TMA4275 LIFETIME ANALYSIS

Slides 14: Case study with medical data; Accelerated lifetime models

Bo Lindqvist
Department of Mathematical Sciences
Norwegian University of Science and Technology Trondheim

> http://www.math.ntnu.no/~bo/ bo@math.ntnu.no

NTNU, Spring 2014

CASE-STUDY IN COX-REGRESSION: PBC-DATA FROM MAYO CLINIC

424 patients with PBC (primary biliary cirrhosis (rare disease))
A randomized clinical trial with drug DPCA versus Placebo: 312 patients chosen

Patients included in trial: January 1974 - May 1984
Follow-up until July 1986
First: Compared DPCA group and Placebo group by Kaplan Meier.

Figure 4.4.1 Estimated survival curves in DPCA and placebo groups, PBC data.

Use the same model as for the Battery Data:
$\mathrm{x}=0$ for DCPA $\quad \lambda_{0}(t)$
$\mathrm{x}=1$ for Placebo $\lambda_{0}(t) e^{\beta}$
$\hat{\beta}=-0.0571, W=2(I(\hat{\beta})-I(0))=0.102$ (not significant)
$S D(\hat{\beta})=\frac{1}{-\sqrt{I^{\prime \prime}(\hat{\beta})}}=0.1792$
95% confidence interval for $\beta: \hat{\beta} \pm 1.96 \cdot 0.1792$
(-0.408, 0.294)
so Cl for relative risk $e^{\beta}:(0.66,1.34)$
Conclusion: In the best case the new drug leads to 1.34 relative risk for not using it (would need at least 1.50 to do further investigations).

The data on the 312 PBC randomized patients can be used to build a statistical model for the influence of covariates on disease outcome.

The data contains 14 clinical, biochemical and histological variables.
Their model is (now $\lambda(\cdot)$ is used instead of $z(\cdot)$ for hazard rate):

$$
\lambda(t ; \mathbf{x})=\lambda_{0}(t) e^{\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{k} x_{k}}
$$

In the beginning $\mathrm{k}=14$

COVARIATES

Table 4.4.1 Prognostic Factors: Summary of Univariate Statistics (312 Patients in the PBC Clinical Trial of DPCA)

Demographic	min	1st Q	med	3rd Q	max	Missing	Rao χ^{2} (1 d.f.)
Age (years)	26.3	42.1	49.8	56.7	78.4	0	20.86
Sex	male:	36	female:	276		0	4.27
Clinical		Absent		Present		Missing	Rao χ^{2} (1 d.f.)
Ascites		288		24		0	104.02
Hepatomegaly		152		160		0	40.18
Spiders		222		90		0	30.31
Edema ${ }^{1}$	0: 263	1/2:	29	1: 20		0	97.89
Biochemical	min	1st Q	med	3rd Q	max	Missing	Rao χ^{2} (1 d.f.)
Bilirubin	0.3	0.8	1.35	3.45	28.0	0	190.62
Albumin	1.96	3.31	3.55	3.80	4.64	0	70.83
Urine Copper	4	41	73	123	588	2	84.35
Pro Time	9.0	10.0	10.6	11.1	17.1	0	51.76
Platelet Count	62	200	257	323	563	4	12.15
Alkaline Phos	289	867	1259	1985	13862	0	2.58
SGOT	26	81	115	152	457	0	29.59
Histologic	1	2	3	4		Missing	Rao χ^{2} (1 d.f.)
Stage	16	67	120	109		0	46.49

\rightarrow Bilirubin most significant
\rightarrow Take out expensive/complicated covariates:
stage, urine, copper, SGOT
Remains 11 variables; then a step-down procedure is used to eliminate one (non-significant) variable at a time, arriving at lower table on next slide.

VARIABLE SELECTION: TABLE

Table 4.4.2 Results of variable selection procedure in 312 randomized cases with PBC.

(a) First Step, log likelihood -550.603			
	Coef.	Std. Err.	Z stat.
Age	2.819 e-2	9.538 e-3	2.96
Albumin	-9.713 e-1	$2.681 \mathrm{e}-1$	-3.62
Alk. Phos	1.445 e-5	3.544 e-5	0.41
Ascites	2.813 e-1	$3.093 \mathrm{e-1}$	0.91
Bilirubin	1.057 e-1	$1.667 \mathrm{e}-2$	6.34
Edema	6.915 e-1	3.226 e-1	2.14
Hepatomegaly	4.853 e-1	2.913 e-1	2.21
Platelets	-6.063 e-4	$1.025 \mathrm{e}-3$	-0.59
Prothrombin Time	2.428 e-1	8.420 e-2	2.88
Sex	-4.769 e-1	$2.643 \mathrm{e}-1$	-1.80
Spiders	2.889 e-1	2.093 e-1	1.38

(b) Last Step, log likelihood -554.237

	Coef.		Std. Err.	
			Z stat.	
	0.0338		0.00925	
Age	-1.0752	0.24103	-4.46	
Albumin	0.1070	0.01528	7.00	
Bilirubin	0.8072	0.30775	2.62	
Edema	0.5903	0.21179	2.79	
Hepatomegaly	0.2603	0.07786	3.34	

Table 4.4.2: Cox with 11 variable.
Recall: Z stat means Coef/Std.Err.
Step-down procedure: From (a) to (b): 5 variables taken out;
Log-likelihood statistic:
2. difference in log likelihood $=7.268$
should be compared to $\chi_{5}^{2}: P\left(\chi_{5}^{2}>7.268\right)=0.201$, so we do not reject the null hypothesis that all these 5 variables have coefficients equal to 0 .

Then is considered log-transformations of continuous variables - four variables using logs are added to model, and this leads to increased likelihood!

Finally: Arrives at model 4.4.3(c)

Table 4.4.3 Regression models with log transformations of continuous variables, 312 randomized cases with PBC.

	(a) Log likelihood -538.274		Z stat.
	Coef.	Std. Err.	
Age	-0.0289	0.07141	-0.41
log(age)	3.2248	3.71828	0.87
Albumin	1.0068	1.73450	0.58
\log (Albumin)	-5.8629	5.42315	-1.08
Bilirubin	-0.0461	0.03547	-1.30
\log (Bilirubin)	1.0774	0.21127	5.10
Ederna	0.8238	0.30386	2.71
Prothrombin Time	-0.6175	1.14523	-0.54
\log (Pro Time)	10.1928	13.36131	0.76
Hepatomegaly	0.1964	0.22628	0.87

(b) Log likelihood -541.064

	Coef.	Std. Err.	Z stat.
Age	0.0337	0.00864	3.89
Albumin	-0.9473	0.23713	-3.99
\log (Bilirubin)	0.8845	0.09854	8.98
Edema	0.8006	0.29914	2.68
Prothrombin Time	0.2463	0.08426	2.92

(c) Log likelihood -540.412

	Coef.	Std. Err.	Z stat.
Age	0.0333	0.00866	3.84
\log (Albumin)	-3.0553	0.72408	-4.22
\log (Bilirubin)	0.8792	0.09873	8.90
Edema	0.7847	0.29913	2.62
\log (Prothrombin Time)	3.0157	1.02380	2.95

Recall:

$$
S(t ; \mathbf{x})=P(T>t ; \mathbf{x})=S_{0}(t)^{e^{\boldsymbol{\beta}^{\prime}}{ }_{\mathbf{x}}}=e^{-\Lambda_{0}(t) e^{R}}
$$

where $R=\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}=\boldsymbol{\beta}^{\prime} \mathbf{x}$ is called Risk Score.
Estimated value: $\hat{S}(t ; \mathbf{x})=e^{-\hat{\Lambda}_{0}(t) e^{\hat{R}}}$
In the data we have the median value: $\hat{R}=5.24$, and for this value we get the one- and five-year survival estimates:
$\hat{S}(1)=0.982$
$\hat{S}(2)=0.845$
A low-risk example:
Bilirubin 0.5; Albumin 4.5; Age 52; Prothrombin 10.1; edema 0; gives

$$
\hat{R}=0.879 \cdot \ln 0.5-3.0553 \cdot \ln 4.5-\cdots=3.49
$$

so $\Rightarrow \hat{S}(5)=0.97$

Suppose we want to find the distribution ($R(t)$, MTTF, etc.) for the lifetime of a product.

Problem: MTTF may be so large that one would need to let experiments last several years.

Solution: Increase stress, use a regression model, and then extrapolate to normal conditions.

ACCELERATED LIFE TESTING: INSULATION DATA

Suppose you want to investigate the deterioration of an insulation used for electric motors. The motors normally run between 80 and 100 degrees Celsius.

To save time and money, you decide to use accelerated life testing.
First you gather failure times for the insulation at abnormally high temperatures: 110, 130, 150, and 170 degrees Celsius, to speed up the deterioration. With failure time information at these temperatures, you can then extrapolate to 80 and 100 degrees.

It is known that an Arrhenius relationship exists between temperature and failure time.

This is an example from MINITAB (next slide)

MINITAB WORKSHEET

[ininsulate.MTW ***											
\downarrow	C1	C2	C3	C4	C5-T	C6	C7	C8	C9	C10	C11
	Temp	ArrTemp	Plant	FailureT	Censor	Design	NewTemp	ArrNewT	NewPlant		
1	170	26,1865	1	343 F		80	80	32,8600	1		
2	170	26,1865	1	869 F		100	80	32,8600	2		
3	170	26,1865	1	244 C			100	31,0988	1		
4	170	26,1865	1	716 F			100	31,0988	2		
5	170	26,1865	1	531 F							
6	170	26,1865	1	738 F							
7	170	26,1865	1	461 F							
8	170	26,1865	1	221 F							
9	170	26,1865	1	665 F							
10	170	26,1865	1	384							
11	170	26,1865	2	394							
12	170	26,1865	2	369 F							
13	170	26,1865	2	366 F							
14	170	26,1865	2	507 F							
15	170	26,1865	2	461 F							
16	170	26,1865	2	431 F							
17	170	26,1865	2	479 F							
18	170	26,1865	2	106 F							
19	170	26,1865	2	545 F							
20	170	26,1865	2	536 F							
21	150	27,4242	1	2134							
22	150	27,4242	1	2746 F							
23	150	27,4242	1	2859 F							
$\bigcirc{ }_{-1}$	150	27.4242	1	1826							

Methods and Formulas - Accelerated Life Testing

Equation

Lifetime regression

Response variable
Errorterm
Models
Linear
Arrhenive
linverse temp
Loge (Power)

Residuals
 Ordinary
 Standardized
 Cox-Snell

Equation

Lifetime regression

The regression model estimates the percentiles of the failure time distribution:
$Y=\beta 0+61 X+\sigma \varepsilon$
where:
$Y=$ either failure time or bo(failure time)
Ab - y-intercept (constont)
$\beta_{1}=$ regression coefficent
X = predictor values (may be trans formed)
$\sigma=1 /$ shape (Weibul dstribution) or scae (other distributions)
$\varepsilon=$ random error term

Response

variable

Depending on the distribution, $\mathrm{Y}=$ failure time or \log (failure fime)

- For the V/ebull, exponential, lognormal, and ioglogistic distributions, $Y=\log$ (failure time)
- For the normal, extreme value, and logistic distributions, $\mathrm{Y}=$ failure time When $Y=\log$ (failure time), Mintab takes the antilog to display the percentiles on the original scale.

Error term The value of the error distribution also depends on the distribution chosen.

- For the normal distribution the error distribution is the standard normal distribution - normal (0,1) For the lognormal detribution, Minitab takee the \log baeee of the data and ueee a normal distribution.
* For the logistic distribution, the error distrbution is the stendard logistic distribution - logistc (0 , 1). For the loglogstic distrbution, Mintab takes the log of the data and uses a logstic distrbution.
- For the extreme value distribution, the error distribution is the standard extreme value distribution - extreme value $(0,1)$. For the Weioull distribution and the exponential distribution (a type of

Back to top

Models

Linear $\quad Y=\beta_{0}+\beta_{1} *$ accelerating variable $+\sigma \varepsilon$
where:

- Y is the failure time or \log failure time
- σ is the reciprocal of the shape parameter (Weibull distribution) or the scale parameter (other distributions)
- ε is the random error term

Arrhenius $\quad Y=\beta_{0}+\beta_{1} *[11604.83 /$ Degrees Celsius +273.16$\left.)\right]+\sigma \varepsilon$
where:

- Y is the failure time or log failure time
- σ is the reciprocal of the shape parameter (Weibull distribution) or the scale parameter (other disiributions)
- ε is the random error term

Inverse temp $Y=\beta_{0}+\beta_{1} *[1 /($ Degrees Celsius +273.16$)]+\sigma \varepsilon$
where:

- Y is the failure time or \log failure time
- σ is the reciprocal of the shape parameter (Weibull distribution) or the scale parameter (other distributions)
- ε is the random error term

Loge $\quad Y=\beta_{0}+\beta_{1} * \log ($ accelerating varable $)+a z$
(Power)
where

- Y is the failure time or \log failure time
- σ is the reciprocal of the shape parameter (Weibull distribution) or the scale parameter (other distributions)
Back to top - ε is the random error term

```
    MINITAB Help
Fle Edt Bockmark Options Help
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Hop Topics & Eack & Erirt & ss & き & Glossary & Exit \\
\hline
\end{tabular}
Example of Accelerated Life Testing
main topic interpreting results session command see also
``` money, you decide to use accelerated life testing.
First you gather failure times for the insulation at abnormelly high temperatures - 110, 130, 150, and \(170^{\circ} \mathrm{C}\) - to speed up the deterioration. With failure time information at these temperatures, you can then extrapolate to 80 and \(100^{\circ} \mathrm{C}\). It is known that an Arrhenius relationship exists between temperature and failure time. To see how well the model fits, you will draw a probability plot based on the standardized residuals
1 Open the worksheet INSULATE MTW
2 Choose Stat > Reliability/Survival > Accelerated Life Testing.
3 In Variables/Start variables, enter FailureT. In Accelerating variable, enter Temp
4 From Relationship, choose Arrhenius.
5 Click Censor. In Use censoring columns, enter Censor, then click OK.
6 Click Graphs. In Enter design value to include on plot, enter 80. Click OK.
7 Click Estimate. In Enter new predictor values, enter Design, then click OK in each dialog box.
```

```
Suppose you want to investigate the deterioration of an insulation used for electric motors. The motors normally run between 80 and 100 C. To save time and
```

```
Suppose you want to investigate the deterioration of an insulation used for electric motors. The motors normally run between 80 and 100 C. To save time and
```


## Session window output

Regression with Life Data: FailureT versus Temp

```
Response Variable: FailureT
```

```
Censoring Information Count
```

Uncensored value 66
Right censored value 14
Censoring value: Censor - C
Estimation Method: Maximum Likelihood
Distribution: Weibull
Transformation on accelerating variable: Arrhenius

Regression Table

Standard $95.0 \%$ Normal CI					
Predictor	Coef	Error	Z P	Lower	Uppe
Intercept	-15.1874	0.9862	-15.40 0.000	-17.1203	-13.254
Temp	0.83072	0.03504	23.710 .000	0.76204	0.89940
Shape	2.8246	0.2570		2.3633	3.3760
Log-Likelihood $=-564.693$					
Anderson-Darling (adjusted) Goodness-of-Fit					
At each accelerating level					
Level Fitted Model					
110					
130					
150					
170					
Table of Percentiles					
			Standard	95.0\% N	Normal CI
Percent	Temp	Percentile	Error	Lower	Upper
50	80.0000	159584.5	27446.85	113918.2	223557.0
50	100.0000	36948.57	4216.511	29543.36	46209.94

In this example we need connection between lifetime $(T)$ and temperature.
Some standard relations are known to be useful in accelerated testing:

$$
\ln T=\beta_{0}+\beta_{1}(\text { function of accelerated variable })+\sigma W
$$

i.e. $\ln T=\beta_{0}+\beta_{1} g(s)$ for some function $g(\cdot)$ of the stress.

The model used here is the Arrhenius model:

$$
\ln T=\beta_{0}+\beta_{1} \cdot \frac{11604.83}{s+273.16}+\frac{1}{\alpha} W
$$

where $W$ is Gumbel and $s=$ temperature in ${ }^{\circ} \mathrm{C}$, so $s+273.16=$ temp in ${ }^{\circ} \mathrm{K}$ (absolute temperature).

This is the same as computing a transformed covariate.
$x=\frac{11604.83}{s+273.16}$.
Estimated model:

$$
\ln T_{s}=-15.874+0.83072 \cdot \frac{11604.83}{s+273.16}+\frac{1}{2.8246} W
$$

## Probability Plot (Fitted Arrhenius) for FailureT

Weibull Distribution - ML Estimates - 95,0\% CI
Censoring Column in Censor


Normal temperature is $80-100 \mathrm{C}$.
Experiment temperatures: 110, 130, 150, 170. Needs to extrapolate to 80-100, using Arrhenuis model.

Recall probability plot for Weibull:
$\ln (-\ln R(t))=\alpha \ln T-\alpha \ln \theta$
So:

- Slope $\alpha$ is the same for all lines
- Scale $\theta=\beta_{0}+\beta_{1} \cdot \frac{11604.83}{s+273.16}$ depends on experiment temperature $s$.


## Relation Plot (Fitted Arrhenius) for FailureT

Weibull Distribution - ML Estimates - 95,0\% CI
Censoring Column in Censor


Plot $\hat{t}_{p}(s)$ as function of $s$.
Recall general formula:

$$
\ln \hat{t}_{p}(\mathbf{x})=\beta_{0}+\boldsymbol{\beta}^{\prime} \mathbf{x}+\sigma \Phi^{-1}(p)
$$

where for Weibull/Gumbel we have $\Phi^{-1}(p)=\ln (-\ln (1-p))$. Here:

$$
\ln \hat{t}_{p}(s)=-15.1874+0.83072 \cdot \frac{11.60483}{s+273.16}+\frac{1}{2.8246} \cdot \ln (-\ln (1-p))
$$

Figure shows median, $p=0.50$, together with $95 \%$ confidence curves; and in addition the curves for $p=0.10$ and $p=0.90$.

## ADDING THE FACTOR "PLANT"

## Relation Plot (Fitted Arrhenius) for FailureT

Weibull Distribution - ML Estimates - 95,0\% CI
Censoring Column in Censor


