WEEK 11, 2006 March 16 and 17

## TMA4275 LIFETIME ANALYSIS

Bo Lindqvist

Department of Mathematical Sciences NTNU

bo@math.ntnu.no http://www.math.ntnu.no/~bo/

#### Censored and Truncated Data

- An observation is right censored at y: Unit is in our data, we know T > y. Contribution to L: P(T > y) = R(y).
- An observation is left censored at y: Unit is in our data, we know T < y. Contribution to L: P(T < y) = F(y).
- An observation is right truncated at y: Unit is in our data only if  $T \leq y$ . We do not know about the units with T > y. Contribution to L of observed failure at t:  $\Delta^{-1}P(t \leq T \leq t + \Delta | T \leq y) \approx f(t)/F(y)$ .
- An observation is left truncated at y: Unit is in our data only if  $T \ge y$ . We do not know about the units with T < y. Contribution to L of observed failure at t:  $\Delta^{-1}P(t \le T \le t + \Delta | T \ge y) \approx f(t)/R(y)$ .

1

#### Examples of left truncation:

- Ultrasonic inspection of material. Signal amplitude only trusted when above limit  $\tau$ . Condition for being in the data set is  $T > \tau$ .
- Life data with pretest screening. Electronic component is burn-in tested for 1000 hours. Only the ones that passed this test are observed later. The number of components failing at burn-in is unknown. Condition for being in the data set is T > 1000.

#### Example of right truncation:

- Casting for automobile engine mounts. Pore size distribution below 10 microns only are recorded (other units are immediately discarded). Condition for being in the data set is T < 10 microns.
- Study group of individuals with AIDS diagnosis before July 1, 1986, and known date of HIV-infection (due to blood-transfusion). Let  $T_i =$  time from HIV-infection to AIDS diagnosis for *i*th individual. Then condition for being in the data set is that  $T_i \leq v_i$  where  $v_i$  is time from HIV-infection of the *i*th individual to July 1, 1986. (Kalbfleisch and Lawless, 1989)

3

## COMPUTER PROGRAM EXECUTION TIME vs SYSTEM LOAD

Data: 17 observations of (T,x)

- Time to complete a computationally intensive task.
- Information from the Unix uptime command
- Predictions needed for scheduling subsequent steps in a multistep computational process.

| Seconds (T) | Load (x) | Seconds (T) | Load (x) |
|-------------|----------|-------------|----------|
| 123         | 2,74     | 110         | ,60      |
| 704         | 5,47     | 213         | 2,10     |
| 184         | 2,13     | 284         | 3,10     |
| 113         | 1,00     | 317         | 5,86     |
| 94          | ,32      | 142         | 1,18     |
| 76          | ,31      | 127         | ,57      |
| 78          | ,51      | 96          | 1,10     |
| 98          | ,29      | 111         | 1,89     |
| 240         | ,96      |             |          |

# Covariates (explanatory variables) for failure times

Useful covariates explain/predict why some units fail quickly and some units survive a long time:

- Continuous variables like stress, temperature, voltage, and pressure.
- Discrete variables like number of hardening treatments or number of simultaneous users of a system.
- Categorical variables like manufacturer, design, and location.

Regression model relates failure time distribution to covariates  $x = (x_1, \ldots, x_k)$ :

 $P(T \le t) = F(t) = F(t;x)$ 

5

## Why regression models?

- Want to find factors which explain the reliability of an item
- Want to exclude factors which do not influence the reliability
- Obtain new knowledge about failure mechanisms
- Make better predictions for reliability of an item

Computer data



| C Sess                                                      |                                                                           | Ba<br>Ré                                                                                  | gression                                                                                                                                                                                   | •          | 的 一番 一台     | 040 040 07     | <u> / / 0</u>                  | 8  |        |           |           |          |        |     |     |     |         | - Y |
|-------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|----------------|--------------------------------|----|--------|-----------|-----------|----------|--------|-----|-----|-----|---------|-----|
|                                                             | sion                                                                      | AN                                                                                        | IOVA                                                                                                                                                                                       | •          |             |                |                                |    |        |           |           |          |        |     |     |     | _       |     |
|                                                             | 01                                                                        | 1.03 DC                                                                                   | DE<br>Introl Charts                                                                                                                                                                        | •<br>•     | <u> </u>    |                |                                |    |        |           |           |          |        |     |     |     |         | 1   |
| elcc                                                        | ome to Min                                                                |                                                                                           | ality Tools                                                                                                                                                                                |            | I           |                |                                |    |        |           |           |          |        |     |     |     |         |     |
|                                                             | ng file a:                                                                |                                                                                           | iability/Surviv                                                                                                                                                                            | al 🕨       | Distributio | on ID Plot-Ri  | ght Cens                       |    | ag\Lev | etidsanal | yse\Minit | abplot\C | 11.MTW |     |     |     |         |     |
| Pasu                                                        | Its for: C                                                                |                                                                                           | iltivariate                                                                                                                                                                                | •          |             |                | Plot-Right Cer                 |    |        |           |           |          |        |     |     |     |         |     |
|                                                             | 11.5 101. 0                                                               | EII EII                                                                                   | ne Series<br>bles                                                                                                                                                                          | t.         |             |                | sis-Right Cens.                |    |        |           |           |          |        |     |     |     |         |     |
| Plot                                                        | C1 * C2                                                                   |                                                                                           | nparametrics                                                                                                                                                                               | . î        |             |                | nalysis-Right C                |    | -      |           |           |          |        |     |     |     |         |     |
|                                                             |                                                                           | ED                                                                                        |                                                                                                                                                                                            | •          |             |                | bitrary Cens<br>Plot-Arbitrary |    |        |           |           |          |        |     |     |     |         |     |
| lot                                                         | Т*х                                                                       | Pc                                                                                        | wer and Sam                                                                                                                                                                                | ple Size 🔸 |             |                | sis-Arbitrary Ce               |    |        |           |           |          |        |     |     |     |         |     |
|                                                             |                                                                           |                                                                                           |                                                                                                                                                                                            |            |             |                | nalysis-Arbitrar               |    |        |           |           |          |        |     |     |     |         |     |
|                                                             | > let c3=:                                                                |                                                                                           |                                                                                                                                                                                            |            | Accelerati  | ed Life Testir | ng                             |    | -      |           |           |          |        |     |     |     |         |     |
| TB ><br>UBC>                                                | > Plot c3<br>> Symbol                                                     |                                                                                           |                                                                                                                                                                                            |            |             | on with Life D |                                |    |        |           |           |          |        |     |     |     |         |     |
| UBC>                                                        |                                                                           |                                                                                           |                                                                                                                                                                                            |            | Probit An   |                |                                |    |        |           |           |          |        |     |     |     |         |     |
| UBC>                                                        |                                                                           | otation.                                                                                  |                                                                                                                                                                                            |            |             |                |                                |    |        |           |           |          |        |     |     |     |         |     |
|                                                             | R 2522                                                                    |                                                                                           |                                                                                                                                                                                            |            |             |                |                                |    |        |           |           |          |        |     |     |     |         |     |
| lot I                                                       | log(T) * x                                                                |                                                                                           |                                                                                                                                                                                            |            |             |                |                                |    |        |           |           |          |        |     |     |     |         |     |
| TB >                                                        | >                                                                         |                                                                                           |                                                                                                                                                                                            |            |             |                |                                |    |        |           |           |          |        |     |     |     |         |     |
|                                                             |                                                                           |                                                                                           |                                                                                                                                                                                            |            |             |                |                                |    |        |           |           |          |        |     |     |     |         |     |
|                                                             |                                                                           |                                                                                           |                                                                                                                                                                                            |            |             |                |                                |    |        |           |           |          |        |     |     |     |         |     |
|                                                             |                                                                           |                                                                                           |                                                                                                                                                                                            |            |             |                |                                |    |        |           |           |          |        |     |     |     |         | _   |
|                                                             | .MTW ***                                                                  |                                                                                           |                                                                                                                                                                                            |            |             |                |                                |    |        |           |           |          |        |     |     |     |         |     |
| C11                                                         | C1                                                                        | C2                                                                                        | C3                                                                                                                                                                                         | C4         | C5          | C6             | C7                             | C8 | C9     | C10       | C11       | C12      | C13    | C14 | C15 | C16 | <br>C17 |     |
| •                                                           | C1<br>T                                                                   | x                                                                                         | log(T)                                                                                                                                                                                     | C4         | C5          | C6             | C7                             | C8 | C9     | C10       | C11       | C12      | C13    | C14 | C15 | C16 | Antonio |     |
| C11                                                         | C1<br>T<br>123                                                            | <b>x</b><br>2,74                                                                          | log(T)<br>4,81218                                                                                                                                                                          | C4         | C5          | C6             | C7                             | C8 | C9     | C10       | C11       | C12      | C13    | C14 | C15 | C16 | Antonio |     |
| C11                                                         | C1<br>T<br>123<br>704                                                     | x<br>2,74<br>5,47                                                                         | log(T)<br>4,81218<br>6,55678                                                                                                                                                               | C4         | C5          | C6             | C7                             | C8 | C9     | C10       | C11       | C12      | C13    | C14 | C15 | C16 | Antonio |     |
| C11                                                         | C1<br>T<br>123<br>704<br>184                                              | x<br>2,74<br>5,47<br>2,13                                                                 | log(T)<br>4,81218<br>6,55678<br>5,21494                                                                                                                                                    | C4         | C5          | C6             | C7                             | C8 | C9     | C10       | C11       | C12      | C13    | C14 | C15 | C16 | Antonio |     |
| C11                                                         | C1<br>T<br>123<br>704<br>184<br>113                                       | x<br>2,74<br>5,47<br>2,13<br>1,00                                                         | log(T)<br>4,81218<br>6,55678<br>5,21494<br>4,72739                                                                                                                                         | C4         | C5          | C6             | C7                             | C8 | C9     | C10       | C11       | C12      | C13    | C14 | C15 | C16 | Antonio |     |
| C11                                                         | C1<br>T<br>123<br>704<br>184<br>113<br>94                                 | x<br>2,74<br>5,47<br>2,13<br>1,00<br>0,32                                                 | log(T)<br>4,81218<br>6,55678<br>5,21494<br>4,72739<br>4,54329                                                                                                                              | C4         | C5          | C6             | C7                             | C8 | C9     | C10       | C11       | C12      | C13    | C14 | C15 | C16 | Antonio |     |
| C11                                                         | C1<br>T<br>123<br>704<br>184<br>113<br>94<br>76                           | x<br>2,74<br>5,47<br>2,13<br>1,00<br>0,32<br>0,31                                         | log(T)<br>4,81218<br>6,55678<br>5,21494<br>4,72739<br>4,54329<br>4,33073                                                                                                                   | C4         | C5          | C6             | C7                             | C8 | C9     | C10       | C11       | C12      | C13    | C14 | C15 | C16 | Antonio |     |
| C11<br>1<br>2<br>3<br>4<br>5<br>7                           | C1<br>T<br>123<br>704<br>184<br>113<br>94<br>76<br>78                     | x<br>2,74<br>5,47<br>2,13<br>1,00<br>0,32<br>0,31<br>0,51                                 | log(T)<br>4,81218<br>6,55678<br>5,21494<br>4,72739<br>4,54329<br>4,33073<br>4,35671                                                                                                        | C4         | C5          | C6             | C7                             | C8 | C9     | C10       | C11       | C12      | C13    | C14 | C15 | C16 | Antonio |     |
| C11<br>1<br>2<br>3<br>4<br>5<br>5<br>7<br>3                 | C1<br>T<br>123<br>704<br>184<br>113<br>94<br>76<br>78<br>98               | x<br>2,74<br>5,47<br>2,13<br>1,00<br>0,32<br>0,31<br>0,51<br>0,29                         | log(T)           4,81218           6,55678           5,21494           4,72739           4,54329           4,33073           4,35671           4,58497                                     | C4         | C5          | C6             | C7                             | C8 | C9     | C10       | C11       | C12      | C13    | C14 | C15 | C16 | Antonio |     |
| C11<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9            | C1<br>T<br>123<br>704<br>184<br>113<br>94<br>76<br>78<br>98<br>240        | x<br>2,74<br>5,47<br>2,13<br>1,00<br>0,32<br>0,31<br>0,51<br>0,29<br>0,96                 | log(T)           4,81218           6,55678           5,21494           4,72739           4,54329           4,33073           4,35671           4,58497           5,48064                   | C4         | C5          | C6             | C7                             | C8 | C9     | C10       | C11       | C12      | C13    | C14 | C15 | C16 | Antonio |     |
| C111<br>1<br>2<br>3<br>4<br>5<br>5<br>6<br>7<br>8<br>9<br>0 | C1<br>T<br>123<br>704<br>184<br>113<br>94<br>76<br>78<br>98<br>240<br>110 | x<br>2,74<br>5,47<br>2,13<br>1,00<br>0,32<br>0,31<br>0,51<br>0,29<br>0,96<br>0,60         | log(T)           4,81218           6,55678           5,21494           4,72739           4,54329           4,33073           4,35671           4,58497           5,48064           4,70048 | C4         | C5          | C6             | C7                             | C8 | C9     | C10       | C11       | C12      | C13    | C14 | C15 | C16 | Antonio |     |
| C11<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9            | C1<br>T<br>123<br>704<br>184<br>113<br>94<br>76<br>78<br>98<br>240        | x<br>2,74<br>5,47<br>2,13<br>1,00<br>0,32<br>0,31<br>0,51<br>0,29<br>0,96<br>0,60<br>2,10 | log(T)           4,81218           6,55678           5,21494           4,72739           4,54329           4,33073           4,35671           4,58497           5,48064                   | C4         | C5          | C6             | C7                             | C8 | C9     | C10       | C11       | C12      | C13    | C14 | C15 | C16 | Antonio |     |

| Oto 2.003.2003 2016:11           Image: Section 2.000           Section 2.0000           Section 2.000000           Section 2.00000000           Section 2.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                               |              |                      |                       |                |                        |             | _        | _   |     |     |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------|--------------|----------------------|-----------------------|----------------|------------------------|-------------|----------|-----|-----|-----|---|
| Windows to Kinitab, press FI for help.         Baving file as: CiDocuments and Settings\Bo Lindqvist\By Documents\Jobb\Psq\Lesetidsanalyse\Hinitabplot\Cll.MEW         Results for: C11.MTW         Plot 1* C2         Plot 7* x         NTD > last c3=log(cl)         SUDC> Symbol;         Select         Assumed distribution:       Iggrormal base et OK         I 12       C14 Assumed distribution:         Select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Session     |                                               |              |                      |                       |                |                        |             |          |     |     |     |   |
| Baving file as: C:\Documents and Bettings\Bo Lindqvist\Wy Documents\Jobb\Pag\Levetidsanalyse\Winitabplot\C11.MTW Results for: C11.MTW Plot C1 * C2 Plot T * X WTB > let c3=log(c1) WTB > let c3=log(c1 | 2           | 01.03.20                                      | 03 20:16:11  | 2                    |                       |                |                        |             |          |     |     |     |   |
| Results for: C11.MTW         Plot C1 * C2         Plot T * x         WTB > lot c3*c2;         Storce 3 symbol;         Storage         C1 C2 C3<br>1 1 22 2.74 4.81218         T 1 23 2.74 4.81218         Storage         OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                               |              |                      |                       |                |                        |             |          |     |     |     |   |
| Piot C1 * C2       Regression with Life Data       X         Piot T * x <ul> <li>C1 T * C2</li> <li>C3 log (T)</li> <li>C Responses are uncens/arbitrarily censored data</li> <li>C Responses are uncens/arbitr</li></ul>                                                                                                                                                                                                                                                                                                                                                                                            | Saving fil  | e as: C:\                                     | Documents an | d Settings\Bo Li     | ndqvist\My Documents\ | Jobb\Fag\Leve  | etidsanalyse\Mi        | initabplot\ | C11.MTW  |     |     |     |   |
| Image: Normal base         Regression with Life Data         Responses are uncens/arbitrarily censored data         Censor           Piot T*x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Results fo  | r: C11.MT                                     | W            |                      |                       |                |                        |             |          |     |     |     |   |
| Image: Normal base         Regression with Life Data         Responses are uncens/arbitrarily censored data         Censor           Piot T*x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Plot C1 * C | 2                                             |              |                      |                       |                |                        |             |          |     |     |     |   |
| C2       x       C       Responses are uncens/arbitrarily censored data       Estimate         WTB > let: c3=log(c1)       Gaphs       Estimate         WTB > plot: c3vc2;       Start variables:       Gaphs         SUBO>       Solonation       Plot log(T) * x         WTB > let: c3+c2;       Gaphs         SUBO>       Solonation       Plot log(T) * x         WTB >       Image: C2       C3         *       C1       C2       C3         *       T       kodel:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                                               |              | Regression with Life | Data                  |                |                        |             |          | ×   |     |     |   |
| MTB > Let c3=log(c1)       **       C Responses are uncens/arbitrarily censored data       Estimate         MTB > Plot c3*c2;       Start variables:       C1       Graphs         SUBC>       Schnotation.       Freq. columns:       Options         Plot log(T) * x       Model:       Options         * C1       C2       C3       Model:       C1         * C1       C2       C3       T       Keults       Options         * C1       C2       C3       C1       C1       C2       C3         * C1       C2       C3       C3       C4       C3       C4       C4         * C1       C2       C3       C3       C4       C1       C4       C4         * C1       C2       C3       C3       C4       C4       C4       C4         1 123       2,74       4,81218       Select       Assumed distribution:       Cognormal base e       OK       Cancel       C4       C4         4       113       1,00       4,72739       Help       Cancel       C3       C3       C3       C3       C3       C4       C4       C4       C4       C4       C4       C4       C4       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                               |              | C1 T                 | Responses             | are uncens/ric | ht censored dat        | ta          | Censor   | 1   |     |     |   |
| WTB > lat c3=log (c1)       WTB > plot c3*c3/       Graphs         WTB > plot c3*c3/       Graphs         BoFzame/       Graphs         Bofzame/       Freq. columns:       optional)         Freq. columns:       optional)         C1       C2       optional)         Freq. columns:       optional)         C2       optional)         T       x log(T)         1       123       2,74       4,81218         2       704       5,471       6,56578         3       184       2,13       5,21494         Select       Assumed distribution:       lognormal base e       OK         6       76       0,31       4,33073         7       78       0,51       4,35671         8       98       0.29       4,58497         9       240       0,86       optional       optional         10       110       0,60       4,70048       optional       optional         12       244       0,86       0,8064       optional       optional         12       240       0,86       6,48064       optional       optional       optional         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                                               |              | C2 x<br>C3 log(T)    | C Responses           | are uncens/ar  | ,<br>bitrarily censore | ed data     | <u></u>  |     |     |     |   |
| MTB > Plot c3*c2;<br>Stratvariables:       Graphs         Startvariables:       Graphs         Startvariables:       Graphs         Startvariables:       Graphs         Plot log(T) * x       Model:         C1       C2         T       Kog(T)         T       X         1       123       2,7/4       4,81218         2       704       5,47/4       6,5678         3       184       2,13       5,21494         4       113       1,00       4,72739         6       76       0,31       4,33073         7       78       0,51       4,58471         8       98       0,20       4,58497         9       240       0,96       5,48064         10       110       0,60       4,70048         11       213       2,10       5,64897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MTB > let   | c3=log(c1                                     |              | 109(1)               | Variables             | [c1            |                        | -           | Estimate |     |     |     |   |
| SUBC>       Schnotation.         Plot log(T) * x       Freq. columns:         Model:       Storage         C1       C2       C3         T       x       log(T)         1       123       2,74       4,81218         2       704       5,47       6,5678         3       184       2,13       5,21494         4       113       1.00       4,3303         7       78       0,51       4,36671         8       98       0,29       4,58497         9       2,40       0,96       5,48064         10       100       6, 30612       Image: Cancel of C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MTB > Plot  | c3*c2;                                        |              |                      |                       |                |                        | -           | Graphs   |     |     |     |   |
| Pict log(T) * X       Options       Options         MTE       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SUBC> So    | Frame;                                        |              |                      | End variables:        |                |                        | *           | Doculto  |     |     |     |   |
| Intropy of the second                                             | SUBC> So    | Annotatio                                     | n.           |                      |                       |                |                        | · ·         | Results  |     |     |     |   |
| Mage: Storage       Storage         Model:       C1       C2       C3         T       x       log(T)       Factors (optional):       C16       C16       C17         1       123       2,74       4,81218       Select       Assumed distribution:       Lognormal base e       OK       OK         3       184       2,13       5,21494       Select       Assumed distribution:       Lognormal base e       OK       OK<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Plot log(T) | * x                                           |              |                      |                       |                |                        | -           | Options  |     |     |     |   |
| Image: Node:         Image: Node:<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                                               |              |                      | (optional)            |                |                        | -           | Storage  |     |     |     |   |
| I         C2         C3           T         x         log(T)           1         123         2,74         4,81218           2         704         5,47         6,56678           3         184         2,13         5,21494           4         113         1.00         4,72739           5         94         0.32         4,54329           Help         Cancel         OK           7         78         0,51         4,36071           8         98         0.29         4,58497           9         240         0,96         5,4864           10         110         0,60         4,70048           11         213         2,10         5,36129           12         284         3,10         5,64897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MID >       |                                               |              |                      | Model:                |                |                        |             |          |     |     |     |   |
| C1       C2       C3       C4       C3       C3       C4       C3       C4       C4 <thc4< th="">       C4       C4       <th< td=""><td>4</td><td></td><td></td><td></td><td>c2</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td></th<></thc4<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4           |                                               |              |                      | c2                    |                |                        | *           |          |     |     |     |   |
| C1         C2         C3           T         X         Iog(1)           1         123         C,74         4,81218           2         704         5,77         6,5678           3         184         2,13         5,21494         Select         Assumed distribution:         Lognormal base e         OK         Image: Case distribution:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C11.MTW     | **                                            |              |                      |                       |                |                        |             |          |     |     |     |   |
| I         Iog(1)         Iog(1)           1         123         2,74         4,81218           2         704         5,5678         Image: Select sel                                                                                                                                                    | + C1        | C2                                            | C3           |                      | Footore (option       | a c Du         |                        |             |          | C15 | C16 | C17 |   |
| 2       704       6,547       6,5678       Select       Assumed distribution:       Lognormal base e       OK         3       184       2,13       5,21494       Select       Assumed distribution:       Lognormal base e       OK         5       94       0,32       4,54329       Help       Cancel       Cancel         6       76       0,31       4,33671       Cancel       Cancel       Cancel         8       98       0.29       4,58497       Cancel       Cancel       Cancel         9       240       0,96       5,48064       Cancel       Cancel       Cancel         10       110       0,60       4,70048       Cancel       Cancel       Cancel         11       213       2,10       5,36129       Cancel       Cancel       Cancel       Cancel         12       284       3,10       5,64897       Cancel       Cancel       Cancel       Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 22.0                                          |              |                      | Factors (option       | iaij.          |                        | 100         |          |     |     |     |   |
| 3       184       2,13       5,21494       Select       Assumed distribution:       Lognormal base e       OK       Image: Concel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - C         | 298) OXARVO                                   |              | 1                    |                       |                |                        | -           |          |     |     |     |   |
| i       101       2,10       0,72739       i       i       0K       Cancel       0K         i       94       0,32       4,54329       i       i       i       0       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 55% (A)   | 205 VI 206 V                                  |              |                      | A nourmed distr       | ibution.       |                        |             |          |     |     |     |   |
| 5       94       0.32       4,54329       Help       Cancel       Can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                               |              | Select               | Assumed distr         |                | Lognormal base         | e 💌         | ОК       |     | -   |     | - |
| 6       76       0.31       4,33073       Imp       Output       Outp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10000000 C  |                                               |              | 1144                 |                       |                |                        |             | 0        |     |     |     | + |
| 7       78       0,51       4,35671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -02         | 2020 - C. |              | нер                  |                       |                |                        |             | Cancel   |     |     |     | - |
| 9         240         0.96         5,48064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | 1250                                          |              |                      |                       |                |                        |             |          |     |     |     | + |
| 110         0.60         4,70048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                               |              |                      |                       |                |                        |             |          |     |     |     |   |
| 11         213         2,0         5,36129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 2         | 0,9                                           | 6 5,48064    |                      |                       |                |                        |             |          |     |     |     | T |
| <b>12</b> 284 3.10 5,64897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22200 m     |                                               |              |                      |                       |                |                        |             |          |     |     |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                               |              |                      |                       |                |                        |             |          |     |     |     |   |
| 1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 34 3,1                                        | 0 5,64897    |                      |                       |                |                        |             |          |     |     |     | • |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                               |              |                      |                       |                |                        |             |          |     |     |     | 4 |

Regression with Life Data: T versus x Response Variable: T Censoring Information Count Uncensored value 17 Estimation Method: Maximum Likelihood Distribution: Lognormal base e Regression Table Standard 95,0% Normal CI Z P Lower Upper 4,2756 4,7116 Predictor Coef Error Intercept 4,4936 0,1112 40,39 0,000 4,2756 0,20069 0,38080 x 0,29075 0,04595 6,33 0,000 Scale 0,31247 0,05359 0,22327 0,43730 Log-Likelihood = -89,498Anderson-Darling (adjusted) Goodness-of-Fit

Standardized Residuals = 0,8356; Cox-Snell Residuals = 0,8170

Regression with Life Data: C1 versus C2

Response Variable: C1

Censoring Information Count Uncensored value 17

Estimation Method: Maximum Likelihood Distribution: Weibull

Regression Table

|           |         | Standard |       |       | 95,0%   | Normal CI |
|-----------|---------|----------|-------|-------|---------|-----------|
| Predictor | Coef    | Error    | Z     | P     | Lower   | Upper     |
| Intercept | 4,6182  | 0,1219   | 37,88 | 0,000 | 4,3792  | 4,8572    |
| C2        | 0,31118 | 0,04939  | 6,30  | 0,000 | 0,21437 | 0,40799   |
| Shape     | 3,0604  | 0,5245   |       |       | 2,1873  | 4,2820    |

Log-Likelihood = -91,504

Anderson-Darling (adjusted) Goodness-of-Fit

## Likelihood for Lognormal Distribution Simple Regression Model with Right Censored Data

The likelihood for n independent observations has the form

$$L(\beta_0, \beta_1, \sigma) = \prod_{i=1}^n L_i(\beta_0, \beta_1, \sigma; \mathsf{data}_i)$$
  
= 
$$\prod_{i=1}^n \left\{ \frac{1}{\sigma t_i} \phi_{\mathsf{nor}} \left[ \frac{\mathsf{log}(t_i) - \mu_i}{\sigma} \right] \right\}^{\delta_i} \left\{ 1 - \Phi_{\mathsf{nor}} \left[ \frac{\mathsf{log}(t_i) - \mu_i}{\sigma} \right] \right\}^{1 - \delta_i}$$
  
where  $\mathsf{data}_i = (x_i, t_i, \delta_i), \ \mu_i = \beta_0 + \beta_1 x_i.$ 

where data<sub>i</sub> =  $(x_i, t_i, \delta_i)$ ,  $\mu_i = \beta_0 + \beta_1 x_i$ ,

$$\delta_i = \begin{cases} 1 & \text{exact observation} \\ 0 & \text{right censored observation} \end{cases}$$

 $\phi_{nor}(z)$  is the standardized normal pdf and  $\Phi_{nor}(z)$  is the corresponding normal cdf.

The parameters are  $\theta = (\beta_0, \beta_1, \sigma)$ .

13

### Estimated Parameter Variance-Covariance Matrix

Local (observed information) estimate

$$\begin{split} \hat{\Sigma}_{\hat{\theta}} &= \begin{bmatrix} \widehat{\operatorname{Var}}(\hat{\beta}_{0}) & \widehat{\operatorname{Cov}}(\hat{\beta}_{0},\hat{\beta}_{1}) & \widehat{\operatorname{Cov}}(\hat{\beta}_{0},\hat{\sigma}) \\ \widehat{\operatorname{Cov}}(\hat{\beta}_{1},\hat{\beta}_{0}) & \widehat{\operatorname{Var}}(\hat{\beta}_{1}) & \widehat{\operatorname{Cov}}(\hat{\beta}_{1},\hat{\sigma}) \\ \widehat{\operatorname{Cov}}(\hat{\sigma},\hat{\beta}_{0}) & \widehat{\operatorname{Cov}}(\hat{\sigma},\hat{\beta}_{1}) & \widehat{\operatorname{Var}}(\hat{\sigma}) \end{bmatrix} \\ &= \begin{bmatrix} -\frac{\partial^{2}\mathcal{L}(\beta_{0},\beta_{1},\sigma)}{\partial\beta_{0}^{2}} & -\frac{\partial^{2}\mathcal{L}(\beta_{0},\beta_{1},\sigma)}{\partial\beta_{0}\partial\beta_{1}} & -\frac{\partial^{2}\mathcal{L}(\beta_{0},\beta_{1},\sigma)}{\partial\beta_{0}\partial\sigma} \\ -\frac{\partial^{2}\mathcal{L}(\beta_{0},\beta_{1},\sigma)}{\partial\beta_{1}\partial\beta_{0}} & -\frac{\partial^{2}\mathcal{L}(\beta_{0},\beta_{1},\sigma)}{\partial\beta_{1}^{2}} & -\frac{\partial^{2}\mathcal{L}(\beta_{0},\beta_{1},\sigma)}{\partial\beta_{1}\partial\sigma} \\ -\frac{\partial^{2}\mathcal{L}(\beta_{0},\beta_{1},\sigma)}{\partial\sigma\partial\beta_{0}} & -\frac{\partial^{2}\mathcal{L}(\beta_{0},\beta_{1},\sigma)}{\partial\sigma\partial\beta_{1}} & -\frac{\partial^{2}\mathcal{L}(\beta_{0},\beta_{1},\sigma)}{\partial\sigma\partial\beta_{1}} \end{bmatrix}^{-1} \end{split}$$

Partial derivatives are evaluated at  $\hat{\beta}_0, \hat{\beta}_1, \hat{\sigma}$ .

## Standard Errors and Confidence Intervals for Parameters

• Lognormal ML estimates for the computer time experiment were  $\hat{\theta} = (\hat{\beta}_0, \hat{\beta}_1, \hat{\sigma}) = (4.49, .290, .312)$  and an estimate of the variance-covariance matrix for  $\hat{\theta}$  is

$$\hat{\Sigma}_{\hat{\theta}} = \begin{bmatrix} .012 & -.0037 & 0 \\ -.0037 & .0021 & 0 \\ 0 & 0 & .0029 \end{bmatrix}.$$

• Normal-approximation confidence interval for the computer execution time regression slope is

$$[\beta_1, \quad \tilde{\beta}_1] = \hat{\beta}_1 \pm z_{(.975)} \widehat{se}_{\hat{\beta}_1} = .290 \pm 1.96(.046) = [.20, \quad .38]$$

where  $\widehat{se}_{\widehat{\beta}_1} = \sqrt{.0021} = .046$  .







17

## **Ordinary residuals**

$$y_i - x'_i \hat{\beta}$$

where

yi is the ith response value

 $\mathbf{x'}_i$  is the vector of predictor values associated with the ith response value

 $\hat{\boldsymbol{\beta}}$  represents the estimated regression coefficients

## Standardized residuals

 $\frac{y_i - x_i'\hat{\beta}}{\hat{\sigma}}$ 

where  $\hat{\sigma}$  is the estimated scale parameter.

## Cox-Snell residuals

 $-\ln(\hat{R}(y_i))$ 

where

 $\hat{R}(y_i)$  is the estimated survival (reliability) probability for the response value yi ln(x) is the natural log of x



| Row | Pseudo-<br>stress | k-Cycles | Status | (1=failed, 0=censored)                |
|-----|-------------------|----------|--------|---------------------------------------|
| i   | S                 | Y        | С      | DATA DESCRIPTION:                     |
| 1   | 80,3              | 211,629  | 1      | Low-Cycle Fatigue Life of Nickel-Base |
| 2   |                   | 200,027  | 1      | Superalloy Specimens                  |
| 3   | 80,8              | 57,923   | 0      | (in units of thousands of cycles      |
| 4   | 84,3              | 155,000  | 1      | to failure).                          |
| 5   | 85,2              | 13,949   | 1      |                                       |
| 6   | 85,6              | 112,968  | 0      | Data from Nelson (1990):              |
| 7   | 85,8              | 152,680  | 1      |                                       |
| 8   | 86,4              | 156,725  | 1      | SUPER ALLOY DATA                      |
| 9   | 86,7              | 138,114  | 0      |                                       |
| 10  | 87,2              | 56,723   | 1      |                                       |
| 11  | 87,3              | 121,075  | 1      |                                       |
| 12  | 89,7              | 122,372  | 0      |                                       |
| 13  | 91,3              | 112,002  | 1      |                                       |
| 14  | 99,8              | 43,331   | 1      |                                       |
| 15  | 100,1             | 12,076   | 1      |                                       |
| 16  | 100,5             | 13,181   | 1      |                                       |
| 17  |                   | 18,067   | 1      |                                       |
| 18  | 114,8             | 21,300   | 1      |                                       |
| 19  | 116,4             | 15,616   | 1      |                                       |
| 20  | 118,0             | 13,030   | 1      |                                       |
| 21  |                   | 8,489    | 1      |                                       |
| 22  | 118,6             | 12,434   | 1      |                                       |
| 23  | -                 | 9,750    | 1      |                                       |
| 24  | 142,5             | 11,865   | 1      |                                       |
| 25  |                   | 6,705    | 1      |                                       |
| 26  | 145,9             | 5,733    | 1      |                                       |
|     |                   |          |        | 21                                    |

Plot of Y vs s





```
Regression with Life Data: Y versus x
Response Variable: Y
Censoring Information
                                     Count
Uncensored value
                                        22
                                          4
Right censored value
Censoring value: C = 0
Estimation Method: Maximum Likelihood
Distribution: Weibull
Regression Table
                       Standard
                                                       95,0% Normal CI
Predictor
                Coef
                                       Z
                          Error
                                             Ρ
                                                      Lower
                                                                  Upper
Intercept
              217,61
                          62,13
                                    3,50 0,000
                                                      95,83
                                                                 339,39
              -85,52
                          26,55
                                   -3,22 0,001
                                                    -137,55
                                                                 -33,49
x
               8,483
                          2,831
                                    3,00 0,003
                                                      2,934
                                                                 14,032
x*x
Shape
              2,6685
                         0,4777
                                                     1,8789
                                                                 3,7900
Log-Likelihood = -93,382
Anderson-Darling (adjusted) Goodness-of-Fit
Standardized Residuals = 0,9283; Cox-Snell Residuals = 0,9283
```

25

Log-Quadratic Weibull Regression Model with Constant ( $\beta = 1/\sigma$ ) Fit to the Fatigue Data  $\log[\hat{t}_p(x)] = \hat{\mu}(x) + \Phi_{\text{SeV}}^{-1}(p)\hat{\sigma}, x = \log(\text{pseudo-stress})$ 



Regression with Life Data: Y versus x

Response Variable: Y

#### Table of Percentiles

| Table Of | rercen | CITCO  |            |          |          |                     |
|----------|--------|--------|------------|----------|----------|---------------------|
|          |        |        |            | Standard | 95,0%    | Normal CI           |
| Percent  | S      | x      | Percentile | Error    | Lower    | Upper               |
| 10       | 80     | 4,3820 | 133,3747   | 34,0579  | 80,8565  | 220,0048            |
| 10       | 100    | 4,6052 | 16,7928    | 3,4263   | 11,2577  | 25,0494             |
| 10       | 120    | 4,7875 | 5,7830     | 1,2364   | 3,8034   | 8,7929              |
| 10       | 140    | 4,9416 | 3,6458     | 0,8760   | 2,2766   | <mark>5,8386</mark> |
| 50       | 80     | 4,3820 | 270,1879   | 56,0580  | 179,9121 | 405,7621            |
| 50       | 100    | 4,6052 | 34,0186    | 4,3027   | 26,5494  | 43,5891             |
| 50       | 120    | 4,7875 | 11,7151    | 1,5950   | 8,9713   | 15,2980             |
| 50       | 140    | 4,9416 | 7,3856     | 1,2828   | 5,2547   | 10,3807             |
| 90       | 80     | 4,3820 | 423,6933   | 90,4646  | 278,8097 | 643,8659            |
| 90       | 100    | 4,6052 | 53,3461    | 6,8162   | 41,5281  | 68,5272             |
| 90       | 120    | 4,7875 | 18,3709    | 2,4567   | 14,1351  | 23,8760             |
| 90       | 140    | 4,9416 | 11,5817    | 1,9813   | 8,2824   | 16,1952             |
|          |        |        |            |          |          |                     |

27

## ESTIMERT KOVARIANSMATRISE FOR $(\hat{eta}_0,\hat{eta}_1,\hat{eta}_2,\hat{\sigma})$

| 3860,37  | -1649,17 | 175,82 | -0,80 |
|----------|----------|--------|-------|
| -1649,17 | 704,70   | -75,15 | 0,33  |
| 175,82   | -75,15   | 8,02   | -0,03 |
| -0,80    | 0,33     | -0,03  | 0,23  |



