Using Storm for scaleable sequential statistical inference

Simon Wilson1 Arnab Bhattacharya1 Gernot Roetzer1 \\
Séan Ó’Ríordáin1 Tiep Mai2 Peter Cogan3 \\
Oscar Robles Sánchez4 Louis Aslett5

1Trinity College Dublin, Ireland \\
2Bell Labs, Dublin, Ireland \\
3Amdocs, Dublin, Ireland \\
4Universidad Rey Juan Carlos, Madrid, Spain \\
5Oxford University, UK
Overview

- A sequential learning algorithm and their 'topology';
- What is Storm?
- Two illustrations of using Storm for sequential data analysis;
- Challenges in using Storm for typical sequential learning algorithms.
A SEQUENTIAL LEARNING ALGORITHM
Model specified by $p(y_k | x_k, \theta)$, $p(x_0)$, $p(x_k | x_{k-1})$ and prior $p(\theta)$:

$$p(y_{1:t}, x_{1:t}, \theta) = \left(\prod_{k=1}^{t} p(y_k | x_k, \theta) p(x_k | x_{k-1}, \theta) \right) p(x_0) p(\theta),$$

where $y_{1:t} = (y_1, \ldots, y_t)$, etc.
The Problem

- Usual inference tasks with these models:
 - **Filtering** Compute $p(x_t|y_{1:t}, \theta)$ (also possibly $p(x_{0:t}|y_{1:t}, \theta)$)
 - **Estimation** Compute $p(\theta|y_{1:t})$ \Leftarrow We will be concentrating on this.
 - **Prediction** Compute $p(x_{t+1}|y_{1:t}, \theta)$ and $p(y_{t+1}|y_{1:t}, \theta)$

- In this work we want to do this quickly and sequentially:
 $$
 p(x_{t-1}|y_{1:t-1}, \theta) \rightarrow p(x_t|y_{1:t}, \theta) \\
 p(\theta|y_{1:t-1}) \rightarrow p(\theta|y_{1:t}) \\
 p(y_t|y_{1:t-1}, \theta) \rightarrow p(y_{t+1}|y_{1:t}, \theta)
 $$
The Problem

- Usual inference tasks with these models:

 Filtering Compute $p(x_t | y_{1:t}, \theta)$ (also possibly $p(x_{0:t} | y_{1:t}, \theta)$)

 Estimation Compute $p(\theta | y_{1:t})$ \Leftarrow We will be concentrating on this.

 Prediction Compute $p(x_{t+1} | y_{1:t}, \theta)$ and $p(y_{t+1} | y_{1:t}, \theta)$

- In this work we want to do this quickly and sequentially:

 $p(x_{t-1} | y_{1:t-1}, \theta) \rightarrow p(x_t | y_{1:t}, \theta)$

 $p(\theta | y_{1:t-1}) \rightarrow p(\theta | y_{1:t})$

 $p(y_t | y_{1:t-1}, \theta) \rightarrow p(y_{t+1} | y_{1:t}, \theta)$
The Problem

- Usual inference tasks with these models:

 Filtering Compute $p(x_t|y_{1:t}, \theta)$ (also possibly $p(x_{0:t}|y_{1:t}, \theta)$)

 Estimation Compute $p(\theta|y_{1:t}) \iff$ We will be concentrating on this.

 Prediction Compute $p(x_{t+1}|y_{1:t}, \theta)$ and $p(y_{t+1}|y_{1:t}, \theta)$

- In this work we want to do this quickly and sequentially:

 $$
 p(x_{t-1}|y_{1:t-1}, \theta) \rightarrow p(x_t|y_{1:t}, \theta)
 $$
 $$
 p(\theta|y_{1:t-1}) \rightarrow p(\theta|y_{1:t})
 $$
 $$
 p(y_t|y_{1:t-1}, \theta) \rightarrow p(y_{t+1}|y_{1:t}, \theta)
 $$
The Principle

• Simple manipulation of probability laws yields:

\[p(\theta | y_{1:t}) \propto \frac{p(y_{1:t} | x_{1:t}, \theta) p(x_{0:t} | \theta) p(\theta)}{p(x_{0:t} | y_{1:t}, \theta)} \bigg|_{x_{0:t} = x^*(\theta)}, \]

for any \(x^*(\theta) \) such that \(p(x^*(\theta) | y_{1:t}, \theta) > 0 \);

• Further manipulation yields a sequential version:

\[p(\theta | y_{1:t}) \propto p(\theta | y_{1:t-1}) \frac{p(y_t | x_t, \theta) p(x_t | y_{1:t-1}, \theta)}{p(x_t | y_{1:t}, \theta)} \bigg|_{x_t = x^*(\theta)}, \]

• For many models the dimension of \(\theta \) is small enough to allow \(p(\theta | y_{1:t}) \) to be computed on a discrete grid \(\Theta = \{\theta_j | j = 1, \ldots, J\} \);
The Principle

- The former requires a filtering density $p(x_{0:t} \mid y_{1:t}, \theta)$ of dimension $t + 1$;
 - Computation time grows with t;
- The latter requires both filtering and prediction densities but only of fixed dimension (those of x_t and y_t);
 - Any algorithm that outputs the filtering and prediction densities can be used to implement it;
 - Computation time constant with t;
- This is the basis of our approach.
Doing this sequentially

Observations:

- Can update from $p(\theta \mid y_{1:t-1})$ to $p(\theta \mid y_{1:t})$ on grid Θ;
- Typical choice for $x^*(\theta)$ is $\arg\max_\theta p(x_t \mid y_{1:t}, \theta)$;
- Normalising constant quick to compute (sum over Θ);
- Trivial parallelisation of the computation over Θ:
 - Important for the rest of the talk!
Non-Sequential Method — INLA

- The integrated nested Laplace approximation:

\[
\tilde{p}_{\text{INLA}}(\theta | y_{1:t}) \propto \frac{p(y_{1:t} | x_{1:t}, \theta) \, p(x_{0:t} | \theta) \, p(\theta)}{\tilde{p}_G(x_{0:t} | y_{1:t}, \theta)} \bigg|_{x_{0:t} = x^*(\theta)},
\]

where \(\tilde{p}_G(x_{0:t} | y_{1:t}, \theta) \) is a Gaussian approximation;

- Computed on grid \(\Theta \) which INLA also provides;

- Very accurate for Gaussian \(X_t \) so can be computed until \(t \) is too large for fast computation.
Sequential method with approximate filtering and prediction densities

- More typically have approximations $\tilde{p}(x_t \mid y_{1:t-1}, \theta)$ and $\tilde{p}(x_t \mid y_{1:t}, \theta)$;
- So sequential update approximation to $p(\theta \mid y_{1:t})$ is:

$$
\tilde{p}(\theta \mid y_{1:t}) \propto \tilde{p}(\theta \mid y_{1:t-1}) \frac{p(y_t \mid x_t, \theta) \tilde{p}(x_t \mid y_{1:t-1}, \theta)}{\tilde{p}(x_t \mid y_{1:t}, \theta)} \bigg|_{x_t = x^*(\theta)},
$$

for any $x^*(\theta)$ such that $\tilde{p}(x^*(\theta) \mid y_{1:t}, \theta) > 0$.
- Use this when t has got too big for INLA;
- Dynamic updating of the grid?
Example: non-stationary growth model of Kitagawa (JCGS, 1996)

\[y_t = 0.05x_t^2 + w_t, \]
\[x_t = 0.5x_{t-1} + \frac{25x_{t-1}}{1 + x_{t-1}^2} + 8 \cos(1.2(t - 1)) + v_t. \]

\[w_t \sim N(0, W), \quad v_t \sim N(0, V) \]

- Inference on \(\theta = (V, W) \).
- Used unscented Kalman filter.
- Model first seen in Andrede Netto et al. (1978).
Kitagawa model: simulated state and observations
Kitagawa model: UKF filter and prediction

![Graph showing state and observation processes over time with filter mean, prediction mean, and true state lines.](image-url)
Kitagawa model: sequential inference on W
Kitagawa model: sequential inference on

![Graph showing sequential inference results]
Comments

- Why the estimation bias?
- Even happens if we fix one of the variances to its true value;
- Might expect V to be overestimated because of the two solutions?
Computation topology: MapReduce
STORM
What is Storm?

- It’s a parallel computing environment for doing streaming data analysis in a scaleable and fault tolerant way;
- Originally developed by a company called BackType — acquired by Twitter in 2011 — Twitter made it open source the same year;
- It’s easy to install and program in Java (but you can code in other languages like Python);
- There are even some crude ways to link it to R (and hopefully these will be easier to use soon);
- Have you heard of Hadoop?
 - If yes then Storm is like Hadoop but for streaming data (and ignore the next 2 slides);
 - If no then see 2 next slides!
What is Storm? More details

- All large IT companies run large servers consisting of *many* processing cores networked together;
- These systems are set up to do parallel computing using the *MapReduce* paradigm. This means that:
 - Any operation (e.g. a web search) can be split into many essentially identical operations that can be done independently at the same time;
 - The operating system tries to detect if any processor has failed. If it thinks this happens then that job is assigned to another processor.
- These are *batch* computations e.g. there is a task to do, you do it, report the result and it’s finished.
What is Storm? More details

- What about streaming data e.g.
 - Sentiment analysis from a (never-ending) Twitter feed;
 - Accident detection from a (never-ending) video stream from a highway;
 - Object tracking from a (never-ending) radar or IR camera feed.
- Storm is designed to implement the MapReduce idea but for streaming data (and not batch);
- In principle, the computation never ends (in practice, it ends when you manually kill it).
Streaming data analysis

• We assume a never-ending stream of data (called *tuples* in Storm) x_1, x_2, \ldots;
• The task is to sequentially do some analysis as the data streams to us and output it
• Examples:
 • Calculate a running mean a stream of numbers, so we output $\bar{x}_1, \bar{x}_2, \ldots$ where $\bar{x}_n = \sum_{i=1}^{n} x_i / n$;
 • Report market sentiment from a stream of tweets, so output ‘positive’ or ‘negative’ after every new tweet or after every minute, etc.
Topologies, bolts and spouts

- A Storm program starts with a graph that describes how data flows from input to output (the topology);
- Nodes in the topology are either bolts or spouts:
 - Spouts are sources of data;
 - Bolts are functions that process data; they have an input and an output.
- You write code to implement the spouts and bolts (in Java, Python, etc.);
- You specify where the input and output from each spout and bolt is to go, and how much parallelism you want;
- Storm does the rest of the work to manage the running of this on a cluster.
- A lot more to be said about how Storm works!
Simple example: computing a posterior distribution sequentially

- We have a stream of Gaussian data x_1, x_2, \ldots with unknown mean μ, precision τ;
- Goal is to sequentially compute the posterior distribution $p(\mu, \tau \mid x_1, \ldots, x_n)$;
- When x_{n+1} is streamed then we update the posterior by Bayes':

 \[p(\mu, \tau \mid x_1, \ldots, x_n, x_{n+1}) \propto p(x_{n+1} \mid \mu, \tau)p(\mu, \tau \mid x_1, \ldots, x_n). \]
- We compute the posterior on a discrete grid
 \[\Theta = \{ (\mu_i, \tau_j) \mid i = 1, \ldots, I; j = 1, \ldots, J \}. \]
Computing a posterior distribution sequentially: a topology
Computing a posterior distribution sequentially: a topology

- We partition the grid into M sub-grids $\Theta_1, \ldots, \Theta_M$;
- We have M replications of a bolt \logpost that computes the unnormalised log posterior:

$$l_n(\mu, \tau) = \log(p(\mu, \tau)) + \sum_{k=1}^{n} \log(p(x_k | \mu, \tau)).$$

- Each bolt is assigned to compute this over one of the Θ_m;
- When x_{n+1} is streamed, it is transmitted to all these bolts that then update l_n to l_{n+1} by computing $\log(p(x_{n+1} | \mu, \tau))$ and adding it to $l_n(\mu, \tau)$;
Computing a posterior distribution sequentially: a topology

• After a certain number of data points have been streamed, the logpost bolts transmit the \(l_n \) values to a collect bolt that merges and normalises them:

\[
p(\mu, \tau \mid x_1, \ldots, x_n) \approx \frac{\exp(l_n(\mu, \tau))}{\sum_{(\mu, \tau) \in \Theta} \exp(l_n(\mu, \tau))} \Delta \mu \Delta \tau.
\]

• This was implemented on a cluster of 5 machines, each with a 4 core processor;
• Run on 2 grids: one with 6,500 points, another with 160,000 points;
• Posterior distribution was computed by the collect bolt every 50,000 observations.
Computing a posterior distribution sequentially: data throughput
Computing a posterior distribution sequentially: likelihood throughput

![Graph showing the relationship between the number of logpost bolts and log likelihood throughput. The graph includes lines for 'ack, small grid', 'nack, small grid', and 'nack, large grid'.]
More complicated example: the ensemble Kalman filter

- A Monte Carlo version of the Kalman filter:

 \[y_t = Hx_t + \epsilon_t, \quad \epsilon_t \sim N(0, R); \]
 \[x_t = Kx_{t-1} + \eta_t, \quad \eta_t \sim N(0, Q). \]

- Basic operation is to maintain an ensemble \(X = (x_1, \ldots, x_M) \) of values that approximate \(p(x_t \mid y_1, \ldots, y_t) \);

- Ensemble is updated on observation of \(y_{t+1} \) by reweighting and recomputing ensemble mean and covariance.

- Is applicable to more general non-linear state space models;

- ... also as an approximation to non-Gaussian models;
Ensemble Kalman filter topology

Data spout

Central

Worker

Worker

Worker

y(1), y(2), ...
y(t+1), overall ensemble mean and covariance
updated ensemble predictions, partials means and covariances

Output predictions and estimates
Applying to the linear model case: compared to KF
Applying to the linear model case: throughput

dim(y_t) = 15, dim(x_t) = 200.
Applying to the linear model case: throughput

\[\text{dim}(y_t) = 25, \text{dim}(x_t) = 500. \]
Some discussion

- Storm has several nice properties:
 - Not too difficult to program;
 - Easily scales (Storm handles all of the management of parallelization);
 - Fault tolerant;
 - Starting to be linked to things like R.

- Of course its performance depends a lot on the cluster that you use;

- The second example is quite a common topology for sequential inference methods:
 - Kalman filter and its extensions;
 - Particle filters?

- Principal practical difficulties:
 - Most sequential learning algorithms require synchronisation between data arrival and computation;
 - Most require that bolts will store a state.
References

References

References

