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REPAIRABLE SYSTEMS/RECURRENT EVENTS/

COUNTING PROCESSES

Definition of repairable system (Ascher and Feingold 1984):

“A repairable system is a system which, after failing to perform one or
more of its functions satisfactorily, can be restored to fully satisfactory
performance by any method, other than replacement of the entire system”.
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TYPICAL EXAMPLES

� -� -� -�T1 T2 T3

-r r r
t0 S1 S2 S3

1 System is repaired and put into use again.

2 Machine part is replaced.

3 Relapse from disease (epileptic seizures, recurrence of tumors)
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NOTATION

� -� -� -�T1 T2 T3

-r r r
t0 S1 S2 S3

Modeling as a counting process; i.e. counting events on a time axis.

N(t) = # events in (0,t].

N(s, t) = # events in (s, t] = N(s)− N(t).

S1,S2, · · · are event times.

T1,T2, · · · are times between events; also called “sojourn times”.

NOTE: It is common to disregard repair times, but one could have
situations where “up times” alternate with “down times” of a system.
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“HAPPY” AND “SAD” SYSTEMS

Ascher and Feingold presented the following example of a “happy” and
“sad” system:

Their claim: Reliability engineers do not recognize the difference
between these cases since they always treat times between failures as
i.i.d. and fit probability models like Weibull.

Their conclusion: Use point process models to analyze repairable
systems data!
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APPLICATIONS

q q q
0 S1 S2 · · · SN τ

Applications: engineering and reliability studies, public health, clinical
trials, politics, finance, insurance, sociology, etc.

Reliability applications:

breakdown or failure of a mechanical or electronic system

discovery of a bug in an operating system software

the occurrence of a crack in concrete structures

the breakdown of a fiber in fibrous composites

Warranty claims of manufactured products
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TYPICAL DATA FORMAT; EVENT PLOT

q q q
0 S11 S21 · · · SN11 τ1

...

q q q
0 S1j S2j · · · SNj j τj

...

q q q
0 S1m S2m · · · SNmm τm
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PROSCHAN (1963) AIRCONDITIONER DATA
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NELSON (1995) VALVESEAT DATA
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BHATTACHARJEE ET AL. (2003) NUCLEAR PLANT FAILURE

DATA
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AALEN AND HUSEBYE (1991) MMC DATA
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PROBABILISTIC MODELING OF RECURRENT EVENTS

Definition: W (t) =def E [N(t)] = expected # events (failures) in (0,t].

w(t) =def W ′(t) = Rate of Occurrence of Failures (ROCOF).

w(t) = lim
h→0

W (t + h)−W (t)

h

= lim
h→0

E [N(t + h)]− E [N(t)]

h

= lim
h→0

E [N(t + h)− N(t)]

h

= lim
h→0

E [N(t, t + h)]

h

= lim
h→0

expected#events in(t, t + h)

h

So expected number of events in (t, t + h) ≈ w(t)h
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PROBABILISTIC MODELING OF RECURRENT EVENTS

Definition: Counting process is regular if

P(N(t, t + h) ≥ 2) = o(h)

i.e. small, even compared to h, meaning that o(h)
h → 0, as h→ 0

In practice regular means ”No simultaneous events”. So:

E [N(t, t + h)] = 0 · P(N(t, t + h) = 0) + 1 · P(N(t, t + h) = 1)

+ 2 · P(N(t, t + h) = 2) + · · ·

Hence
E [N(t, t + h)]

h
≈ P(N(t, t + h) = 1)

h
+

o(h)

h
,

so w(t) = limh→0
P(N(t,t+h)=1)

h or P(N(t, t + h) = 1) ≈ w(t) · h
(for a regular process).
This is analogous to P(t < T ≤ t + h|T > t) ≈ z(t)h
for hazard rates (which sometimes are called FOM = Force of Mortality )
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BASIC MODELS FOR REPAIRABLE SYSTEMS

q q q
0 S1 S2 · · · SN τ

RP(F ): Renewal process with interarrival distribution F .

Defining property:

Times between events are i.i.d. with distribution F

NHPP(w(·)): Nonhomogeneous Poisson process with intensity w(t).

Defining property:

1 Number of events in (0, t] is Poisson-distributed with expectation∫ t

0
w(u)du = W (t)

2 Number of events in disjoint time intervals are stochastically
independent
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THE NONHOMOGENEOUS POISSON PROCESS

The NHPP is given by

Specifying the ROCOF (intensity) w(t),

which has the basic property that P(N(t, t + h) = 1) ≈ w(t)h

assuming regularity of point process

assuming independence of number of events in disjoint intervals

Properties of NHPP:

N(s, t) = # events in (s,t] is Poisson(
∫ t
s w(u)du)

N(t) = # in (0,t] is Poisson(
∫ t
0 w(u)du), i.e. Poisson(W (t)).

P(N(t) = j) = W (t)j

j! e−W (t), for j = 0, 1, · · · and E (N(t)) = W (t) so

w(t) = W ′(t) is really the ROCOF.

E [N(s, t)] =
∫ t
s w(u)du = W (t)−W (s)
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MODELING OF TREND

Advantage of NHPP and reason for its extensive use:

Can model a trend in the rate of failures, because
P(failure in (t, t + h)) ≈ w(t)h.

w(t)↗ deteriorating system (”sad system”) e.g. aging of a
mechanical system

w(t)↘ improving system (”happy system”) e.g. software reliability.

w(t) = λ (constant): Homogeneous Poisson process (HPP)
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MORE PROPERTIES OF NHPP

Let S1 is the time to first failure. For HPP, this is expon(λ).

For NHPP, P(T1 > t) = P(N(t) = 0),

so since N(t) ∼ Poisson(W (t)),

RT1(t) = P(T1 > t) = W (t)0

0! e−W (t) = e−W (t)

Thus, ZT1(t) = W (t), so

zT1(t) = w(t),

i.e. the ROCOF w(t) for an NHPP equals the hazard rate for the time to
first failure.
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EXAMPLE

Suppose S1,S2, . . . is and NHPP with w(t) = 2t and W (t) = t2.

What is the expected # of failures in the time intervals [0, 1], [1, 2], [2, 3],
all having length 1?

E [N(0, 1)] = W (1)−W (0) = 1
E [N(1, 2)] = W (2)−W (1) = 22 − 12 = 3
E [N(2, 3)] = W (3)−W (2) = 9− 4 = 5

Time to the first failure:
RT1(t) = P(T1 > t) = P(N(0, t) = 0) = W (t)0

0! e−W (t) = e−t
2

⇒ fT1(t) = −R
′
T1

(t) = 2te−t
2

= w(t)e−W (t), which is a Weibull
distribution.
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POINT PROCESS MODELING OF RECURRENT
EVENTS

q q q
6

φ(t|Ft−)

t

0 S1 S2 · · · SN τ

Ft− = history of events until time t.

Conditional intensity at t given history until time t,

φ(t|Ft−) = lim
h↓0

Pr(failure in [t, t + h)|Ft−)

h
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SPECIAL CASES: THE BASIC MODELS

NHPP(w(·)):

φ(t|Ft−) = w(t)

so conditional intensity is independent of history.
Interpreted as “minimal repair” at failures

RP(F ) (where F has hazard rate z(·)):

φ(t|Ft−) = z(t − SN(t−))

so conditional intensity depends (only) on time since last event.
Interpreted as “perfect repair” at failures

Between minimal and perfect repair? So called imperfect repair
models.
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PERFECT AND MINIMAL REPAIR

Assume that we have a component or system with lifetime T , and
corresponding hazard rate z(t).

Perfect repair: Assume that the component at each failure is repaired to
as good as new (or, possibly, is replaced). Then we can consider the
inter-failure times T1,T2, . . . as independent realizations of T , hence
S1, S2, . . . is a renewal process.

Thus, conditional ROCOF at t is z(time since last failure) = z(t − SN(t))

Minimal repair: Assume that the system at each failure is repaired only
to the same state as immediately before the failure. Then the probability
of failing in (t, t + h) will always be the same as for a system starting at
time 0 which never has failed, namely ≈ z(t)h. Thus rate of occurence of
failures is independent of the history.

Can be shown that minimal repair as defined above, corresponds to the
property of an NHPP with ROCOF w(t) = z(t).
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CONDITIONAL INTENSITY FOR REPAIRED COMPONENT

Consider a component with hazard rate z(t), which is repaired at failures.
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NONPARAMETRIC ESTIMATION OF CUMULATIVE ROCOF W (t)

First: If we have data for one system only, Then since W (t) = E [N(t)], we
estimate W (t) by Ŵ (t) = N(t) (also valid outside the class of NHPPs).

Assume more generally:

m processes are observed, assumed to have the same W (t)

processes are not necessarily NHPPs

first process is observed on time interval (0, τ1]
second process on (0, τ2]
...
Let τmax = largest τj

Y (t) = # processes under observation at time t.

We want to estimate W (t)

Bo Lindqvist Slides 15 ()TMA4275 LIFETIME ANALYSIS 23 / 35



TOWARDS THE NELSON-AALEN ESTIMATOR FOR W (t)

Divide the time axis at h0 = 0, h1, h2, . . . up to τmax .
Assume for simplicity that all the τj are among the hj .

Let Di = # events in (hi−1, hi ] (total for all systems)
and yi = value of Y (t) in (hi−1, hi ]

For each process:
E [N(hi−1, hi )] = E [N(hi )]− E [N(hi−1)] = W (hi )−W (hi−1)

Thus when all processes are considered:
E (Di ) = yi (W (hi )−W (hi−1)),
and E (Di

yi
) = W (hi )−W (hi−1) for i = 1, 2, . . .

But then
E [D1

y1
] + E [D2

y2
] + . . .+ E [Dk

yk
]

= W (h1)−W (h0) + W (h2)−W (h1) + . . .+ W (hk)−W (hk−1)

= W (hk)−W (h0) = W (hk)
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THE NELSON-AALEN ESTIMATOR

Recall E [D1
y1

] + E [D2
y2

] + . . .+ E [Dk
yk

] = W (hk)

This suggests the estimator

Ŵ (hk) =
k∑

i=1

Di

yi
for k = 1, 2 . . .

Suppose the failure times, when joined for all the m processes, are ordered
as t1 < t2 < . . . < tn

Then by letting the hi be more and more dense, we get contributions for
at most one failure time in each interval (hi−1, hi ).

Then we get, letting d(ti ) = #events at ti (so d(ti ) = 1 if regular process)
Y (ti ) = #processes observes at ti

Ŵ (t) =
∑
ti≤t

d(ti )

Y (ti )
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THE NHPP CASE

Going back to the first estimator Ŵ (hk) =
∑k

i=1
Di
yi

for k = 1, 2 . . ., if the
processes are NHPPs with CROCOF W (t), then

1 Di ∼ Poisson(yi (W (hi )−W (hi−1)))
2 The Di are independent (very important implication of NHPP)

Now Var(Di
yi

) = 1
y2
i

Var(Di ) = E(Di )
y2
i

and hence

Var(Ŵ (hk)) =
k∑

i=1

Var(
Di

yi
) =

k∑
i=1

Var(Di )

y2
i

=
k∑

i=1

E (Di )

y2
i

So an estimator is

̂Var(Ŵ (hk)) =
k∑

i=1

Di

y2
i

which in the limit gives

̂Var(Ŵ (t)) =
∑
ti≤t

d(ti )

Y (ti )
2
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NELSON-AALEN ESTIMATOR FOR CUMULATIVE ROCOF W (t)
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SIMPLE EXAMPLE WITH THREE SYSTEMS
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COMPUTATIONS FOR THE NELSON-AALEN ESTIMATOR

t 1/Y (t) 1/Y (t)2 Ŵ (t) ̂VarŴ (t) ̂SDŴ (t)

4 1/3 1/9 1/3 1/9 0.3333
5 1/3 1/9 2/3 2/9 0.4714
9 1/3 1/9 1 1/3 0.5774

12 1/2 1/4 3/2 7/12 0.7638
17 1/2 1/4 2 5/6 0.9129
23 1 1 3 11/6 1.3540
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ESTIMATED W (t) WITH CONFIDENCE LIMITS (NHPP)
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ESTIMATED W (t) WITH CONFIDENCE LIMITS (GENERAL)
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COMPUTATION BY GENERAL VARIANCE FORMULA

Compare with MINITAB Output:

̂
Var Ŵ (4) =

{
1

3

[
0− 1

3

]}2

+

{
1

3

[
0− 1

3

]}2

+

{
1

3

[
1− 1

3

]}2

=
6

81
= 0.27222

̂
Var Ŵ (5) =

{
1

3

[
0− 1

3

]
+

1

3

[
1− 1

3

]}2

+

{
1

3

[
0− 1

3

]
+

1

3

[
0− 1

3

]}2

+

{
1

3

[
1− 1

3

]
+

1

3

[
0− 1

3

]}2

=
6

81
= 0.27222
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COMPUTATION BY GENERAL VARIANCE FORMULA

̂
Var Ŵ (9) =

{
1

3

[
0− 1

3

]
+

1

3

[
1− 1

3

]
+

1

3

[
0− 1

3

]}2

+

{
1

3

[
0− 1

3

]
+

1

3

[
0− 1

3

]
+

1

3

[
1− 1

3

]}2

+

{
1

3

[
1− 1

3

]
+

1

3

[
0− 1

3

]
+

1

3

[
0− 1

3

]}2

= 0

̂
Var Ŵ (12) =

{
1

3

[
0− 1

3

]
+

1

3

[
1− 1

3

]
+

1

3

[
0− 1

3

]
+

1

2

[
1− 1

2

]}2

+

{
1

3

[
0− 1

3

]
+

1

3

[
0− 1

3

]
+

1

3

[
1− 1

3

]
+

1

2

[
0− 1

2

]}2

+

{
1

3

[
1− 1

3

]
+

1

3

[
0− 1

3

]
+

1

3

[
0− 1

3

]}2

=
1

8
= 0.35362
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VALVESEAT DATA: ESTIMATION OF W (t)
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GRAMPUS DATA: ESTIMATION OF W (t)
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