdot 10^2]}}$$
$$= \frac{70 - 65}{\sqrt{\frac{1}{12}[3100]}}$$
$$= \frac{5}{\sqrt{\frac{3100}{12}}}$$
$$= 0.3111$$

p-value for a test of "all HPP" vs "not all HPP" is $2 \cdot P(W \ge 0.3111) = 2 \cdot 0.378 = 0.756.$

Note: This test is in fact a test of the null hypothesis that processes are all HPP's but possibly with different individual hazards.

Bo Lindqvist

THE POOLED MILITARY HANDBOOK TEST

Under the null hypothesis of *m* HPP, we have for each *j*: $Z_{ij} = 2 \sum_{i=1}^{n_j} \ln \frac{\tau_j}{S_{ii}} \sim \chi^2_{2n_j}$. This suggests to define

$$Z_{pooled} = \sum_{j=1}^{m} \underbrace{\sum_{i=1}^{n_j} 2 \ln \frac{\tau_j}{S_{ij}}}_{\chi^2_{2n_j}} \sim \chi^2_{2n}$$

where $n = \sum_{j=1}^{m} n_j$.

Can write simply $Z_{pooled} = \sum_{j=1}^{m} Z_{ij}$.

IN SIMPLE EXAMPLE:

$$Z_{pooled} = 2\left(\ln\frac{20}{5} + \ln\frac{20}{12} + \ln\frac{20}{17}\ln\frac{30}{9} + \ln\frac{30}{23} + \ln\frac{10}{4}\right) = 8.89$$

Under $H_0: Z_{pooled} \sim \chi^2_{12}$, so P-value is $2P(\chi^2_{12} \le 8.89) = 0.5754$

(Use parametric repairable systems analysis).

Trend Tests

	MIL-Hdbk-189		Laplace's		
	TTT-based	Pooled	TTT-based	Pooled	Anderson-Darling
Test Statistic	9,59	8,89	0,12	0,31	0,24
P-Value	0,697	0,576	0,906	0,756	0,977
DF	12	12			

< A

∃ ► < ∃ ►</p>

TTT-BASED TREND TESTS

MINITAB also reports a TTT-based test, based on the article:

PII: S 0 9 5 1 - 8 3 2 0 (9 7) 0 0 0 9 9 - 9

Reliability Engineering and System Safety 60 (1998) 13-28 © 1998 Elsevier Science Limited All rights reserved. Printed in Northern Ireland 0951-832098/\$19.00

TTT-based tests for trend in repairable systems data

Jan Terje Kvaløy & Bo Henry Lindqvist

Department of Mathematical Sciences, Norwegian University of Science and Technology, N-7034 Trondheim, Norway

(Received 25 September 1996; revised 24 January 1997; accepted 15 July 1997)

This is for the for the null hypothesis that *all* the *m* processes are HPP with the *same* intensity.