TMA4275 Lifetime Analysis (Spring 2013) Exercise 7

Problem 1 – The two-parameter exponential distribution

The two-parameter exponential distribution has density

$$f(t; \theta, \gamma) = \frac{1}{\theta} \exp\left\{-\frac{t-\gamma}{\theta}\right\} \text{ for } t \ge \gamma$$

Assume we have a censored random sample (y_i, δ_i) , i = 1, ..., n from this distribution.

- a) Find the log-likelihood function $l(\theta, \gamma)$ for these data.
- **b)** Let $(\hat{\theta}, \hat{\gamma})$ be the maximum likelihood estimators of (θ, γ) . Verify that

$$\hat{\gamma} < t_1$$

where t_1 is the smallest observed time among y_1, \ldots, y_n .

Then find explicit expressions for $(\hat{\theta}, \hat{\gamma})$. Show in particular that we always have $\hat{\gamma} = t_1$

c) In the lectures we have considered a likelihood method for constructing confidence intervals for one of two parameters in a model. The method uses the following:

Let $\hat{\gamma}(\theta)$ be the MLE of γ when θ is given. Then

$$W(\theta) = 2(l(\hat{\theta}, \hat{\gamma}) - l(\theta, \hat{\gamma}(\theta)))$$

is approximately χ_1^2 when θ is the true parameter.

Explain how this can be used to construct a confidence interval for θ . Do the calculations of the interval as far as you get.

d) Use MINITAB to estimate the parameters when the Pike cancer data (see page 91 of Slides 3 from lectures) are assumed to follow a two-parameter exponential distribution.

Problem 2 – Censoring and truncation

n=10 units with exponentially distributed life times and MTTF= θ are put on test. At time c=10 the test is ended (type I censoring), and r=4 units have failed by that time. The observed lifetimes are

a) Write down the likelihood function and compute the MLE for θ . Which are the assumptions behind this approach?

- b) Assume now that one at the end of the experiment (c = 10) does not know how many units were put on test, but only knows that the experiment has gone for 10 time units, with r = 4 failures at the times given.
 - How can you write down a likelihood for this case? (Hint: This is right truncation, see page 95 of Slides 4 from lectures).
 - Which are the assumptions behind this likelihood?
- c) Maximize the likelihood in (b) to find the MLE under the conditions given there.

Problem 3 – Estimation and testing in the gamma distribution

Assume that the life time T is gamma distributed $(2, \lambda)$ (see Ch. 2.11 in the book). We have n independent observations t_1, \ldots, t_n of T (no censoring).

- a) Find the MLE $\hat{\lambda}$ for λ . What are the properties of this estimator?
- **b)** What is the estimate for λ when n = 10, $\sum t_i = 180$ (months)? Also find an estimate for the variance of $\hat{\lambda}$.
- c) Perform a test based on likelihood

$$H_0: \lambda = 0.25 \text{ versus } H_1: \lambda \neq 0.25$$

What is the conclusion if the significance level is 5%?

d) Make a confidence interval for λ using the loglikelihood.