TMA4275 LIFETIME ANALYSIS Slides 12: Weibull regression; Cox regression

Bo Lindqvist Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim

http://www.math.ntnu.no/~bo/ bo@math.ntnu.no

NTNU, Spring 2014

WEIBULL REGRESSION

Special case of log-location-scale-survival-regression models.

Recall: If $T \sim \text{Weibull}(\theta, \alpha)$ then by definition

$$\begin{aligned} R(t) &= e^{-\left(\frac{t}{\theta}\right)^{\alpha}} \\ z(t) &= \frac{\alpha t^{\alpha-1}}{\theta^{\alpha}} = \alpha \theta^{-\alpha} t^{\alpha-1} \\ \ln T &= \ln \theta + \frac{1}{\alpha} W, \text{ where } W \sim \text{Gumbel}(0,1) \end{aligned}$$

Weibull regression model for a lifetime T and corresponding covariate vector \mathbf{x} :

$$\ln T = \underbrace{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}_{\ln \theta} + \frac{1}{\alpha} W = \underbrace{\beta_0 + \beta' \mathbf{x}}_{\ln \theta} + \frac{1}{\alpha} W$$

Thus $\theta = e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k} \equiv e^{\beta_0 + \boldsymbol{\beta}' \mathbf{X}}$

PROPORTIONAL HAZARDS PROPERTY

Thus for Weibull regression for (T, \mathbf{x}) ,

$$T \sim \mathsf{Weibull}(e^{eta_0 + eta_1 x_1 + \dots + eta_k x_k}, lpha),$$

and hence the hazard rate function is

$$z(t; \mathbf{x}) = \alpha (e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k})^{-\alpha} t^{\alpha - 1}$$

= $\underbrace{\alpha e^{-\alpha \beta_0} t^{\alpha - 1}}_{z_0(t)} \cdot e^{-\alpha \beta_1 x_1 + -\alpha \beta_2 x_2 \dots + -\alpha \beta_k x_k}$
= $z_0(t) \cdot e^{\tilde{\beta}_1 x_1 + \tilde{\beta}_2 x_2 + \dots + \tilde{\beta}_k x_k};$ where $\tilde{\beta}_j = -\alpha \beta_j$
= $z_0(t) \cdot e^{\tilde{\beta}' \mathbf{x}}$
= $z_0(t) \cdot g(\mathbf{x})$

Thus: Hazard rate is product of one factor, $z_0(t)$, which is a function of t (and not of \mathbf{x}), and one which is function of \mathbf{x} (and not of t). This property is called the **Proportional hazards property**. Why? (Next slide).

PROPORTIONAL HAZARDS PROPERTY (CONT.)

Recall that $z(t; \mathbf{x}) = z_0(t) \cdot g(\mathbf{x})$. Consider two individuals with covariate vectors $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$:

$$\frac{z(t;\mathbf{x}^{(1)})}{z(t;\mathbf{x}^{(2)})} = \frac{g(\mathbf{x}^{(1)})}{g(\mathbf{x}^{(2)})} \qquad (\star)$$

Thus

$$z(t; \mathbf{x}^{(1)}) = \frac{g(\mathbf{x}^{(1)})}{g(\mathbf{x}^{(2)})} z(t; \mathbf{x}^{(2)})$$

so the hazard rate functions are proportional as functions of t, with proportionality factor equal to $g(\mathbf{x}^{(1)})/g(\mathbf{x}^{(2)})$.

Thus: The Weibull regression model has the proportional hazards property. **BUT no other** log-location-scale-survival-regression model has the property.

(*) is called the *relative risk* for a "person" with covariate $\mathbf{x}^{(1)}$ relative to a "person" with $\mathbf{x}^{(2)}$.

COX REGRESSION MODEL

Sir David Cox, in his famous paper from 1972 suggested to use the model

$$z(t;\mathbf{x}) = z_0(t)e^{\beta_1x_1+\beta_2x_2+\cdots+\beta_kx_k}$$

Here $z_0(t)$ can be *any* positive function of t (i.e. any nonparametric hazard rate function). Because the β_1, \ldots, β_k are ordinary *parameters*, the model is said to be *semi-parametric*.

Interest is mainly in
$$\beta_1, \cdots, \beta_k$$
.

How to interpret β_i ? Suppose an item has covariate vector $\mathbf{x} = (x_1, \dots, x_k)$, so $z(t; \mathbf{x}) = z_0(t)e^{\beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k}$. Suppose then that x_i (e.g. temperature) is increased by 1 unit, so $\mathbf{x}_{new} = x_1, \dots, x_i + 1, \dots, x_k$. Then

$$z(t; \mathbf{x}_{new}) = z(t \mid \mathbf{x}) \cdot e^{\beta_i}$$

Thus: e^{β_i} is the factor with which the hazard is multiplied if we increase X_i by 1 unit.

Suppose that the first component, x_1 , of **x** is either 0 or 1:

- $x_1 = 0$ if person is *not* smoking.
- $x_1 = 1$ if person is smoking.

Then e^{β_1} is the effect on hazard rate caused by going from non-smoking to smoking, called the relative risk for a smoker.

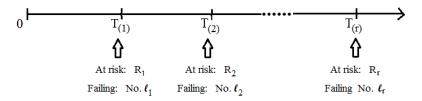
In general: e^{β_i} is called the *relative risk* of covariate #i.

ESTIMATION IN COX MODEL

Data:
$$(Y_i, \delta_i, \mathbf{X}_i), i = 1, ..., n$$

Model: $z(t; \mathbf{x}) = z_0(t)e^{\beta' \mathbf{X}}$

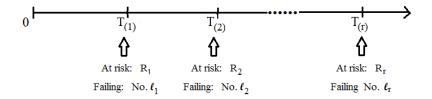
Let $T_{(1)} < T_{(2)} < \cdots < T_{(r)}$ be the observed *failure* times.



Need to know

- who are at risk at time $T_{(i)}$? Denote these $R_i \subseteq \{1, 2, \dots, n\}$
- who fails at $T_{(i)}$? Say, this is individual $\ell_i \in R_i$.

COX' PARTIAL LIKELIHOOD FOR β



Cox noted that since $z_0(t)$ is completely unknown, the lengths of times between failures are not relevant for estimation of β .

Cox' partial likelihood is essentially the likelihood of the observed ℓ_1, \dots, ℓ_k :

$$L(\boldsymbol{\beta}) = P(L_1 = \ell_1, L_2 = \ell_2, \cdots, L_k = \ell_k)$$

where L_i is the number of the individual that fails at time $T_{(i)}$.

Cox computed this as a product of the relevant probabilities at each failure time. $(\Box) < \Box > (\Box) < (\Box)$

COX' PARTIAL LIKELIHOOD

At $T_{(j)}$ there is a competition between all individuals in R_j , so we need to find in general, when t is one of $T_{(1)}, \ldots, T_{(r)}$,

 $P(\ell_j ext{ fails at } t \mid ext{a unit in } R_j ext{ fails at } t)$

$$= \frac{P(\ell_j \text{ fails at } t)}{P(\text{a unit in } R_j \text{ fails at } t)} \approx \frac{P(\ell_j \text{ fails in } (t, t+h))}{P(\text{a unit in } R_j \text{ fails in } (t, t+h))}$$
$$\approx \frac{z_0(t)e^{\beta' \mathbf{x}_{\ell_j}} \cdot h}{\sum_{i \in R_j} z_0(t)e^{\beta' \mathbf{x}_i} \cdot h} = \frac{e^{\beta' \mathbf{x}_{\ell_j}}}{\sum_{i \in R_j} e^{\beta' \mathbf{x}_i}}$$

SO

$$L(\boldsymbol{\beta}) = \prod_{j=1}^{r} \frac{e^{\boldsymbol{\beta}' \mathbf{x}_{\ell_j}}}{\sum_{i \in R_j} e^{\boldsymbol{\beta}' \mathbf{x}_i}}$$

which is Cox' partial likelihood.

The log partial likelihood is $l(\beta) = \ln L(\beta)$. The maximum partial likelihood estimate of β is found by solving

$$\frac{\partial l(\boldsymbol{\beta})}{\partial \beta_i} = 0; \ i = 1, \cdots, k$$

giving $\hat{\beta} = (\hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_k)$, and in the same way as for parametric regression models,

Assume d_j units fail at $T_{(j)}$. Peto-Breslow's partial likelihood:

$$L(oldsymbol{eta}) = \prod_{j=1}^r rac{e^{oldsymbol{eta}' oldsymbol{s}_j}}{ig(\sum_{i \in R_j} e^{oldsymbol{eta}' oldsymbol{\mathbf{x}}_iig)^{d_j}}}$$

where s_j is sum of \mathbf{x}_{ℓ} for the units that fail at $T_{(j)}$.

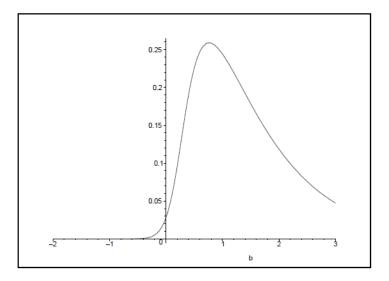
Essentially, we use Cox' partial likelihood by making an ordinary product for each failed unit, but we let all units that fail at the same time have the same risk set.

Model: $z(t; x) = z_0(t)e^{\beta x}$ (a single covariate, x). Data: n = 7, r = 3

i	Уi	Xi	δ_i							
1	5	12	0							
2	10	10	1		j	$T_{(j)}$		Rj	ℓ_j	
3	40	3	0		1	10	$\{2, 3, 4,$	5, 6, 7}	2	
4	80	5	0		2	120	{	5, 6, 7}	5	
5	120	3	1		3	400		{6,7}	6	
6	400	4	1							
7	600	1	0							
										_
$e^{10\beta}$ $e^{3\beta}$ $e^{4\beta}$										
L($L(\beta) = \frac{c}{e^{10\beta} + e^{3\beta} + e^{5\beta} + e^{3\beta} + e^{4\beta} + e^{\beta}} \cdot \frac{c}{e^{3\beta} + e^{4\beta} + e^{\beta}} \cdot \frac{c}{e^{4\beta} + e^{\beta}}$									

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 … の Q @

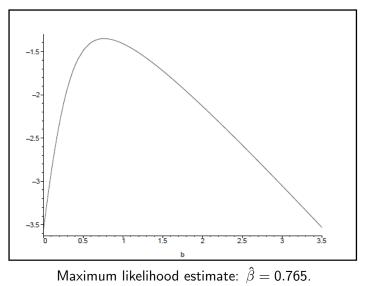
SIMPLE EXAMPLE: COX' PARTIAL LIKELIHOOD



Maximum likelihood estimate: $\hat{\beta} = 0.765$.

Bo Lindqvist

SIMPLE EXAMPLE: COX' LOG PARTIAL LIKELIHOOD



95% likelihood confidence interval: (0.1, 3.2).

Bo Lindqvist

LIKELIHOOD CONFIDENCE INTERVALS AND TESTING

Likelihood theory holds for the partial likelihood

$$W(\beta) = 2(I(\hat{\beta}) - I(\beta)) \approx \chi_1^2$$
 if β is true value.

Thus we can construct the "1.92 Confidence Interval" (see previous slide), i.e. finding the set $\{\beta : l(\beta)\} \ge l(\hat{\beta}) - 1.92\}$.

We can also test, e.g., $H_0: \beta = 0$ versus $H_1: \beta \neq 0$ by using that then

$$W=2(I(\hat{eta})-I(0))\sim\chi_1^2$$

under the null hypothesis, and reject H_0 if this becomes too big (larger than 3.84 for 5% significance level).

In example: $W = 2(-1.35 - (-3.45)) = 2 \cdot 2.10 = 4.2$, so we reject H_0 at 5% level. We could also conclude this from the confidence interval, since 0 is not in the confidence interval (0.1, 3.2).

・ロト ・聞 と ・ ヨ と ・ ヨ と …

WEIBULL REGRESSION WITH SIMPLE EXAMPLE

Distribution: Weibull

Relationship with accelerating variable(s): Linear

Regression Table

		Standard		95,0% Normal CI			
Predictor	Coef	Error	Z	P	Lower	Upper	
Intercept	7,58636	0,548229	13,84	0,000	6,51185	8,66087	
x	-0,468235	0,0842830	-5,56	0,000	-0,633427	-0,303044	
Shape	2,05563	0,872169			0,894943	4,72167	

Log-Likelihood = -17,450

ue ∰Worksheet 1 ***									
Ŧ	C1	C2	C3	C4	C5	C6	C7	C8	
	Y	x	d						
1	5	12	0						
2	10	10	1						
3	40	3	0						
4	80	5	0						
5	120	3	1						
6	400	4	1						
7	600	1	0						

э.

COMPARISON COX VS.WEIBULL

Estimated model, Weibull: $\ln T = 7.586 - 0.468x + (1/2.056)W$ Estimated model, Cox: $z(t; x) = z_0(t)e^{0.765x}$

Recall from earlier slide:

$$\beta_{\rm cox} = -\alpha_{\rm weib} \cdot \beta_{\rm weib}$$

In the example we estimate the right hand side by $-2.056 \cdot (-0.468) = 0.96$ while the left hand side is estimated by 0.765.

This seems to be OK, given that there are very few failures, and given the following fact:

The Cox-estimate for β does not use the observed times, while the Weibull estimates use them (a lot).

USE OF COX REGRESSION TO COMPARE TWO GROUPS Example from book by Ansell and Phillips

Table 3.2. Lifetimes (in cycles) of sodium sulphur batteries

Batch 1	 	218 1678+			639	669
Batch 2	 678	210 775				522 2248

Note: Lifetimes with + are right censored observations, not failures.

Bo Lindqvist

BATTERY DATA

There are altogether n = 15 + 20 = 35 observations.

Let x = 0 for Batch 1, x = 1 for Batch 2.

Now x is a discrete covariate (categorical). The Cox model is $z(t; x) = z_0(t)e^{\beta x}$, so:

• for Batch 1:
$$z(t; 0) = z_0(t)$$

$$ullet$$
 for Batch 2 : $z(t;1)=z_0(t)e^eta$

Cox' partial likelihood is easy to write down here (but note tied failures at time 164, so Peto-Breslow should be used at that time). For the other times, the contribution at T(j) is

$$\frac{e^{\beta' \mathbf{x}_{\ell_j}}}{\sum_{i \in R_j} e^{\beta' \mathbf{x}_i}} = \frac{1 \text{ if failure in Batch 1, } e^{\beta} \text{ if failure in Batch 2}}{\# \text{at risk in Batch } 1 + e^{\beta} \cdot \# \text{at risk in Batch 2}}$$

and Cox' likelihood is the product of these!

Bo Lindqvist	Slides 12	TMA4275 LIFETIME ANALYSIS
--------------	-----------	---------------------------

イロン イロン イヨン イヨン

RESULTS - BATTERY DATA

Maximum partial likelihood estimate: $\hat{\beta} = -0.0888$ (solved $\frac{\partial I(\beta)}{\partial \beta} = 0$, where *I* is Cox' log partial likelihood)

Further, computation of $Var(\hat{\beta}) = (-l''(\hat{\beta}))^{-1}$, and taking the square root gives the standard error $SD(\hat{\beta}) = 0.4034$.

So the standard 95% confidence interval for β is $-0.0888 \pm 1.96 \cdot 0.4034 = (-0.879, 0.702)$.

To test $H_0: \beta = 0$ versus $H_1: \beta \neq 0$ use $W(0) = 2(I(\hat{\beta}) - I(0)) \approx \chi_1^2$ under H_0 = 2(-81.238 - (-81.262)) = 0.048 so do not reject at any reasonable significance level!

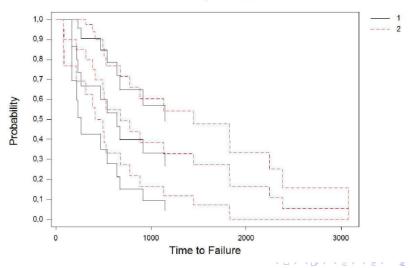
Note that we could also use the logrank test to test these hypotheses, or look at KM-plots (next slide).

《曰》《圖》《臣》《臣》 三臣

COMPARISON OF BATCHES BY KAPLAN-MEIER PLOT

Nonparametric Survival Plot for C1

Kaplan-Meier Method - 95,0% CI Censoring Column in C2



Bo Lindqvist

ESTIMATION OF THE CUMULATIVE BASELINE HAZARD

• Hazard:
$$z(t; \mathbf{x}_i) = z_0(t) e^{oldsymbol{eta}' \mathbf{x}_i}$$

- Cumulative hazard: Z(t; x_i) = Z₀(t)e^{β'x_i} (do the integration!)
- Survival/reliability function:

$$P(T_i > t) = R(t; \mathbf{x}_i) = e^{-\mathcal{Z}(t; \mathbf{x}_i)} = e^{-\mathcal{Z}_0(t)e^{\mathbf{\beta} \cdot \mathbf{x}_i}}$$

Of practical interest: "Estimate the survival probability for a patient or machine".

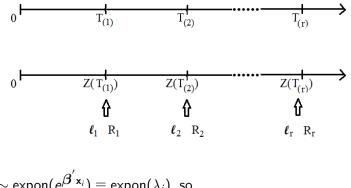
1

To estimate this: Substitute $\hat{\beta}$ for β , but still we need to estimate $Z_0(t)$.

ESTIMATION OF THE CUMULATIVE BASELINE HAZARD

Recall:
$$Z(T_i, \mathbf{x}_i) \sim \exp(1)$$
, i.e. $Z_0(T_i)e^{\boldsymbol{\beta}'\mathbf{x}_i} \sim \exp(1)$
Then recall that $T \sim \exp(\lambda) \Longrightarrow aT \sim \exp(\lambda/a)$. But then
 $Z_0(T_i) \sim \exp(\frac{e^{\boldsymbol{\beta}'\mathbf{x}_i}}{\sum_{\lambda_i \text{for simplicity}}})$, since
 $Z_0(T_i) = e^{-\boldsymbol{\beta}'\mathbf{x}_i} \cdot \underbrace{Z_0(T_i)e^{\boldsymbol{\beta}'\mathbf{x}_i}}_{\exp(1)} \sim \exp(\frac{1}{e^{-\boldsymbol{\beta}'\mathbf{x}_i}}) = \exp(e^{\boldsymbol{\beta}'\mathbf{x}_i})$

æ

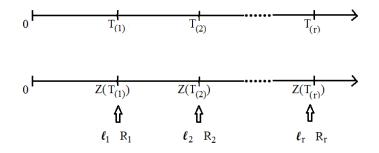


$$Z_{0}(T_{i}) \sim \exp(e^{\beta' \mathbf{x}_{i}}) \equiv \exp(\lambda_{i}), \text{ so}$$

$$Z_{0}(T_{(1)}) = \min \text{ minimum of } Z_{0}(T_{i}) \text{ for } i \in R_{1} \sim \exp(\sum_{i \in R_{1}} \lambda_{i}) = \exp(\sum_{i \in R_{1}} e^{\beta' \mathbf{x}_{i}}), \text{ and}$$

$$Z_{0}(T_{(2)}) - Z_{0}(T_{(1)}) \sim \exp(\sum_{i \in R_{2}} \lambda_{i}) = \exp(\sum_{i \in R_{2}} e^{\beta' \mathbf{x}_{i}})$$

æ



It follows that
$$E(Z_0(T_{(1)})) = \frac{1}{\sum_{i \in R_1} \lambda_i}$$

 $E(Z_0(T_{(2)})) = \frac{1}{\sum_{i \in R_1} \lambda_i} + \frac{1}{\sum_{i \in R_2} \lambda_i}$
and so on, so that in general
 $E(Z_0(T_{(m)})) = \sum_{j=1}^m \frac{1}{\sum_{i \in R_j} \lambda_i} = \sum_{j=1}^m \frac{1}{\sum_{i \in R_j} e^{\hat{\boldsymbol{\beta}}' \mathbf{x}_j}}$

æ

< 日 > < 同 > < 三 > < 三 >

THE BRESLOW ESTIMATOR

$$\hat{Z}_{0}(t) = \sum_{\mathcal{T}_{(j)} \leq t} rac{1}{\sum_{i \in R_{j}} e^{\hat{oldsymbol{eta}}'} \mathbf{x}_{i}}$$

This is similar to Nelson-Aalen estimator.

Indeed, if there are no covariates, then $\beta = 0$ and we get $\sum_{T_j \le t} \frac{1}{\#R_j}$, which is the Nelson-Aalen estimator.

We can use the Breslow estimator to estimate $\hat{R}_0(t) = e^{-\hat{Z}_0(t)}$.

A KM-TYPE ESTIMATOR FOR $R_0(t)$

$$\hat{R}_{0}(t) = \prod_{j: T_{(j)} \leq t} \left(1 - \frac{e^{\hat{\boldsymbol{\beta}}' \mathbf{x}_{l_{j}}}}{\sum_{i \in R_{j}} e^{\hat{\boldsymbol{\beta}}' \mathbf{x}_{i}}}\right)^{e^{-\hat{\boldsymbol{\beta}}' \mathbf{x}_{l_{j}}}}$$

Note that for $\beta = 0$ we get the ordinary KM estimator:

$$\hat{R}_0(t) = \prod_{j: \mathcal{T}_{(j)} \leq t} \left(1 - \frac{1}{\# R_i}\right)$$

-