TMA4275 LIFETIME ANALYSIS Slides 15: Recurrent events; Repairable systems

Bo Lindqvist Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim

http://www.math.ntnu.no/~bo/ bo@math.ntnu.no

NTNU, Spring 2014

Definition of repairable system (Ascher and Feingold 1984):

"A repairable system is a system which, after failing to perform one or more of its functions satisfactorily, can be restored to fully satisfactory performance by any method, other than replacement of the entire system".

TYPICAL EXAMPLES

- System is repaired and put into use again.
- 2 Machine part is replaced.
- Selapse from disease (epileptic seizures, recurrence of tumors)

Modeling as a *counting process;* i.e. counting events on a time axis. N(t) = # events in (0,t]. N(s,t) = # events in (s,t] = N(s) - N(t). S_1, S_2, \cdots are event times.

 T_1, T_2, \cdots are times *between* events; also called "sojourn times".

NOTE: It is common to disregard *repair times*, but one could have situations where "up times" alternate with "down times" of a system.

"HAPPY" AND "SAD" SYSTEMS

Ascher and Feingold presented the following example of a "happy" and "sad" system:

- *Their claim:* Reliability engineers do not recognize the difference between these cases since they always treat times between failures as i.i.d. and fit probability models like Weibull.
- *Their conclusion:* Use point process models to analyze repairable systems data!

• Applications: engineering and reliability studies, public health, clinical trials, politics, finance, insurance, sociology, etc.

Reliability applications:

- breakdown or failure of a mechanical or electronic system
- discovery of a bug in an operating system software
- the occurrence of a crack in concrete structures
- the breakdown of a fiber in fibrous composites
- Warranty claims of manufactured products

TYPICAL DATA FORMAT; EVENT PLOT

PROSCHAN (1963) AIRCONDITIONER DATA

Times of failures of aircondition system in a fleet of Boeing 720 airplanes

Event Plot for Aircondition Failures

Bo Lindqvist

NELSON (1995) VALVESEAT DATA

Times of valve-seat replacements in a fleet of 41 diesel engines

Event Plot for Valve Seat Replacements

Bo Lindqvist

BHATTACHARJEE ET AL. (2003) NUCLEAR PLANT FAILURE DATA

• Failure data for closing valves in safety systems at two nuclear reactor plants in Finland. Failures type: *External Leakage*, follow-up 9 years for 104 valves. 88 valves had no failures

AALEN AND HUSEBYE (1991) MMC DATA

Aalen and Husebye (1991): Migratory motor complex (MMC) periods in 19 patients, 1-9 events per individual.

Individual	Observed periods (minutes)								
1	112 33	145 51	39 (54)	52	21	34			
2	206	147	(30)						
3	284	59	186	(4)					
4	94	98	84	(87)					
5	67	(131)							
6	124 58	34 142	87 75	75 (23)	43	38			
7	116	71	83	68	125	(111)			
8	111	59	47	95	(110)				
9	98	161	154	55	(44)				
10	166	56	(122)						
11	63	90	63	103	51	(85)			
12	47	86	68	144	(72)				
:			:						

Bo Lindqvist

ヨト

PROBABILISTIC MODELING OF RECURRENT EVENTS

Definition: $W(t) =_{def} E[N(t)] =$ expected # events (failures) in (0,t]. $w(t) =_{def} W'(t) =$ Rate of Occurrence of Failures (ROCOF).

$$w(t) = \lim_{h \to 0} \frac{W(t+h) - W(t)}{h}$$
$$= \lim_{h \to 0} \frac{E[N(t+h)] - E[N(t)]}{h}$$
$$= \lim_{h \to 0} \frac{E[N(t+h) - N(t)]}{h}$$
$$= \lim_{h \to 0} \frac{E[N(t,t+h)]}{h}$$
$$= \lim_{h \to 0} \frac{\exp(ted \#events in(t,t+h))}{h}$$

So expected number of events in $(t, t + h) \approx w(t)h$

PROBABILISTIC MODELING OF RECURRENT EVENTS

Definition: Counting process is regular if

$$P(N(t,t+h)\geq 2)=o(h)$$

i.e. *small*, even compared to h, meaning that $\frac{o(h)}{h} \rightarrow 0$, as $h \rightarrow 0$ In practice *regular* means "*No simultaneous events*". So:

$$E[N(t, t+h)] = 0 \cdot P(N(t, t+h) = 0) + 1 \cdot P(N(t, t+h) = 1) + 2 \cdot P(N(t, t+h) = 2) + \cdots$$

Hence

$$\frac{E[N(t,t+h)]}{h}\approx \frac{P(N(t,t+h)=1)}{h}+\frac{o(h)}{h},$$

so $w(t) = \lim_{h \to 0} \frac{P(N(t,t+h)=1)}{h}$ or $P(N(t,t+h)=1) \approx w(t) \cdot h$ (for a regular process). This is analogous to $P(t < T \le t+h|T > t) \approx z(t)h$ for hazard rates (which sometimes are called FOM = Force of Mortality)

BASIC MODELS FOR REPAIRABLE SYSTEMS

• RP(F): Renewal process with interarrival distribution F.

Defining property:

- Times between events are i.i.d. with distribution F
- NHPP($w(\cdot)$): Nonhomogeneous Poisson process with intensity w(t).

Defining property:

- Number of events in (0, t] is Poisson-distributed with expectation $\int_0^t w(u) du = W(t)$
- Oumber of events in disjoint time intervals are stochastically independent

THE NONHOMOGENEOUS POISSON PROCESS

The NHPP is given by

- Specifying the ROCOF (intensity) w(t),
- which has the basic property that $P(N(t, t + h) = 1) \approx w(t)h$
- assuming regularity of point process
- assuming independence of number of events in disjoint intervals

Properties of NHPP:

Advantage of NHPP and reason for its extensive use:

Can model a *trend* in the rate of failures, because $P(\text{failure in } (t, t + h)) \approx w(t)h$.

- w(t) ∧ deteriorating system ("sad system") e.g. aging of a mechanical system
- $w(t) \searrow$ improving system ("happy system") e.g. software reliability.
- $w(t) = \lambda$ (constant): Homogeneous Poisson process (HPP)

MORE PROPERTIES OF NHPP

Let S_1 is the time to first failure. For HPP, this is $expon(\lambda)$. For NHPP, $P(T_1 > t) = P(N(t) = 0)$, so since $N(t) \sim Poisson(W(t))$, $R_{T_1}(t) = P(T_1 > t) = \frac{W(t)^0}{0!}e^{-W(t)} = e^{-W(t)}$ Thus, $Z_{T_1}(t) = W(t)$, so $z_{T_1}(t) = w(t)$,

i.e. the ROCOF w(t) for an NHPP equals the hazard rate for the time to first failure.

Suppose S_1, S_2, \ldots is and NHPP with w(t) = 2t and $W(t) = t^2$.

What is the expected # of failures in the time intervals [0, 1], [1, 2], [2, 3], all having length 1?

$$E[N(0,1)] = W(1) - W(0) = 1$$

$$E[N(1,2)] = W(2) - W(1) = 2^2 - 1^2 = 3$$

$$E[N(2,3)] = W(3) - W(2) = 9 - 4 = 5$$

Time to the first failure: $R_{T_1}(t) = P(T_1 > t) = P(N(0, t) = 0) = \frac{W(t)^0}{0!}e^{-W(t)} = e^{-t^2}$ $\Rightarrow f_{T_1}(t) = -R'_{T_1}(t) = 2te^{-t^2} = w(t)e^{-W(t)}$, which is a Weibull distribution.

POINT PROCESS MODELING OF RECURRENT EVENTS

•
$$\mathcal{F}_{t-}$$
 = history of events until time t .

• Conditional intensity at t given history until time t,

$$\phi(t|\mathcal{F}_{t-}) = \lim_{h \downarrow 0} \frac{\Pr(\text{failure in } [t, t+h)|\mathcal{F}_{t-})}{h}$$

• NHPP $(w(\cdot))$:

$$\phi(t|\mathcal{F}_{t-}) = w(t)$$

so conditional intensity is independent of history. Interpreted as "minimal repair" at failures

• RP(F) (where F has hazard rate $z(\cdot)$):

$$\phi(t|\mathcal{F}_{t-}) = z(t - S_{N(t-)})$$

so conditional intensity depends (only) on time since last event. Interpreted as "perfect repair" at failures

• Between minimal and perfect repair? So called *imperfect repair* models.

PERFECT AND MINIMAL REPAIR

Assume that we have a component or system with lifetime T, and corresponding hazard rate z(t).

Perfect repair: Assume that the component at each failure is repaired to as good as new (or, possibly, is replaced). Then we can consider the inter-failure times T_1, T_2, \ldots as independent realizations of T, hence S_1, S_2, \ldots is a renewal process.

Thus, conditional ROCOF at t is $z(\text{time since last failure}) = z(t - S_{N(t)})$

Minimal repair: Assume that the system at each failure is repaired only to the same state as immediately before the failure. Then the probability of failing in (t, t + h) will always be the same as for a system starting at time 0 which never has failed, namely $\approx z(t)h$. Thus rate of occurrence of failures is independent of the history.

Can be shown that minimal repair as defined above, corresponds to the property of an NHPP with ROCOF w(t) = z(t).

CONDITIONAL INTENSITY FOR REPAIRED COMPONENT

Consider a component with hazard rate z(t), which is repaired at failures.

CONDITIONAL ROCOF BY MINIMAL REPAIR (NHPP) AND PERFECT REPAIR (RENEWAL PROCESS)

First: If we have data for *one* system only, Then since W(t) = E[N(t)], we estimate W(t) by $\hat{W}(t) = N(t)$ (also valid outside the class of NHPPs).

Assume more generally:

- *m* processes are observed, assumed to have the same W(t)
- processes are not necessarily NHPPs
- first process is observed on time interval (0, τ₁] second process on (0, τ₂]

Let $\tau_{max} = \text{largest } \tau_j$

• Y(t) = # processes under observation at time t.

```
We want to estimate W(t)
```

TOWARDS THE NELSON-AALEN ESTIMATOR FOR W(t)

Divide the time axis at $h_0 = 0, h_1, h_2, \dots$ up to τ_{max} . Assume for simplicity that all the τ_j are among the h_j .

Let $D_i = \#$ events in $(h_{i-1}, h_i]$ (total for all systems) and y_i = value of Y(t) in $(h_{i-1}, h_i]$

For each process: $E[N(h_{i-1}, h_i)] = E[N(h_i)] - E[N(h_{i-1})] = W(h_i) - W(h_{i-1})$

Thus when all processes are considered: $E(D_i) = y_i(W(h_i) - W(h_{i-1})),$ and $E(\frac{D_i}{y_i}) = W(h_i) - W(h_{i-1})$ for i = 1, 2, ...

But then

$$E[\frac{D_1}{y_1}] + E[\frac{D_2}{y_2}] + \ldots + E[\frac{D_k}{y_k}]$$

$$= W(h_1) - W(h_0) + W(h_2) - W(h_1) + \ldots + W(h_k) - W(h_{k-1})$$

$$= W(h_k) - W(h_0) = W(h_k)$$

THE NELSON-AALEN ESTIMATOR

Recall
$$E[\frac{D_1}{y_1}] + E[\frac{D_2}{y_2}] + \ldots + E[\frac{D_k}{y_k}] = W(h_k)$$

This suggests the estimator

$$\hat{\mathcal{N}}(h_k) = \sum_{i=1}^k \frac{D_i}{y_i}$$
 for $k = 1, 2 \dots$

Suppose the failure times, when joined for all the *m* processes, are ordered as $t_1 < t_2 < \ldots < t_n$

Then by letting the h_i be more and more dense, we get contributions for at most *one* failure time in each interval (h_{i-1}, h_i) .

Then we get, letting $d(t_i) = \#$ events at t_i (so $d(t_i) = 1$ if regular process) $Y(t_i) = \#$ processes observes at t_i

$$\hat{W}(t) = \sum_{t_i \leq t} \frac{d(t_i)}{Y(t_i)}$$

THE NHPP CASE

Going back to the first estimator $\hat{W}(h_k) = \sum_{i=1}^k \frac{D_i}{y_i}$ for k = 1, 2..., if the processes are *NHPPs* with CROCOF W(t), then

Now $Var(\frac{D_i}{y_i}) = \frac{1}{y_i^2} Var(D_i) = \frac{E(D_i)}{y_i^2}$ and hence

$$Var(\hat{W}(h_k)) = \sum_{i=1}^{k} Var(\frac{D_i}{y_i}) = \sum_{i=1}^{k} \frac{Var(D_i)}{y_i^2} = \sum_{i=1}^{k} \frac{E(D_i)}{y_i^2}$$

So an estimator is

$$Var(\widehat{\hat{W}(h_k)}) = \sum_{i=1}^k rac{D_i}{y_i^2}$$

which in the limit gives

$$\widehat{Var(\hat{W}(t))} = \sum_{t_i \leq t} \frac{d(t_i)}{Y(t_i)_{q}^2}$$

NELSON-AALEN ESTIMATOR FOR CUMULATIVE ROCOF W(t)

Then

Under general assumptions:
$$\widehat{W}(t) = \sum_{t_i \leq t} \frac{d(t_i)}{Y(t_i)}$$
.

Assuming NHPP:
$$\widehat{W(t)} = \sum_{t_i \leq t} \frac{d(t_i)}{\{Y(t_i)\}^2}$$

Under general assumptions (MINITAB):
$$\widehat{Var W(t)} = \sum_{j=1}^{m} \left\{ \sum_{t_i \leq t} \frac{Y_j(t_i)}{Y(t_i)} \left[d_j(t_i) - \frac{d(t_i)}{Y(t_i)} \right] \right\}^2$$

< 日 > < 同 > < 三 > < 三 >

э

SIMPLE EXAMPLE WITH THREE SYSTEMS

28 / 35

COMPUTATIONS FOR THE NELSON-AALEN ESTIMATOR

t	1/Y(t)	$1/Y(t)^{2}$	$\hat{W}(t)$	$Var \hat{W}(t)$	SDW(t)
_					
4	1/3	1/9	1/3	1/9	0.3333
5	1/3	1/9	2/3	2/9	0.4714
9	1/3	1/9	1	1/3	0.5774
12	1/2	1/4	3/2	7/12	0.7638
17	1/2	1/4	2	5/6	0.9129
23	1	1	3	11/6	1.3540

э

< 日 > < 同 > < 三 > < 三 >

ESTIMATED W(t) WITH CONFIDENCE LIMITS (NHPP)

ESTIMATED W(t) with 95% confidence limits (Nelson-Aalen)

ESTIMATED W(t) WITH CONFIDENCE LIMITS (GENERAL)

COMPUTATION BY GENERAL VARIANCE FORMULA

Compare with MINITAB Output:

$$\widehat{\text{Var }\widehat{W}(4)} = \left\{ \frac{1}{3} \left[0 - \frac{1}{3} \right] \right\}^2 + \left\{ \frac{1}{3} \left[0 - \frac{1}{3} \right] \right\}^2 + \left\{ \frac{1}{3} \left[1 - \frac{1}{3} \right] \right\}^2 \\ = \frac{6}{81} = 0.2722^2$$

$$\widehat{W}(5) = \left\{ \frac{1}{3} \left[0 - \frac{1}{3} \right] + \frac{1}{3} \left[1 - \frac{1}{3} \right] \right\}^{2} \\ + \left\{ \frac{1}{3} \left[0 - \frac{1}{3} \right] + \frac{1}{3} \left[0 - \frac{1}{3} \right] \right\}^{2} \\ + \left\{ \frac{1}{3} \left[1 - \frac{1}{3} \right] + \frac{1}{3} \left[0 - \frac{1}{3} \right] \right\}^{2} \\ = \frac{6}{81} = 0.2722^{2}$$

COMPUTATION BY GENERAL VARIANCE FORMULA

$$\widehat{W}(9) = \left\{ \frac{1}{3} \left[0 - \frac{1}{3} \right] + \frac{1}{3} \left[1 - \frac{1}{3} \right] + \frac{1}{3} \left[0 - \frac{1}{3} \right] \right\}^{2} \\ + \left\{ \frac{1}{3} \left[0 - \frac{1}{3} \right] + \frac{1}{3} \left[0 - \frac{1}{3} \right] + \frac{1}{3} \left[1 - \frac{1}{3} \right] \right\}^{2} \\ + \left\{ \frac{1}{3} \left[1 - \frac{1}{3} \right] + \frac{1}{3} \left[0 - \frac{1}{3} \right] + \frac{1}{3} \left[0 - \frac{1}{3} \right] \right\}^{2} \\ = 0$$

$$\widehat{W(12)} = \left\{ \frac{1}{3} \left[0 - \frac{1}{3} \right] + \frac{1}{3} \left[1 - \frac{1}{3} \right] + \frac{1}{3} \left[0 - \frac{1}{3} \right] + \frac{1}{2} \left[1 - \frac{1}{2} \right] \right\}^2 \\ + \left\{ \frac{1}{3} \left[0 - \frac{1}{3} \right] + \frac{1}{3} \left[0 - \frac{1}{3} \right] + \frac{1}{3} \left[1 - \frac{1}{3} \right] + \frac{1}{2} \left[0 - \frac{1}{2} \right] \right\}^2 \\ + \left\{ \frac{1}{3} \left[1 - \frac{1}{3} \right] + \frac{1}{3} \left[0 - \frac{1}{3} \right] + \frac{1}{3} \left[0 - \frac{1}{3} \right] \right\}^2 \\ = \frac{1}{8} = 0.3536^2$$

Slides 15

~

VALVESEAT DATA: ESTIMATION OF W(t)

GRAMPUS DATA: ESTIMATION OF W(t)

Cumulative Number of Unscheduled Maintenance Actions Versus Operating Hours for a USS Grampus Diesel Engine Lee (1980)

Bo Lindqvist

Slides 15

TMA4275 LIFETIME ANALYSIS