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CASE-STUDY IN COX-REGRESSION: PBC-DATA

FROM MAYO CLINIC

424 patients with PBC (primary biliary cirrhosis (rare disease))

A randomized clinical trial with drug DPCA versus Placebo: 312 patients
chosen

Patients included in trial: January 1974 - May 1984

Follow-up until July 1986

First: Compared DPCA group and Placebo group by Kaplan Meier.
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KAPLAN-MEIER PLOTS FOR DPCS vs. PLACEBO
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COX REGRESSION MODEL FOR DPCS vs. PLACEBO

Use the same model as for the Battery Data:

x=0 for DCPA λ0(t)
x=1 for Placebo λ0(t)eβ

β̂ = −0.0571, W = 2(l(β̂)− l(0)) = 0.102 (not significant)

ŜD(β̂) = 1

−
√

l ′′ (β̂)
= 0.1792

95% confidence interval for β : β̂ ± 1.96 · 0.1792
(-0.408, 0.294)

so CI for relative risk eβ: (0.66, 1.34)

Conclusion: In the best case the new drug leads to 1.34 relative risk for
not using it (would need at least 1.50 to do further investigations).
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NATURAL HISTORY MODEL FOR PBC

The data on the 312 PBC randomized patients can be used to build a
statistical model for the influence of covariates on disease outcome.

The data contains 14 clinical, biochemical and histological variables.

Their model is (now λ(·) is used instead of z(·) for hazard rate):

λ(t; x) = λ0(t)eβ1X1+β2X2+···+βkXk

In the beginning k=14
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COVARIATES
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WHICH COVARIATES TO KEEP IN THE MODEL?

→ Bilirubin most significant

→ Take out expensive/complicated covariates:
stage, urine, copper, SGOT

Remains 11 variables; then a step-down procedure is used to eliminate one
(non-significant) variable at a time, arriving at lower table on next slide.
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VARIABLE SELECTION: TABLE
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VARIABLE SELECTION: EXPLANATION

Table 4.4.2: Cox with 11 variable.

Recall: Z stat means Coef/Std.Err.

Step-down procedure: From (a) to (b): 5 variables taken out;

Log-likelihood statistic:

2 · difference in log likelihood = 7.268

should be compared to χ2
5 : P(χ2

5 > 7.268) = 0.201, so we do not reject
the null hypothesis that all these 5 variables have coefficients equal to 0.
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LOG-TRANSFORMATIONS

Then is considered log-transformations of continuous variables - four
variables using logs are added to model, and this leads to increased
likelihood!

Finally: Arrives at model 4.4.3(c)
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FINAL MODEL (c)
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ESTIMATION OF SURVIVAL PROBABILITIES

Recall:

S(t; x) = P(T > t; x) = S0(t)e
β

′
x

= e−Λ0(t)eR

where R = β1x1 + β2x2 + · · ·+ βkxk = β
′
x is called Risk Score.

Estimated value: Ŝ(t; x) = e−Λ̂0(t)eR̂

In the data we have the median value: R̂ = 5.24, and for this value we get
the one- and five-year survival estimates:

Ŝ(1) = 0.982
Ŝ(2) = 0.845

A low-risk example:

Bilirubin 0.5; Albumin 4.5; Age 52; Prothrombin 10.1; edema 0; gives

R̂ = 0.879 · ln 0.5− 3.0553 · ln 4.5− · · · = 3.49

so ⇒ Ŝ(5) = 0.97
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ACCELERATED LIFE TESTING

Suppose we want to find the distribution (R(t), MTTF, etc.) for the
lifetime of a product.

Problem: MTTF may be so large that one would need to let experiments
last several years.

Solution: Increase stress, use a regression model, and then extrapolate to
normal conditions.
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ACCELERATED LIFE TESTING: INSULATION DATA

Suppose you want to investigate the deterioration of an insulation used for
electric motors. The motors normally run between 80 and 100 degrees
Celsius.

To save time and money, you decide to use accelerated life testing.

First you gather failure times for the insulation at abnormally high
temperatures: 110, 130, 150, and 170 degrees Celsius, to speed up the
deterioration. With failure time information at these temperatures, you
can then extrapolate to 80 and 100 degrees.

It is known that an Arrhenius relationship exists between temperature and
failure time.

This is an example from MINITAB (next slide)
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MINITAB WORKSHEET
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MINITAB SETUP
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MINITAB FORMULAS
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INSULATION DATA ANALYSIS IN MINITAB
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INSULATION DATA ANALYSIS IN MINITAB
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THE ESTIMATED MODEL

In this example we need connection between lifetime (T ) and temperature.

Some standard relations are known to be useful in accelerated testing:

lnT = β0 + β1(function of accelerated variable) + σW

i.e. lnT = β0 + β1g(s) for some function g(·) of the stress.

The model used here is the Arrhenius model:

lnT = β0 + β1 ·
11604.83

s + 273.16
+

1

α
W

where W is Gumbel and s = temperature in ◦C,
so s + 273.16 = temp in ◦K (absolute temperature).

This is the same as computing a transformed covariate.
x = 11604.83

s+273.16 .

Estimated model:

lnTs = −15.874 + 0.83072 · 11604.83

s + 273.16
+

1

2.8246
W
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PROBABILITY PLOTS
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EXPLANATION OF PROBABILITY PLOTS

Normal temperature is 80-100C.

Experiment temperatures: 110, 130, 150, 170. Needs to extrapolate to
80-100, using Arrhenuis model.

Recall probability plot for Weibull:

ln(− lnR(t)) = α lnT − α ln θ

So:

Slope α is the same for all lines

Scale θ = β0 + β1 · 11604.83
s+273.16 depends on experiment temperature s.
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RELATION PLOT
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EXPLANATION OF RELATION PLOT

Plot t̂p(s) as function of s.

Recall general formula:

ln t̂p(x) = β0 + β
′
x + σΦ−1(p)

where for Weibull/Gumbel we have Φ−1(p) = ln(− ln(1− p)). Here:

ln t̂p(s) = −15.1874 + 0.83072 · 11.60483

s + 273.16
+

1

2.8246
· ln(− ln(1− p))

Figure shows median, p = 0.50, together with 95% confidence curves; and
in addition the curves for p = 0.10 and p = 0.90.
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ADDING THE FACTOR “PLANT”
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