TMA4275 LIFETIME ANALYSIS

Slides 14: Case study with medical data; Accelerated lifetime models

Bo Lindqvist Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim

http://www.math.ntnu.no/~bo/ bo@math.ntnu.no

NTNU, Spring 2014

424 patients with PBC (primary biliary cirrhosis (rare disease))

A randomized clinical trial with drug DPCA versus Placebo: 312 patients chosen

Patients included in trial: January 1974 - May 1984

Follow-up until July 1986

First: Compared DPCA group and Placebo group by Kaplan Meier.

KAPLAN-MEIER PLOTS FOR DPCS vs. PLACEBO

Figure 4.4.1 Estimated survival curves in DPCA and placebo groups, PBC data.

< ∃⇒

< E

э

Use the same model as for the Battery Data:

x=0 for DCPA
$$\lambda_0(t)$$

x=1 for Placebo $\lambda_0(t)e^{\beta}$
 $\hat{\beta} = -0.0571, W = 2(I(\hat{\beta}) - I(0)) = 0.102 \text{ (not significant)}$
 $\widehat{SD(\hat{\beta})} = \frac{1}{-\sqrt{I''(\hat{\beta})}} = 0.1792$
95% confidence interval for $\beta : \hat{\beta} \pm 1.96 \cdot 0.1792$
(-0.408, 0.294)

so CI for relative risk e^{β} : (0.66, 1.34)

Conclusion: In the best case the new drug leads to 1.34 relative risk for not using it (would need at least 1.50 to do further investigations).

The data on the 312 PBC randomized patients can be used to build a statistical model for the influence of covariates on disease outcome.

The data contains 14 clinical, biochemical and histological variables.

Their model is (now $\lambda(\cdot)$ is used instead of $z(\cdot)$ for hazard rate):

$$\lambda(t;\mathbf{x}) = \lambda_0(t)e^{eta_1X_1+eta_2X_2+\dots+eta_kX_k}$$

In the beginning k=14

COVARIATES

Demographic	min	1st Q	med	3rd Q	max	Missing	Rao χ^2 (1 d.f.)
Age (years)	26.3	42.1	49.8	56.7	78.4	0	20.86
Sex	male;	36	female:	276		0	4.27
Clinical		Absent		Present		Missing	Rao $\chi^2(1 \text{ d.f.})$
Ascites		288		24		0	104.02
Hepatomegaly		152		160		0	40.18
Spiders		222		90		0	30.31
Edema ¹	0: 263	1/2	: 29	1: 20		0	97.89
Biochemical	min	1st Q	med	3rd Q	max	Missing	Rao $\chi^2(1 \text{ d.f.})$
Bilirubin	0.3	0.8	1.35	3.45	28.0	0	190.62
Albumin	1.96	3.31	3.55	3.80	4.64	0	70.83
Urine Copper	4	41	73	123	588	2	84.35
Pro Time	9.0	10.0	10.6	11.1	17.1	0	51.76
Platelet Count	62	200	257	323	563	4	12.15
Alkaline Phos	289	867	1259	1985	13862	0	2.58
SGOT	26	81	115	152	457	0	29.59
Histologic	1	2	3	4		Missing	Rao $\chi^2(1 \text{ d.f.})$
Stage	16	67	120	109		0	46.49

Table 4.4.1	Prognostic 1	Factors:	Summary	of Univariate Statistics
(312 Patients	in the PBC	Clinical	Trial of Di	PCA)

æ

- \rightarrow Bilirubin most significant
- \rightarrow Take out expensive/complicated covariates: stage, urine, copper, SGOT

Remains 11 variables; then a step-down procedure is used to eliminate one (non-significant) variable at a time, arriving at lower table on next slide.

VARIABLE SELECTION: TABLE

 (a) First Step, log likelihood –550,603 						
	Coef.	Std. Err.	Z stat.			
Age	2.819 e-2	9.538 e-3	2.96			
Albumin	-9.713 e-1	2.681 e-1	-3.62			
Alk. Phos	1.445 e-5	3.544 e-5	0.41			
Ascites	2.813 e-1	3.093 e-1	0.91			
Bilirubin	1.057 e-1	1.667 e-2	6.34			
Edema	6.915 e-1	3.226 e-1	2.14			
Hepatomegaly	4.853 e-1	2.913 e-1	2.21			
Platelets	-6.063 e-4	1.025 e-3	-0.59			
Prothrombin Time	2.428 e-1	8.420 e-2	2.88			
Sex	-4.769 e-1	2.643 e-1	-1.80			
Spiders	2.889 e-1	2.093 e-1	1.38			

 Table 4.4.2
 Results of variable selection procedure

 in 312 randomized cases with PBC.

(b) Last Step, log likelihood -554.237

	Coef.	Std. Err.	Z stat.
Age	0.0338	0.00925	3.65
Albumin	-1.0752	0.24103	-4.46
Bilirubin	0.1070	0.01528	7.00
Edema	0.8072	0.30775	2.62
Hepatomegaly	0.5903	0.21179	2.79
Prothrombin Time	0.2603	0.07786	3.34

э.

Table 4.4.2: Cox with 11 variable.

Recall: Z stat means Coef/Std.Err.

Step-down procedure: From (a) to (b): 5 variables taken out;

Log-likelihood statistic:

 $2 \cdot \text{difference in log likelihood} = 7.268$

should be compared to χ_5^2 : $P(\chi_5^2 > 7.268) = 0.201$, so we do not reject the null hypothesis that all these 5 variables have coefficients equal to 0.

Then is considered log-transformations of continuous variables - four variables using logs are added to model, and this leads to increased likelihood!

Finally: Arrives at model 4.4.3(c)

FINAL MODEL (c)

(a) Log	g likelihood -5	38.274	
	Coef.	Std. Err.	Z stat.
Age	-0.0289	0.07141	-0.41
log(age)	3.2248	3.71828	0.87
Albumin	1.0068	1.73450	0.58
log(Albumin)	-5.8629	5.42315	-1.08
Bilirubin	-0.0461	0.03547	-1.30
log(Bilirubin)	1.0774	0.21127	5.10
Edema	0.8238	0.30386	2.71
Prothrombin Time	-0.6175	1.14523	-0.54
log(Pro Time)	10.1928	13.36131	0.76
Hepatomegaly	0.1964	0.22628	0.87
(b) Log	g likelihood -5	41.064	
	Coef.	Std. Err.	Z stat.
Age	0.0337	0.00864	3.89
Albumin	-0.9473	0.23713	-3.99

Table 4.4.3	Regression mo	dels with log	transformations
of continuous	variables, 312	randomized	cases with PBC.

	COCI.	Sid. Lif.	Z Stat.					
Age	0.0337	0.00864	3.89					
Albumin	-0.9473	0.23713	-3.99					
log(Bilirubin)	0.8845	0.09854	8.98					
Edema	0.8006	0.29914	2.68					
Prothrombin Time	0.2463	0.08426	2.92					
(c) Log 1	ikelihood -: Coef.	Std. Err.	Z stat.					
Age	0.0333	0.00866	3.84					
log(Albumin)	-3.0553	0.72408	-4.22					
log(Bilirubin)	0.8792	0.09873	8.90					
Edema	0.7847	0.29913	2.62					
log(Prothrombin Time)	3.0157	1.02380	2.95					
			N LL P	< @ >	< ₹	•		

_

_

æ

ESTIMATION OF SURVIVAL PROBABILITIES

Recall:

$$S(t;\mathbf{x}) = P(T > t;\mathbf{x}) = S_0(t)^{e^{\mathbf{\beta}'\mathbf{x}}} = e^{-\Lambda_0(t)e^{\mathbf{R}}}$$

where $R = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k = \beta' \mathbf{x}$ is called Risk Score.

Estimated value: $\hat{S}(t; \mathbf{x}) = e^{-\hat{\Lambda}_0(t)e^{\hat{R}}}$

In the data we have the median value: $\hat{R} = 5.24$, and for this value we get the one- and five-year survival estimates:

 $\hat{S}(1) = 0.982$ $\hat{S}(2) = 0.845$

A low-risk example:

Bilirubin 0.5; Albumin 4.5; Age 52; Prothrombin 10.1; edema 0; gives

$$\hat{R} = 0.879 \cdot \ln 0.5 - 3.0553 \cdot \ln 4.5 - \dots = 3.49$$

so $\Rightarrow \hat{S}(5) = 0.97$

Suppose we want to find the distribution (R(t), MTTF, etc.) for the lifetime of a product.

Problem: MTTF may be so *large* that one would need to let experiments last several years.

Solution: Increase stress, use a regression model, and then extrapolate to normal conditions.

Suppose you want to investigate the deterioration of an insulation used for electric motors. The motors normally run between 80 and 100 degrees Celsius.

To save time and money, you decide to use accelerated life testing.

First you gather failure times for the insulation at abnormally high temperatures: 110, 130, 150, and 170 degrees Celsius, to speed up the deterioration. With failure time information at these temperatures, you can then extrapolate to 80 and 100 degrees.

It is known that an *Arrhenius* relationship exists between temperature and failure time.

This is an example from MINITAB (next slide)

MINITAB WORKSHEET

÷	C1	C2	C3	C4	C5-T	C6	C7	C8	C9	C10	C11
	Temp	ArrTemp	Plant	FailureT	Censor	Design	NewTemp	ArrNewT	NewPlant		
1	170	26,1865	1	343	F	80	80	32,8600	1		
2	170	26,1865	1	869	F	100	80	32,8600	2		
3	170	26,1865	1	244	С		100	31,0988	1		
4	170	26,1865	1	716	F		100	31,0988	2		
5	170	26,1865	1	531	F						
6	170	26,1865	1	738	F						
7	170	26,1865	1	461	F						
8	170	26,1865	1	221	F						
9	170	26,1865	1	665	F						
10	170	26,1865	1	384	С						
11	170	26,1865	2	394	С						
12	170	26,1865	2	369	F						
13	170	26,1865	2	366	F						
14	170	26,1865	2	507	F						
15	170	26,1865	2	461	F						
16	170	26,1865	2	431	F						
17	170	26,1865	2	479	F						
18	170	26,1865	2	106	F						
19	170	26,1865	2	545	F						
20	170	26,1865	2	536	F						
21	150	27,4242	1	2134	С						
22	150	27,4242	1	2746	F						
23	150	27,4242	1	2859	F						
24	150	27,4242	1	1826	С						

Bo Lindqvist

æ

<ロ> <同> <同> < 同> < 同>

MINITAB SETUP

Rethoo	ds and Formulas – Accelerated Life	Testing					
Equation Lifetime regre Response va Error term	ession Linear	esiduals Ordinary <u>Slandardized</u> <u>Cox-Snel</u>					
Equation							
Lifetime regression	The regression model estimates the percent $Y = \beta \sigma + \beta (X + \sigma \epsilon)$ where: $Y = \text{either failure time or log(failure tim \beta 0 = -y \text{-intercept (constant)}\beta 1 = \text{regression coefficient}X = \text{predictor values (may be transfo \sigma = 1/\text{shape (Weibull distribution) or s}$	ne)					
	ε = random error term						
Response variable	 For the normal, extreme value, and id 	al, and loglogistic distributions, $\Upsilon = \log (failure time)$					
Error term	The value of the error distribution also depends on the distribution chosen.						
	 For the normal distribution, the error distribution is the standard normal distribution – normal (0,1) For the log-normal distribution, limitab takes the log bases of the data and uses a normal distribution. 						
		rbution is the standard logistic distribution - logistic (0, takes the log of the data and uses a logistic distribution.					
Back to top	- extreme value (0, 1). For the Weibull di	ror distribution is the standard extreme value distribution stribution and the exponential distribution (a type of of the data and uses the extreme value distribution.					

Bo Lindqvist

Slides 14

TMA4275 LIFETIME ANALYSIS

æ

<ロ> <同> <同> < 同> < 同>

MINITAB FORMULAS

Models					
Linear	$Y = \beta_0 + \beta_1 * accelerating variable + \sigma \epsilon$				
	where:				
	 Y is the failure time or log failure time 				
	 				
	 ε is the random error term 				
Arrhenius	$Y = \beta_0 + \beta_1 + [11604.83/Degrees Celsius + 273.16)] + \sigma\epsilon$				
	where:				
	 Y is the failure time or log failure time 				
	 <i>s</i> is the reciprocal of the shape parameter (Weibull distribution) or the scale parameter (other distributions) 				
	 ε is the random error term 				
Inverse temp	$P = \beta_0 + \beta_1 * [1/(Degrees Celsius + 273.16)] + \sigma \epsilon$				
	where				
	 Y is the failure time or log failure time 				
	 <i>a</i> is the reciprocal of the shape parameter (Weibull distribution) or the scale parameter (other distributions) 				
	 ε is the random error term 				
Loge	$Y = \beta_0 + \beta_1 + \log(\text{accelerating variable}) + \sigma \epsilon$				
(Power)	where:				
	 Y is the failure time or log failure time 				
	 ø is the reciprocal of the shape parameter (Weibull distribution) or the scale parameter (other distributions) 				
	 ε is the random error term 				

æ

<ロト <部ト < 注ト < 注ト

🗞 NINITAB Help
File Edit Bookmark Options Help
Hep_Topics Back Print ≤< ≥> Glossary Egit
Example of Accelerated Life Testing main topic interpreting results session command see also
Suppose you want to investigate the deterioration of an insulation used for electric motors. The motors normally run between 80 and 100° C. To save time and money, you decide to use accelerated life testing.
First you gather failure times for the insulation at abnormally high temperatures – 110, 130, 150, and 170° C – to speed up the deterioration. With failure time information at these temperatures, you can then extrapolate to 80 and 100° C. It is known that an Arrhenius relationship exists between temperature and failure time.
To see how well the model fits, you will draw a probability plot based on the standardized residuals.
1 Open the worksheet INSULATE.MTW.
2 Choose Stat > Reliability/Survival > Accelerated Life Testing.
3 In Variables/Start variables, enter Failure T. In Accelerating variable, enter Temp.
4 From Relationship, choose Arrhenius.
5 Click Censor. In Use censoring columns, enter Censor, then click OK.
6 Click Graphs. In Enter design value to include on plot, enter 80. Click OK.
7 Click Estimate. In Enter new predictor values, enter Design, then click OK in each dialog box.
Session window output
Regression with Life Data: FailureT versus Temp
Response Variable: FailureT
Censoring Information Count Uncensored value 66 Right censored value 14 Censoring value: Censor - C
Estimation Method: Maximum Likelihood Distribution: Weibull Transformation on accelerating variable: Arrhenius

Regression Table

		Standard			95.0% Normal C		
Predictor	Coef	Error	Z	P	Lower	Upper	
Intercept	-15.1874	0.9862	-15.40	0.000	-17.1203	-13.2546	
Temp	0.83072	0.03504	23.71	0.000	0.76204	0.89940	
Shape	2.8246	0.2570			2.3633	3.3760	

Log-Likelihood = -564.693

Anderson-Darling (adjusted) Goodness-of-Fit

At each	accelerating level
Level	Fitted Model
110	*
130	*
150	*
170	*

Table of Percentiles

			Standard	95.0%	Normal CI
Percent	Temp	Percentile	Error	Lower	Upper
50	80.0000	159584.5	27446.85	113918.2	223557.0
50	100.0000	36948.57	4216.511	29543.36	46209.94

3

・ロン ・雪 と ・ ヨ と ・ ヨ と …

THE ESTIMATED MODEL

In this example we need connection between lifetime (T) and temperature.

Some standard relations are known to be useful in accelerated testing:

In $T = \beta_0 + \beta_1$ (function of accelerated variable) + σW

i.e. In $T = \beta_0 + \beta_1 g(s)$ for some function $g(\cdot)$ of the stress.

The model used here is the Arrhenius model:

$$\ln T = \beta_0 + \beta_1 \cdot \frac{11604.83}{s + 273.16} + \frac{1}{\alpha}W$$

where W is Gumbel and s = temperature in °C, so s + 273.16 = temp in °K (absolute temperature).

This is the same as computing a transformed covariate. $x = \frac{11604.83}{s+273.16}$.

Estimated model:

$$\ln T_s = -15.874 + 0.83072 \cdot \frac{11604.83}{s + 273.16} + \frac{1}{2.8246} W$$

PROBABILITY PLOTS

Normal temperature is 80-100C.

Experiment temperatures: 110, 130, 150, 170. Needs to extrapolate to 80-100, using Arrhenuis model.

Recall probability plot for Weibull:

$$\ln(-\ln R(t)) = \alpha \ln T - \alpha \ln \theta$$

So:

• Slope α is the same for all lines

• Scale $\theta = \beta_0 + \beta_1 \cdot \frac{11604.83}{s+273.16}$ depends on experiment temperature *s*.

RELATION PLOT

Relation Plot (Fitted Arrhenius) for FailureT

Weibull Distribution - ML Estimates - 95,0% Cl Censoring Column in Censor

Bo Lindqvist

Plot $\hat{t}_p(s)$ as function of s.

Recall general formula:

$$\ln \hat{t}_{p}(\mathbf{x}) = \beta_{0} + \boldsymbol{\beta}' \mathbf{x} + \sigma \Phi^{-1}(p)$$

where for Weibull/Gumbel we have $\Phi^{-1}(p) = \ln(-\ln(1-p))$. Here:

$$\ln \hat{t}_p(s) = -15.1874 + 0.83072 \cdot \frac{11.60483}{s + 273.16} + \frac{1}{2.8246} \cdot \ln(-\ln(1-p))$$

Figure shows median, p = 0.50, together with 95% confidence curves; and in addition the curves for p = 0.10 and p = 0.90.

ADDING THE FACTOR "PLANT"

Relation Plot (Fitted Arrhenius) for FailureT

Bo Lindqvist