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Counting Processes

7.1 INTRODUCTION

In this chapter and in Chapter 8 we will study the reliability of a repairable system
as a function of time. We are interested in finding system reliability measures like
the availability of the system, the mean number of failures during a specified time
interval, the mean time to the first system failure, and the mean time between system
failures. For this purpose, we study the system by using stochastic processes. A
stochastic process {X(1),t € ©} is a collection of random variables. The set © is
called the index set of the process. For each index t in ®, X (t) is a random variable.
The index r is often interpreted as time, and X (¢) is called the stare of the process
at time . When the index set ® is countable, we say that the process is a discrete-
time stochastic process. When © is a continuum, we say that it is a continuous-time
stochastic process. In this chapter and in Chapter 8 we only look at continuous-time
stochastic processes. The presentation of the various processes in this book is very
brief and limited, as we have focused on results that can be applied in practice instead
of mathematical rigor. The reader should therefore consult a textbook on stochastic
processes for more details. An excellent introduction to stochastic processes may be
found in, for example, Ross (1996) and Cocozza-Thivent (1997).

In this chapter we consider a repairable system that is put into operation at time
t = 0. When the system fails, it will be repaired to a functioning state. The repair time
1s assumed to be negligible. When the second failure occurs, the system will again
be repaired, and so on. We thus get a sequence of failure times. We will primarily
be interested in the random variable N (), the number of failures in the time interval
(0, t]. This particular stochastic process {N(z),t = 0} is called a counting process.
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Fig. 7.1 Relation between the number of events N(¢), the interoccurrence times (7;), and
the calendar times (S; ).

In Chapter 8 we study the various states of a repairable system. A multicomponent,
repairable system will have a number of possible states, depending on how many of
its components are in operation. The state of the system at time 7 is denoted X (¢),
and we are interested in finding the probability that the system is in a specific state at
time 7. We also find the steady-state probabilities, or the average proportion of time
the system is in the various states. The presentation will be limited to a special class
of stochastic processes {X (1), ¢ = 0} having the Markov property. Such a stochastic
process is called a Markov process and is characterized by its lack of memory. If a
Markov process is in state j at time ¢, we will get no more knowledge about its future
states by knowing the history of the process up to time z.

7.1.1 Counting Processes

Consider a repairable system that is put into operation at time = 0. The first failure
(event) of the system will occur at time S,. When the system has failed, it will be
replaced or restored to a functioning state. The repair time is assumed to be so short
that it may be neglected. The second failure will occur at time S; and so on. We
thus get a sequence of failure times Sy, 52, .... Let 7; be the time between failure
i — 1 and failure { fori = 1, 2, ..., where Sp is taken to be 0. 7; will be called
the interoccurrence time i fori = 1,2, .... T; may also be called the time between
failures, and the interarrival time. In general, counting processes are used to model
sequences of events. In this book, most of the events considered are failures, but the
results presented will apply for more general events.

Throughout this chapter ¢ denotes a specified point of time, irrespective whether ¢
is calendar time (a realization of §;) or local time (a realization of an interoccurrence
time 7;. We hope that this convention will not confuse the reader. The time concepts
are illustrated in Fig. 7.1.

The sequence of interoccurrence times, 71, 77, . .. will generally not be indepen-
dent and identically distributed—unless the system is replaced upon failure or restored
to an “as good as new” condition, and the environmental and operational conditions
remain constant throughout the whole period.
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A precise definition of a counting process is given below (from Ross 1996, p. 59).

Definition 7.1 A stochastic process {N(r), t > 0} is said to be a counting process if
N (1) satisfies:

I. N(z) = 0.
2. N(1) is integer valued.
3. If s <t,then N(s) < N(¢).

4. Fors < t,[N(t) — N(s)] represents the number of failures that have occurred
in the interval (s, t]. O

A counting process {N(¢), t > 0} may alternatively be represented by the sequence

of failure (calendar) times Sy, Sz, ..., or by the sequence of interoccurrence times
Ty, Tz, . ... The three representations contain the same information about the counting
process.

Example 7.1

The following failure times (calendar time in days) are presented by Ascher and
Feingold (1984, p. 79). The data set is recorded from time t = 0 until 7 failures
have been recorded during a total time of 410 (days). The data come from a single
system, and the repair times are assumed to be negligible. This means that the system
is assumed to be functioning again almost immediately after a failure is encountered.

Number of failures Calendar time Interoccurrence time

N(t) SJ,' Tj
0 0 0
I 7% 177
2 242 65
3 293 al
4 336 43
5 368 32
6 395 27
7 410 15

The data are illustrated in Fig. 7.2. The interoccurrence times are seen to become
shorter with time. The system seems to be deteriorating, and failures tend to become
more frequent. A system with this property is called a sad system by Ascher and
Feingold (1984), for obvious reasons. A system with the opposite property, where
failures become less frequent with operating time, is called a happy system.

The number of failures N(r) may also be illustrated as a function of (calendar)
time ¢ as illustrated in Fig. 7.3, Note that N(r) by definition is constant between
failures and jumps (a height of | unit) at the failure times §; fori = 1,2,.... Itis
thus sufficient to plot the jumping points (S;, N(S;)) fori = 1,2,.... The plot is
called an N (¢) plot, or a Nelson-Aalen plot (see Section 7.4.3).



234 COUNTING PROCESSES

177 65 51 43 32 27 15
1 e N SN LW NE LW W R
I ) ) ) Ca) ) A Ll
0 177 242 293 336 368 395410 Time

Fig. 7.2 The data set in Example 7.1.
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Fig. 7.3 Number of failures N(¢) as a function of time for the data in Example 7.1.

Note that N () as a function of ¢ will tend to be convex when the system is sad.
In the same way, N (¢) will tend to be concave when the system is happy.! If N(z)
is (approximately) linear, the system is steady, that is, the interoccurrence times will
have the same expected length. In Fig. 7.3 N(z) is clearly seen to be convex. Thus
the system is sad. a

Example 7.2 Compressor Failure Data
Failure time data for a specific compressor at a Norwegian process plant have been
collected as part of a student thesis at the Norwegian University of Science and
Technology. All compressor failures in the time period from 1968 until 1989 have
been recorded. In this period a total of 321 failures occurred, 90 of which were critical
failures and 231 were noncritical. In this context, a critical failure is defined to be a
failure causing compressor downtime. Noncritical failures may be corrected without
having to close down the compressor. The majority of the noncritical failures were
instrument failures and failures of the seal oil system and the lubrication oil system.
As above, let N(¢) denote the number of compressor failures in the time interval
(0, t]. From a production regularity point of view, the critical failures are the most
important, since these failures are causing process shutdown. The operating times (in
days) at which the 90 critical failures occurred are listed in Table 7.1. Here the time ¢
denotes the operating time, which means that the downtimes caused by compressor

INotice that we are using the terms convex and concave in a rather inaccurate way here. What we mean
is that the observed points (r;, N(#;)} fori = 1, 2, ... approximately follow a convex/concave curve.
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Table 7.1 Failure Times (Operating Days) in Chronological Order.

1.0 4.0 4.5 92.0 252.0 277.0
271.5 284.5 374.0 440.0 4440 475.0
536.0 568.0 744.0 884.0 904.0 1017.5

1288.0 1337.0 1338.0 1351.0 1393.0 1412.0
1413.0 1414.0 1546.0 1546.5 1575.0 1576.0
1666.0 1752.0 1884.0 1884.2 1884.4 1884.6
1884.8 1887.0 1894.0 1907.0 1939.0 1998.0
2178.0 2179.0 2188.5 2195.5 2826.0 2847.0
2914.0 3156.0 3156.5 3159.0 3211.0 3268.0
3276.0 3277.0 3321.0 3566.5 3573.0 3594.0
3640.0 3663.0 3740.0 3806.0 3806.5 3809.0
3886.0 3886.5 3892.0 3962.0 4004.0 4187.0
4191.0 4719.0 4843.0 4942.0 4946.0 5084.0
5084.5 5355.0 5503.0 5545.0 5545.2 5545.5
5671.0 5939.0 6077.0 6206.0 6206.5 6305.0
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Fig. 7.4 Number of critical compressor failures N(¢) as a function of time (days), (totaling
90 failures).

failures and process shutdowns are not included. An N (z) plot with respect to the 90
critical failures is presented in Fig. 7.4. In this case the N(z) plot is slightly concave,
which indicates a happy system. The time between critical failures hence seems to
increase with the time in operation. Also note that several fatlures have occurred
within short intervals. This indicates that the failures may be dependent, or that the
maintenance crew has not been able to correct the failures properly at the first attempt.
O

An analysis of life data from a repairable system should always be started by estab-
lishing an N (r) plot. If N(t) as a function of the time ¢ is nonlinear, methods based
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on the assumption of independent and identically distributed times between failures
are obviously not appropriate. It is, however, not certain that such methods are appro-
priate even if the N (7) plot is very close to a straight line. The interoccurrence times
may be strongly correlated. Methods to check whether the interoccurrence times
are correlated or not are discussed, for example, by Ascher and Feingold (1984) and
Bendell and Walls (1985). The N(r) plot is further discussed in Section 7.4.

7.1.2 Some Basic Concepts

A number of concepts associated with counting processes are defined in the following.
Throughout this section we assume that the events that are counted are failures. In
some of the applications later in this chapter we also study other types of events,
like repairs. Some of the concepts must be reformulated to be meaningful in these
applications. We hope that this will not confuse the reader.

o Independent increments. A counting process {N(t),t > 0} is said to have
independent increments if for 0 < #) < - < f, k = 2,3,... [N(f)) —
NO)LIN@m) — N@D), ..., IN{) — N(tx—1)] are all independent random
variables. In that case the number of failures in an interval is not influenced
by the number of failures in any strictly earlier interval (i.e., with no overlap).
This means that even if the system has experienced an unusual high number
of failures in a certain time interval, this will not influence the distribution of
future failures.

e Stationary increments. A counting process is said to have stationary increments
if for any two disjoint time points# > s > 0 and any constant ¢ > 0, the random
variables [N (1) — N(s)] and [N (r +¢) — N (s + ¢)] are identically distributed.
This means that the distribution of the number of failures in a time interval
depends only on the length of the interval and not on the interval’s distance
from the origin.

e Stationary process. A counting process is said to be stationary (or homoge-
neous) if it has stationary increments.

o Nonstationary process. A counting process is said to be nonstationary (or non-
homogeneous) if it is neither stationary nor eventually becomes stationary.

® Regular process. A counting process is said to be regular (or orderly) if
Pr(N(t + At) = N(@) = 2) = o(Ar) (7.1)

when At is small, and o(At) denotes a function of At with the property that
lima;—»0 0(Af)/ At = 0. In practice this means that the system will not expe-
rience two or more failures simultaneously.

e Rate of the process. The rate of the counting process at time ¢ is defined as:

d
w(t) = W'(r) = EE(N(I)) (7.2)
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where W(r) = E(N(1)) denotes the mean number of failures (events) in the
interval (0, 7]. Thus
E(N(t+ A1) — N(1))

wi) = W) = &leO = (7.3)

and when At is small,

E(N@ + At) — N(t))
At
Mean no. of failures in (¢, 1 + At]

At

w(t)

Thus a natural estimator of w(t) is

R Number of failures in (.t + At

for some suitable Ar. It follows that the rate w(¢) of the counting process may
be regarded as the mean number of failures (events) per time unit at time ¢.

When we are dealing with a regular process, the probability of two or more
failures in (r,t + At] is negligible when At is small. Thus for small At we
may assume that

N(t+ At) = N(t) =0or 1

Thus the mean number of failures in (¢, t + At] is approximately equal to the
probability of failure in (¢, ¢ + At], and

Probability of failure in (¢, t + At]

e
% (7.5)

w(t) ~

Hence w(t) At can be interpreted as the probability of failure in the time interval
(z,1 + At).

Some authors use (7.5) written as

Pr(N(t + At) = N(@) = 1)
At

w(t) = lim
Ar—0
as definition of the rate of the process. Observe also that

E(N(t0)) = W (to) = fo w(t) dt (7.6)

ROCOF. When the events of a counting process are failures, the rate w(t) of the
process is often called the rate of occurrence of failures (ROCOF).

Time between failures. We have denoted the time 7; between failure / — 1 and
failure i, for i = |, 2, ..., the interoccurrence times. For a general counting
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Fig. 7.5 The forward recurrence time Y (7).

process the interoccurrence times will neither be identically distributed nor
independent. Hence the mean time between failures, MTBF; = E(T;), will in
general be a function of i and Ty, T3, ..., Ti .

e Forward recurrence time. The forward recurrence time Y (¢) is the time to the
next failure measured from an arbitrary pointof time . Thus Y (1) = Sny+1—1.
The forward recurrence time is also called the residual lifetime, the remaining
lifetime or the excess life. The forward recurrence time is illustrated in Fig. 7.5.

Many of the results in this chapter are only valid for nonlattice distributions. The
definition of a lattice distribution follows.

Definition 7.2 A nonnegative random variable is said to have a lattice (or periodic)
distribution if there exists a number d > 0 such that

o0
EPr(X =nd) = 1

n=0

In words, X has a lattice distribution if X can only take on values that are integral
multiples of some nonnegative number d. O

7.1.3 Martingale Theory

Martingale theory can be applied to counting processes to make a record of the history
of the process. Let #; denote the history of the process up to, but not including, time
t. Usually we think of #; as {N(s),0 < s < t} which keeps records of all failures
before time ¢. It could, however, contain more specific information about each failure.
We may define a conditional rate of failures as
. Pr(NG+At)—N(@)=1]|H
wel(t | #) = lim (V¢ J= My ) 1HG) (7.7)
At—00 At

Thus, we(tz | #;) - At is approximately the probability of failure in the interval
[z, t + At) conditional on the failure history up to, but not including time ¢. Note that
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the rate of the process (ROCOF) defined in (7.2) is the corresponding unconditional
rate of failures.

Usually the process depends on the history through random variables and w¢ (¢ |
;) will consequently be stochastic. It should, however, be noted that we(r | #;)
is stochastic only through the history: for a fixed history (i.e., for a given state just
before time t), we(r | #;) is not stochastic. To simplify the notation, we will in
the following omit the explicit reference to the history Jf; and let w¢ (1) denote the
conditional ROCOF.

The martingale approach for modeling counting processes requires rather sophis-
ticated mathematics. We will therefore avoid using this approach during the main
part of the chapter but will touch upon martingales on page 254 and in Section 7.5
where we discuss imperfect repair models.

A brief, but clear, introduction to martingales used in counting processes is given
by Hokstad (1997). A more thorough description is given by Andersen et al. (1993).

7.1.4 Four Types of Counting Processes
In this chapter four types of counting processes are discussed:
1. Homogeneous Poisson processes (HPP)
2. Renewal processes
3. Nonhomogeneous Poisson processes (NHPP)
4. Imperfect repair processes

The Poisson process got its name after the French mathematician Siméon Denis
Poisson (1781-1840).

The HPP was introduced in Section 2.10. In the HPP model all the interoccurrence
times are independent and exponentially distributed with the same parameter (failure
rate) A.

The renewal process as well as the NHPP are generalizations of the HPP, both
having the HPP as a special case. A renewal process is a counting process where the
interoccurrence times are independent and identically distributed with an arbitrary
life distribution. Upon failure the component is thus replaced or restored to an “as
good as new” condition. This is often called a perfect repair. Statistical analysis
of observed interoccurrence times from a renewal process is discussed in detail in
Chapter 11.

The NHPP differs from the HPP in that the rate of occurrences of failures varies
with time rather than being a constant. This implies that for an NHPP model the
interoccurrence times are neither independent nor identically distributed. The NHPP
is often used to model repairable systems that are subject to a minimal repair strategy,
with negligible repair times. Minimal repair means that a failed system is restored
just back to functioning state. After a minimal repair the system continues as if
nothing had happened. The likelihood of system failure is the same immediately
before and after a failure. A minimal repair thus restores the system to an “as bad as
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Type of repair

Perfect repair or Imperfect repair Minimal repair
replacement (normal repair) "as bad as old"
"as good as new" P
Renewal Imperfect
HPF process repair models NHPP

Fig. 7.6 Types of repair and stochastic point processes covered in this book.

old” condition. The minimal repair strategy is discussed, for example, by Ascher and
Feingold (1984) and Akersten (1991) who gives a detailed list of relevant references
on this subject.

The renewal process and the NHPP represent two extreme types of repair: replace-
ment to an “as good as new” condition and replacement to “as bad as old” (minimal
repair), respectively. Most repair actions are, however, somewhere between these ex-
tremes and are often called imperfect repair or normal repair. A number of different
models have been proposed for imperfect repair. A survey of some of these models
1s given in Section 7.5.

The various types of repair and the models covered in this book are illustrated in
Fig. 7.6.

7.2 HOMOGENEOUS POISSON PROCESSES

The homogeneous Poisson process was introduced in Section 2.10. The HPP may
be defined in a number of different ways. Three alternative definitions of the HPP
are presented in the following to illustrate different features of the HPP. The first two
definitions are from Ross (1996, pp. 59-60).

Definition 7.3 The counting process {N(z), t > 0} is said to be an HPP having rate
A, for A > 0, if

1. NO) =0.
2. The process has independent increments.

3. The number of events in any interval of length ¢ is Poisson distributed with
mean Af. Thatis, forall s, > 0,

(A"

Pr(N( +s)— N(s) =n) = = T for n=0;1,2,.,; (7.8)

O
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Note that it follows from property 3 that an HPP has stationary increments and also
that E(N(t)) = At, which explains why A is called the rate of the process.

Definition 7.4 The counting process {N(¢), ¢ > 0} is said to be an HPP having rate
A, for A > 0, if

l. N(O) =0.
2. The process has stationary and independent increments.
3. Pr(N(At) = 1) = LAt + o(At).
4. Pr(N(At) = 2) = o(At).
O

These two alternative definitions of the HPP are presented to clarify the analogy to
the definition of the NHPP which is presented in Section 7.4.

A third definition of the HPP is given, for example, by Cocozza-Thivent (1997,
p. 24):

Definition 7.5 The counting process {N(t), ¢ = 0} is said to be an HPP having rate
A, for A > 0, if N(O) = 0, and the interoccurrence times 71, T3, ... are independent
and exponentially distributed with parameter A. 0

7.2.1 Main Features of the HPP

The main features of the HPP can be easily deduced from the three alternative defi-
nitions:

1. The HPP is aregular (orderly) counting process with independent and stationary
increments.

2. The ROCOFof the HPP is constant and independent of time,

w(t) =A forallt >0 (7.9)

3. The number of failures in the interval (¢, t +v] is Poisson distributed with mean

AV,
(;\'U)n —Av
Pr(N(t +v) — N() =n) = e
n!
forallt =0, v=>20 (7.10)

4. The mean number of failures in the time interval (¢, ¢t + v] 1s
Wi+v)—W(i)=EWN(E+v)— N@) =2 (7.11)

Especially note that E(N(t)) = At, and var(N(t)) = At.
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5. Theinteroccurrence times T, 77, . . . are independent and identically distributed
exponential random variables having mean 1/A.

6. The time of the nth failure S, = Y ;_, 7; has a gamma distribution with
parameters (n, A). Its probability density function is
A
1) = Ayt fory>0 742
S5, () (n_l)!( ) e ort = (7.12)

Further features of the HPP are presented and discussed, for example, by Ross (1996),
Thompson (1988), and Ascher and Feingold (1984).

Remark: Consider a counting process {N(t),t = 0} where the interoccurrence
times Ty, 73, ... are independent and exponentially distributed with parameter A (i.e.,
Definition 7.5). The arrival time S, has, according to (7.12), a gamma distribution
with parameters (n, A).

Since N(t) = nif and only if §, < ¢t < §,4+1, and the interoccurrence time
Tot+1 = Sp+1 — Sn, we can use the law of total probability to write

Pr(N(t) =n) = Pr(S, <t < §p41)

!
= f Pr(Tps1 >t —5s1|S, =5) fs,(s)ds
0

t
A
—A(1—5) n—1 ,—Ais
= j{;:; ———(ﬂ-l)? (hs)” *E s

= QO w (7.13)

n!

We have thus shown that N (7) has a Poisson distribution with mean At, in accordance
with Definition 7.3. O

7.2.2 Asymptotic Properties

The following asymptotic results apply:

N(t
—~r(—) — A with probability 1, when ¢t — o0

and
N@)— At r
—l 5 NGO 1
T G
such that
N(t) - At )
Pr{ ——— <t ]| = ®(t) when t - o0 7.14
( Vil (1) (7.14)

where ®(r) denotes the distribution function of the standard normal (Gaussian) dis-
tribution A (0, 1).
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7.2.3 Estimate and Confidence Interval

An obvious estimator for A is

A= @ (7.15)

The estimator is unbiased, E(A) = A, with variance, var(1) = Alt.
A 1 — & confidence interval for A, when N (¢) = n events (failures) are observed
during a time interval of length ¢, is given by (e.g., see Cocozza-Thivent 1997, p. 63)

1 1
(5 Z1-e/2,2n0 5 Ze/2, 2{n+1)) (7.16)

where z. ,, denotes the upper 100e% percentile of the chi-square ( x?) distribution
with v degrees of freedom. A table of z,,, for some values of £ and v is given in
Appendix F.

In some situations it is of interest to give an upper (1 — ¢) confidence limit for 2.
Such a limit is obtained through the one-sided confidence interval given by

1
(0| 5; 35,2(n+1)) (7.17)

Note that this interval is applicable even if no failures (N (z) = 0) are observed during
the interval (0, #).

7.2.4 Sum and Decomposition of HPPs

Let {N(¢),r = 0} and {N2(r),t = 0} be two independent HPPs with rates A; and
A3, respectively. Further, let N(¢z) = N;(¢) + Na(¢). It is then easy to verify that
{N(r),t = 0} is an HPP with rate A = A + A,.

Suppose that in an HPP {N(t),t > 0} we can classify each event as type 1 and
type 2 that are occurring with probability p and (1 — p), respectively. This is, for ex-
ample, the case when we have a sequence of failures with two different failure modes
(1 and 2), and p equals the relative number of failure mode 1. Then the number of
events, N|(r) of type 1, and N(t) of type 2, in the interval (0, ¢] also give rise to
HPPs, {N|(t),t = 0} and {N,(r),t = 0} with rates pA and (1 — p)A, respectively.
Furthermore, the two processes are independent. For a formal proof, see, for exam-
ple, Ross (1996, p. 69). These results can be easily generalized to more than two cases.

Example 7.3

Consider an HPP {N (1), t = 0} with rate .. Some failures develop into a consequence
C, others do not. The failures developing into a consequence C are denoted a C-
failure. The consequence C may, for example, be a specific failure mode. The
probability that a failure develops into consequence C is denoted p and is constant
for each failure. The failure consequences are further assumed to be independent of
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each other. Let N¢(z) denote the number of C-failures in the time interval (0, 7].
When N (1) is equal to n, N¢(t) will have a binomial distribution:

Pr(Nc(t) =y | N(t) =n) = (;)p"(l —p)"™ fory=0,1,2,...

The marginal distribution of N¢(z) is

Pr(Ne() =y) =

>, (H)P)’(l —p)Y Ll P
— ¥ n!

ple ™ = [M(1 = py]*?
At)Y
y! W n;, (n—y)!

(prt)ye i [(At(1 = p))¥

y! = x!

(prt)Ye AM(1=p)
y!
(P;\'t)y e—plt
y!

(7.18)

Thus {N¢(2),t > 0} is an HPP with rate pA, and the mean number of C-failures in

the time interval (0, ¢] is

E(Nc(1)) = pit

7.2.5 Conditional Distribution of Failure Time

Suppose that exactly one failure of an HPP with rate A is known to have occurred
some time in the interval (0, 7o]. We want to determine the distribution of the time T)

at which the failure occurred:

Pr(lh =t | N(n)=1)

Pr(T) <tNN(p)=1)
Pr(N(n) =1)

Pr(1 failure in (0, £] N O failures in (¢, #])

Pr(N(1) =1)

Pr(N(t) =1) - Pr(N(tp) — N(t) = 0)

Pr(N(w) = 1)
Me_’“ e—-l(!(}—f)

Atge Ao

t
— for0<t <y
Io

(7.19)
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When we know that exactly one failure (event) takes place in the time interval (0, 1],
the time at which the failure occurs is uniformly distributed over (0, 79). Thus each
interval of equal length in (0, #p] has the same probability of containing the failure.
The expected time at which the failure occurs is

E(T) | N(t) = 1) = %" (7.20)

7.2.6 Compound HPPs

Consider an HPP {N(¢),t > 0} with rate A. A random variable V; is associated to
failure eventi, fori = 1, 2, .. .. The variable V; may, for example, be the consequence
(economic loss) associated to failure i. The variables Vi, Va, ... are assumed to be
independent with common distribution function

Fy(v) =Pr(V <v)

The variables V), Va, . .. are further assumed to be independent of N (z). The cumu-
lative consequence at time ¢ is

N(r)
zm:Zv; fort >0 (7.21)

i=l

The process {Z (1), t > 0} is called a compound Poisson process. Compound Poisson
processes are discussed, for example, by Ross (1996, p. 82) and Taylor and Karlin
(1984, p. 200). The same model is called a cumulative damage model by Barlow and
Proschan (1975, p. 91). To determine the mean value of Z(z), we need the following
important theorem:

Theorem 7.1 (Wald’s Equation) Let X |, X», X3, ... be independent and identically
distributed random variables with finite mean p. Further let N be a stochastic integer
variable so that the event (N = n) is independent of X, 11, Xp42,... forall n =
Y. 2.:. Then

N
E (Z x‘-) — E(N)- i (7.22)
i=l]

O
A proof of Wald’s equation may be found, for example, in Ross (1996, p. 105). The

variance of "I X, is (see Ross 1996, pp. 22-23):
N
o (Z Xf) = E(N) - var(X;) +[E(X)} - var(N) (7.23)
i=l1

Let £(V;) = v and var(V;) = 12. From (7.22) and (7.23) we get
E(Z(t)) = vAit and var(Z(1)) = A(v? + 12)1
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Assume now that the consequences V; are all positive, that is, Pr(V; > 0) = 1 for
all i, and that a total system failure occurs as soon as Z(¢) > c for some specified
critical value c. Let T, denote the time to system failure. Note that 7. > ¢ if and only
if Z(¢) <c.

Let Vo = 0, then
N(r)
Pr(T. >1t) = Pr(Z(t) <c)=Pr Z Vi<c
i=0
(o o] n
%
= ZPr(ZVs EC|N(I)=n) A" e
n!
n=0 i=0
o0
= Y ()::') =&t plaeey (7.24)

n=0

where F, é,”)(v) denotes the distribution function of ZLO V;i, and the last equality is
due to the fact that N(¢) is independent of Vy, V2, .. ..
The mean time to total system failure is thus

E(T,) = f Pr(T, > t)dt
0

o oc n
=Y ( [0 (—)E%e_’u d:) FP ()
n=0 )

= = Z F(c) (7.25)

Example 7.4
Consider a sequence of failure events that can be described as an HPP {N(¢),t > ¢}
with rate A. Failure i has consequence V;, where Vi, Vs, ... are independent and

exponentially distributed with parameter p. The sum ) "_, V; therefore has a gamma
distribution with parameters (n, p) [see Section 2.11 (2.45)]:

n—1

i (pv)k _ — (pv)* _,,
Ff,}(v) = I—Z k!)e"”:Zpk! e P
k=n

k=0

Total system failure occurs as soon as Z(t) = E:V:(;) Vi > c. The mean time to total
system failure is given by (7.25) where

ZF(")(") _ ZZ pC) Ez(pc-)

n=0k=n k=0 n=0
(p )"

PC =14 pc

k=0
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Hence when the consequences Vi, Vs, ... are exponentially distributed with param-
eter p, the mean time to total system failure is

14 pc

= (7.26)

E(T;) =

O

The distribution of the time 7, to total system failure is by Barlow and Proschan
(1975, p. 94) shown to be an increasing failure rate average (IFRA) distribution for
any distribution Fy (v). (IFRA distributions are discussed in Section 2.19).

7.3 RENEWAL PROCESSES

Renewal theory had its origin in the study of strategies for replacement of technical
components, but later it was developed as a general theory within stochastic processes.
As the name of the process indicates, it is used to model renewals, or replacement of
equipment. This section gives a summary of some main aspects of renewal theory
which are of particular interest in reliability analysis. This includes formulas for
calculation of exact availability and mean number of failures within a given time
interval. The latter can, for example, be used to determine optimal allocation of spare
parts.

Example 7.5

A component is put into operation and is functioning at ttime ¢ = 0. When the
component fails at time 77, it is replaced by a new component of the same type, or
restored to an “as good as new” condition. When this component fails at time 77 + T3,
it is again replaced, and so on. The replacement time is assumed to be negligible.
The life lengths T}, 73, . . . are assumed to be independent and identically distributed.
The number of failures, and renewals, in a time interval (0, t]is denoted N(¢). O

7.3.1 Basic Concepts

A renewal process is a counting process {N(z),t > 0} with interoccurrence times
T), Tz, . .. that are independent and identically distributed with distribution function

Frit) =Pr(li<t) fort=20,i=1,2,...

The events that are observed (mainly failures) are called renewals, and Fr (1) is called
the underlying distribution of the renewal process. We will assume that E(7;) = u
andvar(T;) = 0% < oofori = 1, 2, 3, .... Note that the HPP discussed in Section 7.2
is a renewal process where the underlying distribution is exponential with parameter
A. A renewal process may thus be considered as a generalization of the HPP.

The concepts that were introduced for a general counting process in Section 7.1.2
are also relevant for a renewal process. The theory of renewal processes has, however,
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been developed as a specific theory, and many of the concepts have therefore been
given specific names. We will therefore list the main concepts of renewal processes
and introduce the necessary terminology.

1. The time until the nth renewal (the nth arrival time), S,;:

n
Si=Ti+Dh++T=) T (7.27)
i=l

2. The number of renewals in the time interval (0, ¢]:

N(t) =max{n: S, <1) (7.28)

3. The renewal function:
W) = E(N(t)) (7.29)
Thus W (z) is the mean number of renewals in the time interval (0, 7].

4. The renewal density:

w(t) = ;—r W(t) (7.30)

Note that the renewal density coincides with the rate of the process defined in
(7.2), which is called the rate of occurrence of failures when the renewals are
failures. The mean number of renewals in the time interval (1, 72] is

2

Wi(r) — W) =f w(t) dt (7.31)

I

The relation between the renewal periods 7; and the number of renewals N (¢), the
renewal process is illustrated in Fig. 7.1. The properties of renewal processes are
discussed in detail by Cox (1962), Ross (1996), and Cocozza-Thivent (1997).

7.3.2 The Distribution of S,

To find the exact distribution of the time to the nth renewal S,, is often very com-
plicated. We will outline an approach that may be used, at least in some cases. Let
F")(¢) denote the distribution function of S, = Y7 7.

Since §, may be written as S, = S,—1 4+ T,, and S,—; and T, are independent,
the distribution function of S, is the convolution of the distribution functions of S, _
and 7, respectively,

I
F®™ (1) =[ F=D — x)dFr(x) (7.32)
0
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The convolution of two (life) distributions F and G is often denoted F * G, meaning
that FxG(1) = f(; G (1 —x) d F(x). Equation (7.32) can therefore be written F =
Frx Fin=D),

When Fr(t) is absolutely continuous with probability density function f7(), the
probability density function f(¢) of S, may be found from

!
e = fo FO=D( — %) fr(x) dx (1.33)

By successive integration of (7.32) forn = 2, 3, 4, .. ., the probability distribution of
S, for a specified value of n can, in principle, be found.

It may also sometimes be relevant to use Laplace transforms to find the distribution
of §,. The Laplace transform of Equation (7.33) is (see Appendix B)

™ (s) = (fr )" (7.34)

The probability density function of S, can now, at least in principle, be determined
from the inverse Laplace transform of (7.34).

In practice it is often very time-consuming and complicated to find the exact
distribution of S, from formulas (7.32) and (7.34). Often an approximation to the
distribution of S, is sufficient.

From the strong law of large numbers, that is, with probability 1,

Sn
— — M as n— o0 (7.35)

According to the central limit theorem, S,, = )", 7; is asymptotically normally

distributed:

Sp —nup L
—_—

'(r_,/_r;_ N, 1)

and

I —nu
FP@)=Pr(S, <)~ ® ) 7.36
() (Sn =) ( iR (7.36)
where ®(-) denotes the distribution function of the standard normal distribution
N0, 1).

Example 7.6 IFR Interoccurrence Times

Consider a renewal process where the interoccurrence times have an increasing failure
rate (IFR) distribution F7 (1) (see Section 2.19) with mean time to failure p. In this
case, Barlow and Proschan (1965, p. 27) have shown that the survivor function,
Ry(1) =1 — Fr(t), satisfies

Rr(t) > e " when t < p (7.37)
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The right-hand side of (7.37) is the survivor function of a random variable U; with
exponential distribution with failure rate 1/u. Let us assume that we have n indepen-
dent random variable U,, U,, ..., U, with the same distribution. The distribution of

?:1 U has then a gamma distribution with parameters (n, 1/u) (see Section 2.11),
and we therefore get

1—F®@¢) = Pr(S,>)=Pr(T1+ T +---+T,>1)
n—1 :
1 J
> Pr(lUi+Us+:---+Up>1t)= E -—-—-( /#) et/
; J!
j=0
Hence
e/
Fry<1-) BT et for t < (7.38)
=0 J
J=

For a renewal (failure) process where the interoccurrence times have an IFR distribu-
tion with mean u, equation (7.38) provides a conservative bound for the probability
that the nth failure will occur before time ¢, when ¢t < u. O

7.3.3 The Distribution of N (¢)

From the strong law of large numbers, that is, with probability 1,

N(t) 1
— > — ast—> (7.39)

t M
When ¢ is large, N (#) ~ ¢t /. This means that N (¢) is approximately a linear function
of t when ¢ is large. In Fig. 7.7 the number of renewals N (¢) is plotted as a function
of t for a simulated renewal process where the underlying distribution is Weibull with

parameters A = 1 and @ = 3.
From the definition of N(¢) and S,,, it follows that

Pr(N(t) > n) =Pr(S, <t) = F™M() (7.40)
and
Pr(N(t)=n) = Pr(N(t)=n)—-Pr(N@)=n+1)
F{n}(t) - F(n+1](r) (7.41)

For large values of n we can apply (7.36) and obtain
D —1
PrN () <m)~ (%) (1.42)

and

e t—np\ t—(n+ Du
Pr(N(t) = n) <l>( aﬁ) d)(—am ) (7.43)



RENEWAL PROCESSES 251

20 - L
— L]
= .t
Z A
: 15 ot
=] -
s 10 4 .
:: -
= B
[44]
o 5 .
; -
»

2 0 s T T | T T 1

0 5 10 15 20 25 30

Calendar time t

Fig. 7.7 Number of renewals N (r) as a function of 7 for a simulated renewal process where
the underlying distribution is Weibull with parameters A = 1 and o = 3.

Takécs (1956) derived the following alternative approximation formula which is valid
when ¢ is large:

(7.44)

Pr(N(1) < n) ~ & (w)

oyt/u?

A proof of (7.44) is provided in Ross (1996, p. 109).

7.3.4 The Renewal Function

Since N(t) = n if and only if S, < ¢, we get that (see Problem 7.4)

W) = E(N@)) = ZPr(N(:) >p) = ZPr(Sn <t)= Z F™@) (7.45)

n=1 n=] n=1

An integral equation for W (7) may be obtained by combining (7.45) and (7.32):

W) = Fr+) FO@W=Fr@t)y+ ) Frthq)
r=1

r=3

o0 !
= Fr(r)+2f0 FO(t — x)dFy(x)
r=1

; ©
= F;r(t)+f ZF‘”(:—x)dFT(x)
0 r=1

t
= FT(I)+] Wi —x)dFr(x) (7.46)
0
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This equation is known as the fundamental renewal equation and can sometimes be
solved for W(t).

Equation (7.46) can also be derived by a more direct argument. By conditioning
on the time 7 of the first renewal, we obtain

W) = EN@)=EENQD]|T))

= fo E(N() | Ty = x)dFr, (x) (7.47)

where

0 when  <x

1+ W@ —=x) when t>x Cigs

EINOITi=x)= {

If the first renewal occurs at time x for x < r, the process starts over again from this
point in time. The mean number of renewals in (0, ¢] is thus 1 plus the mean number
of renewals in (x, ], which1s W (¢ — x).

Combining equations (7.47) and (7.48) yields

t
W) = f(l-i—W(I—x))dFﬂx)
0

t
= Fr(t)+f W(t —x)dFr(x)
0

and thus an alternative derivation of (7.46) is provided.

The exact expression for the renewal function W (¢) is often difficult to determine
from (7.46). Approximation formulas and bounds may therefore be useful.

Since W(z) is the expected number of renewals in the interval (0, 7], the average
length w of each renewal is approximately 1/ W (r). We should therefore expect that
when 1 — 00, we get

lim Lidt), = L (7.49)

—=oc t yos

This result is known as the elementary renewal theorem and is valid for a general
renewal process. A proof may, for example, be found in Ross (1996, p. 107).

When the renewals are component failures, the mean number of failures in (0, 1]
is thus approximately

t t
E(Nt)=W@t)~ — = h is 1
(N(1)) (t) . = MTBF when ¢ is large

where 4 = MTBF denotes the mean time between failures.
From the elementary renewal theorem (7.49), the mean number of renewals in the
interval (0, 1] is

W) =~ when ¢ is large

t
I
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The mean number of renewals in the interval (¢, t + u] is

Wt +u)— W)~ u when ¢ is large, and u > 0 (7.50)
7

and the underlying distribution Fr(¢) is nonlattice. This result is known as Blackwell’s
theorem, and a proof may be found in Feller (1968, Chapter XI).

Blackwell’s theorem (7.50) has been generalized by Smith (1958), who showed
that when the underlying distribution Fr(¢) is nonlattice, then

! o
lim f Qt —x)dW(x) = if Q(u)du (7.51)
=00 Jo 1 Jo
where Q(t) 1s a nonnegative, nonincreasing function which is Riemann integrable
over (0, 00). This result is known as the key renewal theorem.

By introducing Q(t) = o~ ! for0 < ¢t < o and Q(t) = 0 otherwise, in (7.51), we
get Blackwell’s theorem (7.50).

Let

t
F.(1) = —l—f (1 — Fr(u))du (7.52)
K Jo

where F,(t) is a distribution function with a special interpretation that is further
discussed on page 267. By using Q(1) = | — Fo(t) in (7.51) we get

E(T2 3 g3 1 /o2
i (W SN B e o Lies s

if E( Tf) =02 + % < oo. We may thus use the following approximation when ¢ is
large

2
woy~ Lyl (""—2 - 1) (7.53)
o 2\u

Upper and lower bounds for the renewal function are supplied on page 262.

7.3.5 The Renewal Density
When F7(¢) has density fr(t), we may differentiate (7.45) and get

e L A S N g
wi)=—WO=—3 F'0=) fr® (7.54)

n=1 n=|

This formula can sometimes be used to find the renewal density w(t). Another
approach is to differentiate (7.46) with respect to ¢

I
w(t) = frit) + f w(t —x) fr(x)dx (7.55)
0
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Yet another approach is to use Laplace transforms. From Appendix B the Laplace
transform of (7.55) is

w*(s) = fr(s) + w*(s) - fr(s)
Hence

w*(s) = J7(s)

T 1= fis)

Remark: According to (7.5) the probability of a failure (renewal) in a short interval
(t, 1+ At] is approximately w(r)- Az. Since the probability that the first failure occurs
in (7, t + At] is approximately fr(¢)- Az, we can use (7.55) to conclude that a “later”
failure (i.e., not the first) will occur in (z,¢ + At] with probability approximately

equal to (f(; w(t —x)fr(x)dx) - At. a

(7.56)

The exact expression for the renewal density w(z) is often difficult to determine
from (7.54), (7.55), and (7.56). In the same way as for the renewal function, we
therefore have to suffice with approximation formulas and bounds.

From (7.49) we should expect that

lim w(t) = i (7.57)
t—0oo 7

Smith (1958) has shown that (7.57) is valid for a renewal process with underlying
probability density function fr(t) when there exists a p > 1 such that | fr(¢)|? is
Riemann integrable. The renewal density w(t) will therefore approach a constant
1/ when ¢ is large.

Consider a renewal process where the renewals are component failures. The in-
teroccurrence times 71, T», ... then denote the times to failure, and S;, 2, ... are
the times when the failures occur. Let z(t) denote the failure rate [force of mortality
(roM)] function of the time to the first failure 77. The conditional renewal density
(ROCOF) wc(?) in the interval (0, T7) must equal z(z) (see page 238). When the
first failure has occurred, the component will be renewed or replaced and started up
again with the same failure rate (FOM) as for the initial component. The conditional
renewal rate (ROCOF) may then be expressed as

we(t) =1z (l‘ — SN(,»_))

where t — Sy (:—) is the time since the last failure strictly before time 7. The conditional
ROCOF is illustrated in Fig. 7.8 when the interoccurrence times are Weibull distributed
with scale parameter A = 1 and shape parameter @ = 3. The plotis based on simulated
interoccurrence times from this distribution.

Example 7.7
Consider a renewal process where the renewal periods Ty, 73, . .. are independent and
gamma distributed with parameters (2, A), with probability density function

frt)=A%te™ fort>0,A>0
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12 4

Calendar time t

Fig. 7.8 Illustration of the conditional ROCOF (fully drawn line) for simulated data from a
Weibull distribution with parameters @ = 3 and A = 1. The corresponding asymptotic renewal
density is drawn by a dotted line.

The mean renewal period is E(T;) = p = 2/A, and the variance is var(7}) = 0% =

2/A2. The time until the nth renewal, S,, is gamma distributed (see Section 2.11)
with probability density function

A
™) = T A1 e™™ for t 50

The renewal density is according to (7.54)

o0 co ()\.I)Z"_l
= ™) (1) = ye—M
w(t) n:zlf (t) = Ae ; PP
Al —At A
= i —Ju_e___e_:_ = —2At
¢ 2 5 (1= ™)
The renewal function is
¥ A A 1
W(!):f wix)dx == ] (I —e‘z;‘x)dx= A (l—e_g‘u) (7.58)
0 2 Jo 2 4

The renewal density w(t) and the renewal function W (¢) are illustrated in Fig. 7.9 for
A = 1. Note that when ¢t — o0, then

W(it) —

1
M
1

w(t) —

N> 0| ¥

in accordance with (7.49) and (7.57), respectively. We may further use (7.53)to find a
better approximation for the renewal function W (¢). From (7.58) we get the left-hand
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Fig. 7.9 Renewal density w(t) (fully drawn line) and renewal function W (¢) (dotted line)
for Example 7.7, with (A = 1).

side of (7.53):

W(t)—~i=W(t)—£—>—l whent - >
7 2 4

The right hand side of (7.53) is (with & = 2/4 and 02 = 2/A?)

We can therefore use the approximation

when 7 is large

Bl o—

At
W) ~ = T

Example 7.8

Consider a renewal process where the renewal periods T, 73, . .. are independent and
Weibull distributed with shape parameter « and scale parameter A. In this case the
renewal function W (t) cannot be deduced directly from (7.45). Smith and Leadbetter
(1963) have, however, shown that W(¢) can be expressed as an infinite, absolutely
convergent series where the terms can be found by a simple recursive procedure. They
show that W (¢) can be written

= (—DFL A M
W) = (7.59)
g Fka + 1)

By introducing this expression for W(#) in the fundamental renewal equation, the
constants Ax; k = 1,2,... can be determined. The calculation, which is quite
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Fig. 7.10 The renewal function for Weibull distributed renewal periods with A = 1 and
@ =05,a = 1and @ = 1.5. (The figure is adapted from Smith and Leadbetter, 1963).

comprehensive, leads to the following recursion formula:

Al = y
Ay = yr -4y
A3 = y3— YA — A
(7.60)
n—1
Ap = Y- ZYjAn—j
j=1
where
r + 1
Yn = ____(na' ) forn=1,2,...
n!
For o = 1, the Weibull distribution is an exponential distribution with parameter
A. In this case
r 1
s = M =1 forn=1,2,...
n!
This leads to
A =: 1
Ap, = 0 forn=>2

The renewal function is thus according to (7.59)

(—l)OAl?d B

=5

The renewal function W (¢) is illustrated in Fig. 7.10 for A = 1 and three values
of a. O
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Fig. 7.11 The age Z(¢) and the remaining lifetime Y (¢).

7.3.6 Age and Remaining Lifetime

The age Z(t) of an item operating at time ¢ is defined as

R for N(t) =0
BAE) = I t —Sne forN(t) >0 o1)

The remaining lifetime Y (t) of an item that is in operation at time ¢ is given as
Y()=Snuy+1 =t (7.62)

The age Z(z) and the remaining lifetime Y (¢) are illustrated in Fig. 7.11. The remain-
ing lifetime is also called the residual life, the excess life, or the forward recurrence
time (e.g., see Ross 1996, and Ascher and Feingold 1984). Note that Y (¢) > y is
equivalent to no renewal in the time interval (¢, ¢ + y].

Consider a renewal process where the renewals are component failures, and let T
denote the time from start-up to the first failure. The distribution of the remaining
life Y (¢) of the component at time ¢ is given by

Pr(T > y+1)

PriY@) >y)=Pi(T >y+t|T>n= Pr(T > t)

and the mean remaining lifetime at time ¢ is

l o0
E(Y(I)) = m f Pf(T > u)du
t

See also Section 2.7, where E (Y (1)) was called the mean residual life (MRL) at time
t. When T has an exponential distribution with failure rate A, the mean remaining
lifetime at time ¢ is 1/A which is an obvious result because of the memoryless property
of the exponential distribution.
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Limiting distribution Consider a renewal process with a nonlattice underlying
distribution Fr(r). We observe the process at time 7. The time till the next failure is
the remaining lifetime Y (¢). The limiting distribution of Y (¢) when ¢ — o0 is (see
Ross 1996, p. 116)

4
lim Pr(Y (1) < 1) = Fo(t) = = f (1 — Fr(u))du (7.63)
e K Jo

which is the same distribution as we used in (7.52). The mean of the limiting distri-
bution F,(t) of the remaining lifetime is

E(Y) = f Pr(Y>y)dy:f (1 = Fu(y)dy

— f f Pr(T > t)dtdy = — f f Pre(T > t)dydt

= _f tP(T > t)dt = —f Pr(T > /x)dx
u Jo

1 E(TY o%+u?
= — Pr(T2 > x)dx = =
2u Jo 2p 2u

where E(T) = p and var(7T') = o2, and we assume that E(T?YH = o + “2 < 0.
We have thus shown that the limiting mean remaining life is
o+ p?
2p

lim E(Y (1)) = (7.64)

Example 7.7 (Cont.)

Again, consider he renewal process in Example 7.7 where the underlying distribution
was a gamma distribution with parameters (2, 1), with mean time between renewals
E(T;) = n = 2/A and variance var(7;) = 2/A%. The mean remaining life of an item
that is in operation at time ¢ far from now is from (7.64)

o2 + 2

3
= — when ¢ is large

E(Y(1)) =~ Ty

O

The distribution of the age Z(¢) of an item that is in operation at time ¢ can be
derived by starting with

Z(t) >z <= norenewalsin (f —z,1)
& Y@t-2)>z

Therefore

Pr(Z(t) > 2) =Pr(Y{(t — 2) > 2)
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When the underlying distribution Fr(t) is nonlattice, we can show that the limiting
distribution of the age Z(r) whent — oo is

t
Ilim Pr(Z(t) <t) = Fo(t) = if (1 — Fr(u))du (7.65)
— 00 0

that is, the same distribution as (7.63). When t — o0, both the remaining lifetime
Y (t) and the age Z(t) at time ¢ will have the same distribution. When ¢ is large, then

2_|_ 2
E(Y (D) ~ E(Z()) ~ % (7.66)

Let us now assume that a renewal process with a nonlattice underlying distribution
has been “running” for a long time, and that we observe the process at a random
time, which we denote t = 0. The time T} to the first renewal after time ¢ = 0 is
equal to the remaining lifetime of the item that is in operation at time t = 0. The
distribution of Tj is equal to (7.63) and the mean time to the first renewal is given by
(7.64). Similarly, the age of the item that is in operation at time ¢ = 0 has the same
distribution and the same mean as the time to the first renewal. For a formal proof,
see Ross (1996, p. 131) or Bon (1995, p. 136).

Remark: This result may seem a bit strange. When we observe a renewal process that
has been “running” for a long time at a random time ¢, the length of the corresponding
interoccurrence time is Sy()+1 — Sn(), as illustrated in Fig. 7.15, and the mean
length of the interoccurrence time is ;. We obviously have that Sy()4+1 — Sn@) =
Z() + Y(@), but E(Z(t) + E(Y(1)) = (62 + ,uz)/u is greater than . This rather
surprising result is known as the inspection paradox, and is further discussed by Ross
(1996, p. 117), and Bon (1995, p 141). i

If the underlying distribution function Fr(¢) is new better than used (NBU) or new
worse than used (NWU) (see Section 2.19), bounds may be derived for the distribution
of the remaining lifetime Y () of the item that is in operation at time ¢. Barlow and
Proschan (1975, p. 169) have shown that the following apply:

If Fr(t) isNBU, then Pr(Y(t) > y) <Pr(T > y) (7.67)

If Fr(r) is NWU, then Pr(Y(r) > y) = Pr(T > y) (7.68)

Intuitively, these results are obvious. If an item has an NBU life distribution, then a
new item should have a higher probability of surviving the interval (0, y] than a used
item. The opposite should apply for an item with an NWU life distribution.

When the distributions of Z(#) and Y (1) are to be determined, the following lemma
is useful:

Lemma 7.1 If

!
g(t) =h() + f g(t — x)dF(x) (7.69)
0
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where the functions h and F are known, while g is unknown, then

oli= il f B = X)W ) (7.70)
0

where
o>
Wr)= Y F")
r=1

O

Note that equation (7.70) is a generalization of the fundamental renewal equation
(7.46).

Example 7.9

Consider a renewal process with underlying distribution F7(t). The distribution of
the remaining lifetime Y (z) of an item that is in operation at time 7 can be given by
(e.g., see Bon 1995, p. 129)

5
Pr(Y(1) > y) = Pr(T > y+r)+f P(T > y+t—u)dWe@)  (7.71)
0

By introducing the survivor function R(t) = 1— Fr(t), and assuming that the renewal
density wg(r) = dWg(t)/dt exists, (7.71) may be written

T
Pr(Y@#)>y)=R(y+1t)+ f Riy+1t—uwwp(u)du (7.72)
0

If the probability density function f(t) = d Fr(t)/dt = —dR(t)/dt exists, we have
from the definition of f(z) that

R(t) — R(t+ y) &~ f(t) -y when y is smalil

Equation (7.72) may in this case be written

e
Pr(Y(1) >y) ~ R@)— f(t)-y +/{; (Rt —u)— f(t ~u) - y)wr(u)du
= R() +f R(t —w)wp(u)du
0

-y (f(r) +f0 f(t— u)wp(u)du)
= Pr(Y(t) >0)—wp(t)-y (7.73)

The last line in (7.73) follows from Lemma 7.1. Since Pr(Y () > 0) = 1, we have
the following approximation:

Pr(Y(r) > y)= 1 — wg(t) -y when y is small (7.74)

If we observe a renewal process at a random time 7, the probability of having a failure
(renewal) in a short interval of length y after time ¢ is, from (7.74), approximately
wr(t) - y, and it is hence relevant to call w g (r) the ROCOF. O
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7.3.7 Bounds for the Renewal Function

We will now establish some bounds for the renewal function W (¢). For this purpose
consider a renewal process with interarrival times T, T3, . ... We stop observing the
process at the first renewal after time ¢, that is, at renewal N(¢) + 1. Since the event
N(t)+ 1 = n only depends on T}, T3, ..., T,,, we can use Wald's equation to get

N(t)+1
E(Svon)=E[ ) | =EM-EWN@O+D=pWn+1] (175

i=l
Since Sn(r+1 is the first renewal after ¢, it can be expressed as
SN+ =t+ Y1)
The mean value is from (7.75)

wW)+1l=t+ EX@®)

such that
t  E(Y(
W) =—+ rep 1 (7.76)
7
When ¢ is large and the underlying distribution is nonlattice, we can use (7.64) to get
t 1 (o2
Wit)-— — = — = 1} whent —» o (7.77)
% 2\p

which is the same result as we found in (7.53).
Lorden (1970) has shown that the renewal function W(t) of a general renewal
process is bounded by

t t ol
—_1SW S —+ > (7.78)
w woou

For a proof, see Cocozza-Thivent (1997, p. 170).

In section 2.19 we introduced several families of life distribution. A distribution
was said to be “new better than used in expectation” (NBUE) when the mean remaining
lifetime of a used item was less, or equal to, the mean life of a new item. In the same
way, a distribution was said to be “new worse than used in expectation” (NWUE)
when the mean remaining life of a used item was greater, or equal to, the mean life
of a new item.

If we have an NBUE distribution, then E(Y (1)) < u, and

t+EXY(@)

W) = 1 < fort >0

T~

and

Lrswnsl (7.79)
m

i
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W)

Time t

Fig. 7.12 The renewal function W (z) of a renewal process with underlying distribution that
is gamma (2, A), together with the bounds for W(¢), for A = 1,

If we have an NWUE distribution, then E(Y (1)) > p, and

{4 E(Y
_i_LEB_lgi fort > 0 (7.80)

W) =
Further bounds for the renewal function are given by Dohi et al. (2002).

Example 7.7 (Cont.)

Reconsider the renewal process where the underlying distribution has a gamma dis-
tribution with parameters (2, A). This distribution has an increasing failure rate and
is therefore also NBUE. We can therefore apply the bounds in (7.79). In Fig. 7.12 the
renewal function (7.58)

)TN |
Wit)="—=(1—-eM
(1) > 4( e )

is plotted together with the bounds in (7.79)

At l<W(r)<M
2 - = 2

7.3.8 Superimposed Renewal Processes

Consider a series structure of n independent components that are put into operation
at time ¢ = (). All the n components are assumed to be new at time ¢t = 0. When a
component fails, it is replaced with a new component of the same type or restored to
an “as good as new” condition. Each component will thus produce a renewal process.
The n components will generally be different, and the renewal processes will therefore
have different underlying distributions.
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Fig. 7.13 Superimposed renewal process.

The process formed by the union of all the failures is called a superimposed renewal
process (SRP). The n individual renewal processes and the SRP are illustrated in
Fig. 7.13.

In general, the SRP will not be a renewal process. However, it has been shown, for
example, by Drenick (1960), that superposition of an infinite number of independent
stationary renewal processes is an HPP. Many systems are composed of a large number
of components in series. Drenick’s result is often used as a justification for assuming
the time between system failures to be exponentially distributed.

Example 7.10

Consider a series structure of two components. When a component fails, it is replaced
or repaired to an *“as good as new” condition. Each component will therefore produce
an ordinary renewal process. The time required to replace or repair a component
is considered to be negligible. The components are assumed to fail and be repaired
independent of each other. Both components are put into operation and are functioning
at time ¢t = 0. The series system fails as soon as one of its components fails, and the
system failures will produce a superimposed renewal process. Times to failure for
selected life distributions with increasing failure rates for the two components and
the series system have been simulated on a computer and are illustrated in Fig. 7.14.
The conditional ROCOF (when the failure times are given) is also shown in the figure.
As illustrated in Fig. 7.14 the system is not restored to an “as good as new” state after
each system failure. The system is subject to imperfect repairs (see Section 7.5) and
the process of system failures is not a renewal process since the times between system
failures do not have a common distribution. d

The superimposed renewal process is further discussed, for example, by Cox and
Isham (1980), Ascher and Feingold (1984), and Thompson (1988).

7.3.9 Renewal Reward Processes

Consider a renewal process {N(),t > 0}, and let (S;_;, S;] be the duration of the
ith renewal cycle, with interoccurrence time 7; = §; — S;—|. Let V; be a reward
associated to renewal 7;, fori = 1,2, .... The rewards Vj, V,, ... are assumed to
be independent random variables with the common distribution function Fy (v), and
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Comp. 1

Comp. 2

System >
0 Time

Fig. 7.14 Superimposed renewal process. Conditional ROCOF w¢ (1) of a series system with
two components that are renewed upon failure,

with E(7;) < oo. This model is comparable with the compound Poisson process that
was described on page 245. The accumulated reward in the time interval (0, ] is

N(t)
V() = Z Vi (7.81)

i=l1

Let E(T;) = pr and E(V;) = py. According to Wald’s equation (7.22) the mean
accumulated reward is

EV(@) =uny - E(N@)) (7.82)

According to the elementary renewal theorem (7.49), when t — o0,

1 ! “r

W) _ E(NM) N 1

Hence

E(V(@)) pv-ENQ@)  py
— e —
1 ! KT

(7.83)

The same result is true even if the reward V; is allowed to depend on the associated
interoccurrence time 7; fori = 1,2,.... The pairs (T;, V;) fori = 1,2, ... are,
however, assumed to be independent and identically distributed (for proof, see Ross
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1996, p. 133). The reward V; in renewal cycle i may, for example, be a function of
the interoccurrence time 7;, fori = 1, 2, .... When ¢ is very large, then

1
Vi) = py - —
ur

which is an obvious result.

7.3.10 Delayed Renewal Processes

Sometimes we consider counting processes where the first interoccurrence time T
has a distribution function Fr, () that is different from the distribution function Fr ()
of the subsequent interoccurrence times. This may, for example, be the case for a
failure process where the component at time r = 0 is not new. Such a renewal process
is called a delayed renewal process, or a modified renewal process. To specify that the
process is not delayed, we sometimes say that we have an ordinary renewal process.

Several of the results presented earlier in this section can be easily extended to
delayed renewal processes:

The Distribution of N(r) Analogous with (7.41) we get
Pr(N(t) =n) = F}, « F;"Y — F3 « F7® (7.84)
The Distribution of S,, The Laplace transform of the density of S, is from (7.34):
) = £ 9 (fro)" (7.85)

The Renewal Function The integral equation (7.46) for the renewal function W ()
becomes

W(t) = Fr(t) + f Wi —x)dFr(x) (7.86)
0

and the Laplace transform is

W*(s) = S(f‘% (7.87)
The Renewal Density Analogous with (7.55) we get
w(t) = fr,(t) + for w(t —x) fr(x)dx (7.88)
and the Laplace transform is
w*(s) = _In6) (7.89)

1= frs)
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All the limiting properties for ordinary renewal processes, when r — oo, will obvi-
ously also apply for delayed renewal processes.

For more detailed results see, for example, Cocozza-Thivent (1997, section 6.2).
We will here briefly discuss a special type of a delayed renewal process, the stationary
renewal process.

Definition 7.6 A stationary renewal process is a delayed renewal process where the
first renewal period has distribution function

1 t
Fri(t) = Fo(1) = ;[ (1 - Fr(x))dx (7.90)
0

while the underlying distribution of the other renewal periods is Fr(1). O

Remarks
1. Note that F,(z) is the same distribution as we found in (7.63).

2. When the probability density function fr(r) of Fr(t) exists, the density of
F.(1) is
dF.(t) 1—Fr(t) Rr(1)

fe(r) = dr 1 P

3. As pointed out by Cox (1962, p. 28) the stationary renewal process has a simple
physical interpretation. Suppose a renewal process is started at time t = —oc,
but that the process is not observed before time ¢ = 0. Then the first renewal
period observed, T, is the remaining lifetime of the component in operation
at time ¢+ = 0. According to (7.63) the distribution function of T} is F.(¢).
A stationary renewal process is called an equilibrium renewal process by Cox
(1962). This is the reason why we use the subscript e in F.(¢). In Ascher and
Feingold (1984) the stationary renewal process is called a renewal process with
asynchronous sampling, while an ordinary renewal process is called a renewal
process with synchronous sampling. OJ

Let {Ng(r),t = 0} be a stationary renewal process, and let Ys(¢) denote the
remaining life of an item at time ¢. The stationary renewal process has the following
properties (e.g., see Ross 1996, p. 131):

Ws(t) =1t/u (7.91)
Pr(Ys(t) < y) = Fe(y) forallt >0 (7.92)
{Ns(t),t = 0} has stationary increments (7.93)

where F,(y) is defined by equation (7.90).
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Remark: A homogeneous Poisson process is a stationary renewal process, because
of the memoryless property of exponential distribution. The HPP is seen to fulfill all
the three properties (7.91), (7.92), and (7.93). O

Example 7.11

Reconsider the renewal process in Example 7.7 where the interoccurrence times had
a gamma distribution with parameters (2, A). The underlying distribution function is
then

Fr(t)=1—e M —te ™

and the mean interoccurrence time is E(T;) = 2/A. Let us now assume that the
process has been running for a long time and that when we start observing the process
at time ¢ = 0, it may be considered as a stationary renewal process.

According to (7.91), the renewal function for this stationary renewal process is
Ws(t) = Ar/2, and the distribution of the remaining life, Ys(z) is (see 7.92)

Pr(Ys(t) < y)

A [y
> f (e + Aue ) du
0

A
l—(l+-2z) e N

The mean remaining lifetime of an item at time 7 is

E(Ys(1)) :f Pr(Ys(t) > y)dy :f (l + 2) e_}‘ydy = i
0 0 2 2

O

Delayed renewal processes are used in the next section to analyze alternating renewal
processes.

7.3.11 Alternating Renewal Processes

Consider a system that is activated and functioning at time 1+ = 0. Whenever the
system fails, it is repaired. Let U;, U, ... denote the successive times to failure
(up-times) of the system. Let us assume that the times to failure are independent
and identically distributed with distribution function Fy(r) = Pr(U; < t) and mean
E(U) = MTTF (mean time to failure). Likewise we assume the corresponding
repairtimes Dy, D>, ... to be independent and identically distributed with distribution
function Fp(d) = Pr(D; < d) and mean E(D) = MTTR (mean time to repair).
MTTR denotes the total mean downtime following a failure and will usually involve
much more that the active repair time. We therefore prefer to use the term MDT
(mean downtime) instead of MTTR?Z.

2In the rest of this book we are using 7" to denote time to failure. In this chapter we have already used 7
to denote interoccurrence time (renewal period), and we will therefore use U to denote the time to failure
(up-time). We hope that this will not confuse the reader.
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Fig. 7.15 Alternating renewal process.

If we define the completed repairs to be the renewals, we obtain an ordinary renewal
process with renewal periods (interoccurrence times) 7; = U; + D; fori = 1,2, . ...
The mean time between renewals is ur = MTTF 4 MDT. This resulting process is
called an alternating renewal process and is illustrated in Fig. 7.15. The underlying
distribution function, Fr(t), is the convolution of the distribution functions Fy (f)
and Fp(t),

Fr(s) = Pr(ly < t) =Pe(U; + Dy < #) = f Fyt—x)dFplx)  (1.94)
0

If instead we let the renewals be the events when a failure occurs, we get a delayed
renewal process where the first renewal period T is equal to Uy while T; = D; 1 +U;
fori =2, 3.

In this case the distribution function Fr, () of the first renewal period is given by

Fr) =Pr(h =) =Pr(U; =t) = Fy(t) (7.95)
while the distribution function Fr (1) of the other renewal periods is given by (7.94).

Example 7.12

Consider the alternating renewal process described above, and let the renewals be the
completed repairs such that we have an ordinary renewal process. Let a reward V;
be associated to the ith interoccurrence time, and assume that this reward is defined
such that we earn one unit per unit of time the system is functioning in the time period
since the last failure. When the reward is measured in time units, then E(V;) = uy =
MTTF. The average availability A,y (0, t) of the component in the time interval (0, r)
has been defined as the mean fraction of time in the interval (0, 1) where the system
is functioning. From (7.83) we therefore get

Hy MTTF
Al (0, —_—= hen ¢ 7.96
av(0,1) — 7. MTTF + MDT when t — o0 ( )

which is the same result we obtain in Section 9.4 based on heuristic arguments. [

Availability The availability A(r) of an item (component or system) was defined
as the probability that the item is functioning at time ¢, that is, A(¢) = Pr(X(t) = 1),
where X (1) denotes the state variable of the item.
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As above, consider an alternating renewal process where the renewals are com-
pleted repairs, and let T = U; + D;. The availability of the item is then

A =Pr(X(t) =1)= f Pr(X(t)=1|T =x)dFr(x)
0

Since the component is assumed to be “as good as new” at time T = U + Dy, the
process repeats itself from this point in time and

At — x) for t>2x

PO =11T=%=1 por 2 [T =%y for 1 =x

Therefore

oc

t
A(t)=f A(t—x)dFT(x)+f Pr(U >t | T =x)dFr(x)
0

!

But since Dy > 0, then

o0 o0

/ Pr(Uy>t|Uy+ D) =x)dFr(x) = f Pr(U >t | T =x)dFr(x)
t 0

Pr(U; >1t)=1— Fy(t)

Hence
1
A(t)=1-= Fy(t) +[ A(t — x)dFr(x) (7.97)
0

We may now apply Lemma 7.1 and get

t
A(t)=1-Fr(r) +f (1=Fr(@—x))dWpg,(x) (7.98)
0

where

o0
We (1) =Y F @)

n=1

is the renewal function for a renewal process with underlying distribution Fr(z).
When Fy(t) is a nonlattice distribution, the key renewal theorem (7.51) can be
used with Q(#) = 1 — Fy(¢) and we get

EU)
f (1 — Fy( —x))dWFT(x) E(T)f (1 = Fy@)dr = EW) + E(D)
Since Fr(t) = 1 whent — 00, we have thus shown that
A= lim A(t) = B LAY, (7.99)

1—>00 E(U)+ E(D) ~ MTTE+MDT
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Notice that this is the same result as we got in (7.96) by using results from renewal
reward processes.

Example 7.13
Consider a parallel structure of n components that fail and are repaired independent
of each other. Component i has a time to failure (up-time) U; which is exponentially
distributed with failure rate A; and a time to repair (downtime) D; which is also
exponentially distributed with repair rate y;, fori = 1, 2, .... The parallel structure
will fail when all the n components are in a failed state at the same time. Since
the components are assumed to be independent, a system failure must occur in the
following way: Just prior to the system failure, (» — 1) components must be in a
failed state, and then the functioning component must fail.

Let us now assume that the system has been in operation for a long time, such that
we can use limiting (average) availabilities. The probability that component / is in a
failed state is then approximately:

o MDT _ 1/pi __ N
" MTTF+MDT 1/ + 1/mi  Ai + Wi
Similarly, the probability that component i is functioning is approximately
Hi
Ai + i

The probability that a functioning component i will fail within a very short time
interval of length At is approximately

A &

Pr(At) = A; At

The probability of system failure in the interval (¢, ¢t + At), when ¢ is large, is

T -
o i Aj
Pr(System failure in(z, t + At = +Ai At 4+ o(At
®y ( » Z l;+#il.—[.kj+ﬂ~j l )
i=] J#i
T =
Ai Aj
- i At + o(At)
g At gkt | ‘

= nk e Z;L;AE+O(&I)
j

i=]

Since At is assumed to be very small, no more than one system failure will occur in
the interval. We can therefore use Blackwell’s theorem (7.50) to conclude that the
above expression is just At times the reciprocal of the mean time between system
failures, MTBFj, that is,

-1
0 (7.100)

n

MTBFs = | [] A
J

n

el Rt
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When the system is in a failed state, all the n components are in a failed state. Since
the repair times (downtimes) are assumed to be independent with repair rates p; for
i =1,2,...,n, the system downtime will be exponential with repair rate Y ;_, 1;,
and the mean downtime to repair the system is
1
MDT§ = —7——
i=1 Hi

The mean up-time, or the mean time to failure, MTTFjg, of the system is equal to
MTBFs— MDTg:

-1

n n

A 1
MTTFs = f pil e (7.101)
};[, Aj KD i=1 Hi

1= ﬂ__ il
_ j=1 4/ + 1) (7.102)

[Ty A/ + i) 2oy mi

To check that the above calculations are correct, we may calculate the average un-
availability:

, MDTg - Ai
As = - = l_[ .
MTTFg + MDTj e Aj+

which is in accordance with the results obtained in Chapter 9. [Example 7.13 is
adapted from Example 3.5(B) in Ross (1996)]. O

Mean Number of Failures/Repairs First, let the renewals be the events where a
repair is completed. Then we have an ordinary renewal process with renewal periods
T\, T, . .. which are independent and identically distributed with distribution function
(7.94).

Assume that U; and D; both are continuously distributed with densities fy (¢) and
fp(t), respectively. The probability density function of the 7;'s is then

t
16y = | fule =0 fotx)ds (7.103)
According to Appendix B the Laplace transform of (7.103) is
f1) = fy(9) - fp(s)

Let Wy (¢) denote the renewal function, that is, the mean number of completed repairs
in the time interval (0, #]. According to (7.84)

foG) - fps)
s(1 = f5(s) - fp(s)

In this case both the U;’s and the D;’s were assumed to be continuously distributed.
This, however, turns out not to be essential. Equation (7.104) is also valid for discrete

Wi(s) =

(7.104)
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distributions, or for a mixture of discrete and continuous distributions. In this case
we may use that

56 = E@*Y)
fis) = E(e*P)

The mean number of completed repairs in (0, r] can now, at least in principle, be
determined for any choice of life- and repair time distributions.

Next, let the renewals be the events where a failure occurs. In this case we get a
delayed renewal process. The renewal periods 77, 72, ... are independent and Fr, (1)
is given by (7.95) while the distribution of T3, T3, ... is given by (7.94).

Let W5 (1) denote the renewal function, that is, the mean number of failures in
(0, 1] under these conditions. According to (7.87) the Laplace transform is

i (s)
s(1 = f5(s) - fp(s))

Wi (s) = (7.105)

which, at least in principle, can be inverted to obtain Wa(r).

Availability at a Given Point of Time By taking Laplace transforms of (7.98)

we get
* ] * l * *
A (T) = ; — 'FU(S) + (; = Fu(S)) . wFT(S)
Since
|
F*(s) = = f*(s)
then

1
A*(s) = (1= f5(6) - (1 + wh, (5))

If we have an ordinary renewal process (i.e., the renewals are the events where a repair
is completed), then

wg, (s) = sW'(s)

Hence

A*(s) = %(1 _fg(s))_(] + fo8) - fp(s) )

1= f5(s) - fp(s)
that is,

1 - f5(s)
s(L—= £ f59)

A*(s) = (7.106)
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Fig. 7.16 Availability of a component with exponential life and repair times.

The availability A(r) can in principle be determined from (7.106) for any choice of
life and repair time distributions.

Example 7.14 Exponential Lifetime-Exponential Repair Time

Consider an alternating renewal process where the component up-times Uy, Uz, ..
are independent and exponentially distributed with failure rate A. The corresponding
downtimes are also assumed to be independent and exponentially distributed with the
repair rate u = 1/MDT.

Then
fult) = re™™ fort>0
o -

and
fp(t) = pe ™ forr>0
b)) = pis

The availability A(?) is then obtained from (7.106):

N L—A/(A+5)
A%(s) =
sl = (A/(A+9)) - (u/(pn+5))
7 1 A 1

= — -+ ’ 7.107
A+p s A+u s+@A+p ( )

Equation (7.107) can be inverted (see Appendix B) and we get

A
Al = & o=t (7.108)
A+p Atp

which is the same result as we get in Chapter 8. The availability A(¢) is illustrated in
Fig. 7.16.
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Fig. 7.17 The availability of a component with exponential lifetimes and constant repair
time (7).
The limiting availability is

w 1/, MTIF
A+ 1/A+1/u MTTF+MDT

A= rlim At) =

By inserting f,;(s) and f},(s) into (7.104) we get the Laplace transform of the mean
number of renewals W (¢),

A/ +8)) - (u/( +5))

s[1—=@A/(A+5)) - (u/(p+ )]
AL 1 AL 1 A 1

At+p 2 A+w? s A+w)? s+ +p)

W*(s)

By inverting this expression we get the mean number of completed repairs in the time
interval (0, 7]

Ap Au Al o~ Ot

- 7.109
a7 R T R

W(t) = Y

O

Example 7.15 Exponential Lifetime-Constant Repair Time

Consider an alternating renewal process where the system up-times Uj, Uy, ... are
independent and exponentially distributed with failure rate A. The downtimes are
assumed to be constant and equal to t with probability 1: Pr(D; = t) = 1 for

i =1,2,.... The corresponding Laplace transforms are
A
* —
fuls) = A+s

fB(S) = E(E_SD) = 2 5T, Pr(D=1) = et
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Hence the Laplace transform of the availability (7.106) becomes

1 —A/(A +5) 1

A*(S) = s
s[1 = @A/(A+5)) e5T] s+ A1—Le™*T

1 I I = >\ _..
- l—|~s'I:l—(k/(k-ks))e_“]:;\.+SZ(A+.§) ‘

v=0

1 &7 & Y
a— i —5vT
o l;(k+s) ¢

The availability then becomes

o0

AD =LA ) =Y 1! ( A )”“e_m
A Ats

v=0

According to Appendix B

A v+1 ;\‘U+l
“ l:(JH—s) } =T =10

L7 e =58t — vr)

where 8(1) denotes the Dirac delta-function. Thus

-1 A v+l —svt _ —1[ A v+1 -1/ —svr
i o] = ko] s

o0
= [ 8(t —vrt —x)f(x)dx
0
= f@t—vt) ult—vr)
where

I i re>ur

“(’_”)={ 0 if t<vt

Hence the availability is

oo v

A
A(t) = Z F(t —v1)’e AVt — vr)
p=0

The availability A(z) is illustrated in Fig. 7.17.
The limiting availability is then according to (7.99)

MTTF 1/A I

MTTF+MDT  (1/A) 4+t 1+ At

A= lim A(t) =
I—00

(7.110)

(7.111)

(7.112)
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The Laplace transform for the renewal density is

f7(s) - fpls) _ e T /(A +5)
L= f2) - f3() 1 —Ae=T/(A+s)
1

= e = A e

w*(s)

where A*(s) is given by (7.110).
Then the renewal density becomes

w(t) = AL (A () - e7%7) = Af 8t —1t—x)A(x)dx
0

that is,

A AG—) Wf 12>1
w(’)—{ 0 it i< Gl

Hence the mean number of completed repairs in the time interval (0, ¢] for f > 7 is

t t t—t
W(t) :f w(u)du = )Lf A(lu — 1t)du = Af A(u)du (7.114)
0 T 0

O

7.4 NONHOMOGENEOUS POISSON PROCESSES

In this section the homogeneous Poisson process is generalized by allowing the rate
of the process to be a function of time.

7.4.1 Introduction and Definitions

Definition 7.7 A counting process {N(¢),t > 0} is a nonhomogeneous (or nonsta-
tionary) Poisson process with rate function w(z) fort = 0, if

1. N(O)=0.
2. {N(r),t = 0} has independent increments.

3. Pr(N(t + Ar) — N(t) = 2) = o(At), which means that the system will not
experience more than one failure at the same time.

4. Pr(N(t + At) = N(t) = 1) = w(t)Ar + o(At). O

The basic “parameter” of the NHPP is the ROCOF function w(¢). This function is
also called the peril rate of the NHPP. The cumulative rate of the process is

!
Wi(r) :f w(u) du (7.115)
0
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This definition of course covers the situation in which the rate is a function of some
observed explanatory variable that is a function of the time ¢.

It is important to note that the NHPP model does not require stationary increments.
This means that failures may be more likely to occur at certain times than others, and
hence the interoccurrence times are generally neither independent nor identically
distributed. Consequently, statistical techniques based on the assumption that the
data are independent and identically distributed cannot be applied to an NHPP.

The NHPP is often used to model trends in the interoccurrence times, that is,
improving (happy) or deteriorating (sad) systems. It seems intuitive that a happy
system will have a decreasing ROCOF function, while a sad system will have an
increasing ROCOF function. Several studies of failure data from practical systems
have concluded that the NHPP was an adequate model, and that the systems that were
studied approximately satisfied the properties of the NHPP listed in Definition 7.7.

Due to the assumption of independent increments, the number of failures in a
specified interval (¢, 2] will be independent of the failures and interoccurrence times
prior to time #;. When a failure has occurred at time #, the conditional ROCOF
we(t | ;) (see page 254) in the next interval will be w(#) and independent of the
history #;, up to time #;, and especially the case when no failure has occurred before
t1, in which case w(r) = z(#), that is, the failure rate function (FOM) for t < ;. A
practical implication of this assumption is that the conditional (ROCOF), wc(?), is
the same just before a failure and immediately after the corresponding repair. This
assumption has been termed minimal repair (see Ascher and Feingold, 1984, p. 51).
When replacing failed parts that may have been in operation for a long time, by new
ones, an NHPP clearly is not a realistic model. For the NHPP to be realistic, the parts
put into service should be identical to the old ones, and hence should be aged outside
the system under identical conditions for the same period of time.

Now consider a system consisting of a large number of components. Suppose
that a critical component fails and causes a system failure and that this component
is immediately replaced by a component of the same type, thus causing a negligible
system downtime. Since only a small fraction of the system is replaced, it seems
natural to assume that the systems’s reliability after the repair essentially is the same
as immediately before the failure. In other words, the assumption of minimal repair
is a realistic approximation. When an NHPP is used to model a repairable system,
the system is treated as a black box in that there is no concern about how the system
“looks inside.”

A car is a typical example of a repairable system. Usually the operating time
of a car is expressed in terms of the mileage indicated on the speedometer. Repair
actions will usually not imply any extra mileage. The repair “time” is thus negligible.
Many repairs are accomplished by adjustments or replacement of single components.
The minimal repair assumption is therefore often applicable and the NHPP may be
accepted as a realistic model, at least as a first order approximation.

Consider an NHPP with ROCOF w(r), and suppose that failures occur at times
S1, 82, . ... An illustration of w(r) is shown in Fig. 7.18.
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Fig. 7.18 The rRoCOF w(r) of an NHPP and random failure times.

7.4.2 Some Results

From the definition of the NHPP it is straightforward to verify (e.g., see Ross 1996,
p. 79) that the number of failures in the interval (0, 7] is Poisson distributed:

WOI _we
n!

Pr(N(t) =n) = forn=0,1,2,... (7.116)

The mean number of failures in (0, ] is therefore
E(N(@) =W()

and the variance is var(N(¢)) = W(t). The cumulative rate W(r) of the process
(7.115) 1s therefore the mean number of failures in the interval (0, 7] and is sometimes
called the mean value function of the process. When n is large, Pr(N(t) < n) may
be determined by normal approximation:

N(@)— W() n—W(t))
Pr(N = Pr <
Wl = ( ZOBSENA L0
n— W(:))
d| —= 7.117
( N0 G

From (7.116) it follows that the number of failures in the interval (v, ¢ + v] is Poisson
distributed:
WG +v) - WO wiesv)-wo))

n!
forn =0. 1,24

Pr(N(t +v) —N(w) =n) =

and that the mean number of failures in the interval (v, 4 v] is
+uv
E(INt+v)—Nw)=Wi+v)— W) = f w(u)du (7.118)
v
The probability of no failure in the interval (¢, 1) is

Pr(N(2) — N(t)) =0) = e f,? w(t) dt
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Let S, denote the time until failure n forn = 0,1,2,..., where S = 0. The
distribution of S, is given by:

n—1
Pr(Sp >1) = P(N(t)<n—1)=)_
k=0

W (1)k
() e_.w(g)

o (7.119)

When W (t) is small, this probability may be determined from standard tables of the
Poisson distribution. When W(¢) is large, the probability may be determined by
normal approximation; see (7.117):

Pr(S, >1) = Pr(N(@)<n-—1)
n—1- W(t))
s ([ oo P 7.120
( VW) ( }

Time to First Failure Let T denote the time from ¢ = 0 until the first failure. The
survivor function of 7] is

Ri(1) =Pr(Ty > 1) = Pr(N(1) = 0) = e W® = ¢~ Jywinar (7.121)

Hence the failure rate (FOM) function z7, (t) of the first interoccurrence time 7 is
equal to the ROCOF w(¢) of the process. Note, however, the different meaning of
the two expressions. z7,(t)At approximates the (conditional) probability that the
first failure occurs in (t,t + At], while w(z)Ar approximates the (unconditional)
probability that a failure, not necessarily the first, occurs in (¢, t + Ar].

A consequence of (7.121) is that the distribution of the first interoccurrence time,
that is, the time from ¢ = 0 until the system’s first failure, will determine the ROCOF
of the entire process. Thompson (1981) claims that this is a nonintuitive fact which
is casting doubt on the NHPP as a realistic model for repairable systems. Use of an
NHPP model implies that if we are able to estimate the failure rate (FOM) function of
the time to the first failure, such as for a specific type of automobiles, we at the same
time have an estimate of the ROCOF of the entire life of the automobile.

Time Between Failures Assume that the process is observed at time fy, and let
Y (19) denote the time until the next failure. In the previous sections Y (7p) was called
the remaining lifetime, or the forward recurrence time. By using (7.116), we can
express the distribution of Y (7g) as

Pr(Y(to) >1) = Pr(N(t+1y) — N(tg) = 0) = e~ [WH0~-W0)]

I
— ot 0 w(u) du o e—f({ w(u+tg) du (7.122)

Note that this result is independent of whether 1y denotes a failure time or an arbitrary
point in time.

Assume that 7 is the time, S, -1, at failure n — 1. In this case Y (fp) denotes the time
between failure n — 1 and failure n (i.e., the nth interoccurrence time 7,, = S, — S§,,—1).
The failure rate (FOM) function of the nth interoccurrence time 7}, is from (7.122):

2y (1) = w(t +19) forz >0 (7.123)
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Notice that this is a conditional failure rate, given that S,_; = 7p. The mean time
between failure n — 1 (at time #y) and failure n, MTBF,, is

o0
MTBEF, = E(T,,)=f Pr(Y;, > t)dt
0
00 .
= f e~ Jo wlutto) du dt (7.124)
0

Example 7.16

Consider an NHPP with ROCOF w(t) = 2A%t, for A > 0 and r > 0. The mean
number of failures in the interval (0, t) is W(t) = E(N(t)) = f(; w(u)du = (A1)
The distribution of the time to the first failure, 77, is given by the survivor function

2
Rit) =e WO == forr >0

that is, a Weibull distribution with scale parameter A and shape parameter « = 2. If
we observe the process at time fg, the distribution of the time Y (#p) till the next failure
1s from (7.122):

Pr(Y(t) > t) = e—f,; w(uttp)du _ 6—12(;2+2101]

If 79 is the time of failure n — 1, the time to the next failure, Y (y), is the nth interoc-
currence time 7, and the failure rate (FOM) function of T, is

2, (1) = 202(1 + 19)

which is linearly increasing with the time ¢y of failure n — 1. Notice again that this
is a conditional rate, given that failure n — 1 occurred at time S,_; = 7. The mean
time between failure n — 1 and failure n is from (7.124):

> A2
MTBE, = f e~ A 200 4y
0

O

Relation to the Homogeneous Poisson Process Let {N(1),t1 > 0} be an
NHPP with ROCOF w(z) > 0 such that the inverse W~!(z) of the cumulative rate
W (t) exists, and let Sy, §2, ... be the times when the failures occur.

Consider the time-transformed occurrence times W(S;), W(S>), ..., and let
{N*(t), 1 = 0} denote the associated counting process. The distribution of the (trans-
formed) time W (S)) till the first failure is from (7.121)

Pr(W(S)) > 1) = Pr(S) > Wl(t)) = e WWT'@) _ o~

that is, an exponential distribution with parameter 1.
The new counting process is defined by

N(t) = N*(W(t)) fort >t
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hence
N*(t) = N(W~ @) forr >0
and we get from (7.116)

Pr(N*(t) =n) = Pr(N(W™' (1)) =n)

[(W(W-L@)]" WOVl _ 1 et
n! - n!

that is, the Poisson distribution with rate 1. We have thereby shown that an NHPP
with cumulative rate W (z) (where the inverse of W (r) exists) can be transformed into
an HPP with rate 1, by time-transforming the failure occurrence times Sy, $2, ... to
W(S)), W(S7), .. ..

7.4.3 The Nelson-Aalen Estimator

Let {N(?), t > 0} be an NHPP with ROCOF w(¢). We want to find an estimate of the
mean number of failures W (¢) = E(N (1)) = f; w(u)du in the interval (0, 7). An
obvious estimate is ﬁ;’(r) = N(1).

Assume that we have n different and independent NHPPs {N;(¢),t > 0} fori =
1,2,...,n with a common ROCOF w(t). This is, for example, the situation when
we observe failures of the same type of repairable equipment installed in different
places. Each installation will then produce a separate NHPP with rate w(¢). An
obvious estimator for W(t) is now

Total number of failures in(0, 7]
Total number of processes in(0, 7]

- I &
W) =~ ; Ni(t) =

This estimator may be written in an alternative way:

W) = % Y Ny = ) % = Z% lz<)
i=1

{i; Ti<r} i=1

where T, T3, ... denotes the failure times (for all the processes), and 17, <) is an
indicator that is equal to 1 when 7; < ¢, and O otherwise.

In practice, the various processes will not be observed in the same interval. As
an illustration, let us assume that n; processes are observed in the interval (0, 71],
and that ny processes are observed for ¢ > #;. Let N(¢) denote the total number of
failures in (0, t], irrespective of how many processes are active. It seems now natural
to estimate W (r) by

N(t 1
()= Z — when0 <r<n

n n
b gmen

W(f) =
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Fig. 7.19 The Nelson-Aalen estimator for two simultaneous processes.

When t > 11, an estimator for fr: wu)du = W) — W(t)is

1
— whenrt > 1|
n

N(t) — N(t) _ Z

n
. i n<Tisr)

The total estimator will then be

-~ 1 1
W) = —_— —
CLIN M- i
{is Ti=n} {i; n<T;<t)
Assume now that we have a set of independent NHPPs with a common ROCOF

w(r). Let Y(s) denote the number of active processes immediately before time s.
From the arguments above, it seems natural to use the following estimator for W(z),

~ 1 1
Wi(t) = —_— = — Y71i< (7.125)
[f;;ﬂ} r'n) IZZI Y7 =

This nonparametric estimator is called the Nelson-Aalen estimator for W(z). Note
that when there is only one sample, then the Nelson-Aalen estimator coincides with
N(t), which is plotted in Fig. 7.3 A simple example of the Nelson-Aalen estimator
for two simultaneous processes is illustrated in Fig. 7.19.

The estimator (7.125) was introduced by Aalen (1975, 1978) for counting processes
in general and generalizes the Nelson (1969) estimator which is further discussed in
Chapter 8. It may be shown (see the discussion in Andersen and Borgan, 1985) that
W (1) is an approximately unbiased estimator of W (#) and that the variance can be
estimated (almost unbiasedly) by

|
Y (T;)>

var(W (1)) ~ 6%(t) = Z (7.126)

(i Ti=t}

W) may further be shown (see Andersen and Borgan, 1985) to be asymptotically
normally distributed with mean W (¢) and a variance estimated by &2(t). Hence an
approximate 100(1 — @)% pointwise confidence interval for W(t), is given by

W (1) — ugpé (1) < W(t) < W) + a6 (1)



284 COUNTING PROCESSES

where u, denotes the upper 100e¢% percentile of the standard normal distribution
N (0, 1).

7.4.4 Parametric NHPP Models

Several parametric models have been established to describe the ROCOF of an NHPP.
We will discuss some of these models:

1. The power law model
2. The linear model

3. The log-linear model

All three models may be written in the common form (see Atwood, 1992)
w(t) =Aog(t; 9) (7.127)

where Ap is a common multiplier, and g(7; ¥) determines the shape of the ROCOF
w(t). The three models may be parameterized in various ways. In this section we
shall use the parameterization of Crowder et al. (1991), although the parametrization
of Atwood (1992) may be more logical.

The Power Law Model In the power law model the ROCOF of the NHPP is defined
as

w(r)zkﬁzﬁ_l forA>0, f>0and? >0 (7.128)

This NHPP is sometimes referred to as a Weibull process, since the ROCOF has the
same functional form as the failure rate (FOM) function of the Weibull distribution.
Also note that the first arrival time 7} of this process is Weibull distributed with
shape parameter 8 and scale parameter A. However, according to Ascher and Fein-
gold (1984), one should avoid the name Weibull process in this situation, since it
gives the wrong impression that the Weibull distribution can be used to model trend
in interoccurrence times of a repairable system. Hence such notation may lead to
confusion.

A repairable system modeled by the power law model is seen to be improving
(happy) if 0 < B < 1, and deteriorating (sad) if 8 > 1. If 8 = 1 the model reduces
to an HPP. The case 8 = 2 is seen to give a linearly increasing ROCOF. This model
was studied in Example 7.16.

The power law model was first proposed by Crow (1974) based on ideas of Duane
(1964). A goodness-of-fit test for the power law model based on total time on test
(TTT) plots (see Chapter 11) is proposed and discussed by Klefsjo and Kumar (1992).

Assume that we have observed an NHPP in a time interval (0, fo] and that failures

have occurred at times sy, 57, ..., 5,. Maximum likelihood estimates 5 and X of B
and A, respectively, are given by
= s (7.129)

ning — Z?:l In s;
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and
= n
A= — (7.130)
tﬂ
0
The estimates are further discussed by Crowder et al. (1991, p. 171) and Cocozza-
Thivent (1997, p. 64).

A (1 — ¢) confidence interval for 8 is given by (see Cocozza-Thivent 1997, p. 65)

B B
(5; Z(1-¢/2).2n> n Z(14€/2).2n (7.131)

where z,, denotes the upper 100e% percentile of the chi-square (x?) distribution
with v degrees of freedom (tables are given in Appendix F).

The Linear Model In the linear model the ROCOF of the NHPP is defined by
w(r) =A(l +az) forh>0andt >0 (7.132)

The linear model has been discussed by Vesely (1991) and Atwood (1992). A re-
pairable system modeled by the linear model is deteriorating if @ > 0, and improving
when o < 0. When o < 0, then w(z) will sooner or later become less than zero. The
model should only be used in time intervals where w(¢) > 0.

The Log-Linear Model In the log-linear model or Cox-Lewis model, the ROCOF
of the NHPP is defined by

w(t) = e* P for —oco <, B <00 andt >0 (7.133)

A repairable system modeled by the log-linear model is improving (happy) if 8 < 0,
and deteriorating (sad) if 8§ > 0. When 8 = 0 the log-linear model reduces to an
HPP.

The log-linear model was proposed by Cox and Lewis (1966) who used the model
to investigate trends in the interoccurrence times between failures in air-conditioning
equipment in aircrafts. The first arrival time 7| has failure rate (FOM) function
z(1) = e**P" and hence has a truncated Gumbel distribution of the smallest extreme
(i.e., a Gompertz distribution; see Section 2.17).

Assume that we have observed an NHPP in a time interval (0, 7o] and that failures

have occurred at times 51, 52, ..., sn. Maximum likelihood estimates @ and 8 of «
and B, respectively, are found by solving
n
n nity
ZS‘JFE_TZW_O (7.134)

i=|

to give B, and then taking

& ln( L% ) (7.135)
ePo — |

The estimates are further discussed by Crowder et al. (1991, p. 167).
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7.4.5 Statistical Tests of Trend

The simple graph in Fig. 7.3 clearly indicates an increasing rate of failures, that is, a
deteriorating or sad system. The next step in an analysis of the data may be to perform
a statistical test to find out whether the observed trend is statistically significant or
just accidental. A number of tests have been developed for this purpose, that is, for
testing the null hypothesis

Hy: “No trend” (or more precisely that the interoccurrence times are independent
and identically exponentially distributed, that is, an HPP)

against the alternative hypothesis
H;: “Monotonic trend” (i.e., the process is an NHPP that is either sad or happy)
Among these are two nonparametric tests that we will discuss:

1. The Laplace test

2. The military handbook test

These two tests are discussed in detail by Ascher and Feingold (1984) and Crowder
et al. (1991). It can be shown that the Laplace test is optimal when the true failure
mechanism is that of a log-linear NHPP model (see Cox and Lewis, 1966), while the
military handbook test is optimal when the true failure mechanism is that of a power
law NHPP model (see Bain et al. 1985).

The Laplace Test The test statistic for the case where the system is observed until

n failures have occurred is

1 2o 8 — (54/2)
Sn//12(n — 1)

where S, 52, . .. denote the failure times. For the case where the system is observed
until time fp, the test statistic is

_ aXi=18— (/2)
B to//12n

In both cases, the test statistic U is approximately standard normally N (0, 1) dis-
tributed when the null hypothesis Hj is true. The value of U is seen to indicate the
direction of the trend, with U < O for a happy system and U > 0 for a sad sys-
tem. Optimal properties of the Laplace test have, for example, been investigated by
Gaudoin (1992).

U=

(7.136)

U

(7.137)

Military Handbook Test The test statistic of the so-called military handbook test
(see MIL-HDBK-189) for the case where the system is observed until » failures have
occurred is

Z=2Y 3 (7.138)
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For the case where the system is observed until time fg, the test statistic is

L
Z=221n§{: (7.139)

i=l

The asymptotic distribution of Z is in the two cases a x? distribution with 2(n — 1)
and 2n degrees of freedom, respectively.

The hypothesis of no trend (Hp) is rejected for small or large values of Z. Low
values of Z correspond to deteriorating systems, while large values of Z correspond
to improving systems.

7.5 IMPERFECT REPAIR PROCESSES

In the previous sections we studied two main categories of models that can be used
to describe the occurrence of failures of repairable systems: renewal processes and
nonhomogeneous Poisson processes. The homogeneous Poisson process may be
considered a special case of both models. When using a renewal process, the repair
action is considered to be perfect, meaning the the system is “as good as new” after the
repair action is completed. When we use the NHPP, we assume the the repair action
is minimal, meaning that the reliability of the system is the same immediately after
the repair action as it was immediately before the failure occurred. In this case we
say the the system is “as bad as old” after the repair action. The renewal process and
the NHPP may thus be considered as two extreme cases. Systems subject to normal
repair will be somewhere between these two extremes. Several models have been
suggested for the normal, or imperfect, repair situation, a repair that is somewhere
between a minimal repair and a renewal.

In this section we will consider a system that is put into operation at time ¢. The
initial failure rate (FOM) function of the system is denoted z(¢), and the conditional
ROCOF of the system is denoted w¢ (7). The conditional ROCOF was defined by (7.7).

When the system fails, a repair action is initiated. The repair action will bring
the system back to a functioning state and may involve a repair or a replacement of
the system component that produced the system failure. The repair action may also
involve maintenance and upgrading of the rest of the system and even replacement
of the whole system. The time required to perform the repair action is considered
to be negligible. Preventive maintenance, except for preventive maintenance carried
out during a repair action, is disregarded.

A high number of models have been suggested for modeling imperfect repair
processes. Most of the models may be classified in two main groups: (i) models
where the repair actions reduce the rate of failures (ROCOF), and (ii) models where
the repair actions reduce the (virtual) age of the system. A survey of available models
are provided, for example, by Pham and Wang (1996), Hokstad (1997), and Akersten
(1998).
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Fig. 7.20 An illustration of a possible shape of the conditional ROCOF of Brown and
Proschan’s imperfect repair model.

7.5.1 Brown and Proschan’s Model

One of the best known imperfect repair models is described by Brown and Proschan
(1983). Brown and Proschan’s model is based on the following repair policy: A
system is put into operation at time ¢t = 0. Each time the system fails, a repair action
is initiated, that with probability p is a perfect repair that will bring the system back
to an “as good as new” condition. With probability I — p the repair action will be
a minimal repair, leaving the system in an “as bad as old” condition. The renewal
process and the NHPP are seen to be special cases of Brown and Proschan’s model,
when p = 1 and p = 0, respectively. Brown and Proschan’s model may therefore be
regarded as a mixture of the renewal process and the NHPP. Note that the probability
p of a perfect repair is independent of the time elapsed since the previous failure
and also of the age of the system. Let us, as an example, assume that p = 0.02.
This means that we for most failures will make do with a minimal repair, and on
the average renew (or replace) the system once for every 50 failures. This may be a
realistic model, but the problem is that the renewals will come at random, meaning
that we have the same probability of renewing a rather new system as an old system.
Fig. 7.20 illustrates a possible shape of the conditional ROCOF.

The data obtained from a repairable system is usually limited to the times between
failures, T, 75, . ... The detailed repair modes associated to each failure are in general
not recorded. Bases on this “masked” data set, Lim (1998) has developed a procedure
for estimating p and the other parameters of Brown and Proschan’s model.

Brown and Proschan’s model was extended by Block etal. (1985) to age-dependent
repair, that is, when the item fails at time ¢, a perfect repair is performed with prob-
ability p(z) and a minimal repair is performed with probability 1 — p(r). Let Y,
denote the time from ¢ = 0 until the first perfect repair. When a perfect repair is
carried out, the process will start over again, and we get a sequence of times between
perfect repairs Y1, Y7, . .. that will form a renewal process. Assume that F(r) is the
distribution of the time to the first failure 7}, and let f(t) and R(t) = 1 — F(¢) be the
corresponding probability density function and the survivor function, respectively.
The failure rate (FOM) function of Tj is then z(r) = f(r)/R(z), and we know from
Chapter 2 that the distribution function may be written as

F(t)=1—e Jot®dx — | _ o= [lf ®)/R()1dx
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The distribution of ¥; is given by (see Block et al. 1985)
Fp(t) = Pr(¥; < 1) = | — ¢~ WlPWOS@/RWIdx — | _ o= fzp()dx (7 140)

Hence, the time between renewals, Y has failure rate (FOM) function

p) f(t)

e p(t)z(1) (7.141)

Zp(r) ==
Block et al. (1985) also supply an explicit formula for the renewal function and
discuss the properties of of F(1).

Failure Rate Reduction Models Several models have been suggested where
each repair action results in a reduction of the conditional ROCOF. The reduction
may be a fixed reduction, a certain percentage of the actual value of the rate of
failures, or a function of the history of the process. Models representing the first
two types were proposed by Chan and Shaw (1993). Let z(¢) denote the failure rate
(FOM) function of the time to the first failure. If all repairs were minimal repairs, the
ROCOF of the process would be wi(t) = z(¢). Consider the failure at time S;, and
let S; denote the time immediately before time §;. In the same way, let S;+ denote
the time immediately after time ;. The models suggested by Chan and Shaw (1993)
may then be expressed by the conditional ROCOF as

we(S;—) — A  fora fixed reduction A

WelSie) = wc(S;-)(1 — p) for a proportional reduction 0 < p <

i (7.142)
Between two failures, the conditional ROCOF is assumed to be vertically parallel
to the initial ROCOF w)(¢). The parameter p in (7.142) is an index representing
the efficiency of the repair action. When p = 0, we have minimal repair, and the
NHPP is therefore a special case of Chan and Shaw’s proportional reduction model.
When p = 1, the repair action will bring the conditional ROCOF down to zero, but
this will not represent a renewal process since the interoccurrence times will not be
identically distributed, except for the special case when w (¢) is a linear function. The
conditional ROCOF of Chan and Shaw’s proportional reduction model is illustrated
in Fig. 7.21 for some possible failure times and with p = 0.30.

Chan and Shaw’s model (7.142) has been generalized by Doyen and Gaudoin
(2002a,b). They propose a set of models where the proportionality factor p depends
on the history of the process. In their models the conditional ROCOF is expressed as

we(Siy) = welSi-) — @, S1, 82, ..., Si) (7.143)

where ¢(i, Si, 52, ..., Si) is the reduction of the conditional ROCOF resulting from
the repair action. Between two failures they assume that the conditional ROCOF
is vertically parallel to the initial ROCOF w)(t). These assumptions lead to the
conditional ROCOF

N(1)
we @) = wi@) = Y @G, 51,82, 5) (7.144)

i=}
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Fig. 7.21 The conditional ROCOF of Chan and Shaw’s proportional reduction model for
some possible failure times (p = 0.30).

When we, as in Chan and Shaw’s model (7.142), assume a proportional re-
duction after each repair action, the conditional ROCOF in the interval (0, S;) be-
comes wc(t) = wi(t). In the interval [S), $7) the conditional ROCOF is we(t) =
w1 () — o w1(S1). In the third interval [ S7, S3) the conditional ROCOF is

we@) = wi@)—pwi(S)) —p [wi(S2) — pw1(S))]
= wi(t)-p [(1 — p)wi(S) + (1 — p)‘wl(sn]

It is now straightforward to continue this derivation and show that the conditional
ROCOF of Chan and Shaw’s proportional reduction model (7.142) may be written as

N(@)

we) = wi@) —p Y (1 - p) wi(Sng-i) (7.145)
i=0

This model is called arithmetic reduction of intensity with infinite memory (ARI)
by Doyen and Gaudoin (2002a).

In the model (7.142) the reduction is proportional to the conditional ROCOF just
before time ¢. Another approach is to assume that a repair action can only reduce a
proportion of the wear that has accumulated since the previous repair action. This
can be formulated as:

we(Siy) = we(Si-) — p [we(Si-) — we(Si-14)] (7.146)

The conditional ROCOF of this model 1s

we(t) = wi () — pwi(Sne)) (7.147)

This model is called arithmetic reduction of intensity with memory one (ARI;) by
Doyen and Gaudoin (2002a). If p = 0, the system is “as bad as old” after the repair
action and the NHPP is thus a special case of the ARI; model. If p = 1, the conditional
ROCOF is brought down to zero by the repair action, but the process is not a renewal
process, since the interoccurrence times are not identically distributed. For the ARI,
model, there exists a deterministic function wmin(¢) that is always smaller than the
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we (1)

Time t

Fig. 7.22 The ARI| model for some possible failure times. The “underlying” ROCOF w (1)
1s a power law model with shape parameter 8 = 2.5, and the parameter p = 0.30. The upper
dotted curve is wy(r), and the lower dotted curve is the minimal wear intensity (1 — p)w (¢).

conditional ROCOF such that there is a nonzero probability that the ROCOF will be
excessively close to wyn ().

Wmin(?) = (1 — p) w (1)

This intensity is a minimal wear intensity, that is to say, a maximal lower boundary for
the conditional ROCOF. The ARI; model is illustrated in Fig. 7.22 for some possible
failure times.

The two models ARI,, and ARI| may be considered as two extreme cases. To
illustrate the difference, we may consider the conditional ROCOF as an index repre-
senting the wear of the system. By the ARI, model, every repair action will reduce,
by a specified percentage p, the total accumulated wear of the system since the system
was installed. By the ARI; model the repair action will only reduce, by a percentage
p, the wear that has been accumulated since the previous repair action. This is why
Doyen and Gaudoin (2002a) say that the ARl has infinite memory, while the ARI;
has memory one (one period).

Doyen and Gaudoin (2002a) have also introduced a larger class of models in which
only the first m terms of the sum in (7.145) are considered. They call this model the
arithmetic reduction of intensity model of memory m (ARI,,), and the corresponding
conditional ROCOF is

min{m—1,N (1)}

weM =wi)—p Y (1= p) welSnw-i) (7.148)
i=0

The ARI,, model has a minimal wear intensity:
Wmin(1) = (1 = A" w (1)

In ali these models we note that the parameter p may be regarded as an index of the
efficiency of the repair action.
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0 < p < 1: The repair action is efficient.

p = 1: Optimal repair. The conditional ROCOF is put back to zero (but the
repair effect is different from the “as good as new” situation.

e p = 0: The repair action has no effect on the wear of the system. The system
state after the repair action is “as bad as old.”

e p < 0: The repair action is harmful to the system, and will introduce extra
problems.

Age Reduction Models Malik (1979) proposed a model where each repair action
reduces the age of the system by a time that is proportional to the operating time
elapsed from the previous repair action. The age of the system is hence considered
as a virtual concept.

To establish a model, we assume that a system is put into operation at time ¢ = 0.
The initial ROCOF wj (¢) is equal to the failure rate (FOM) function z(¢) of the interval
until the first system failure. w)(z) is then the ROCOF of a system where all repairs
are minimal repairs. The first failure occurs at time S|, and the conditional ROCOF
just after the repair action is completed is

we (S14) = wi(S) — 9)

where S| — is the new virtual age of the system. After the next failure, the conditional
ROCOF will be we(82.) = wi (82 — 219) and so on. The conditional ROCOF at time
tis

we(t) = wy(r — N(@)F)
We may now let # be a function of the history and get

N(t)
we®) =w | ¢ =) G, 51, 8...5) (7.149)

i=l

Between two consecutive failures we assume that the conditional ROCOF is horizon-
tally parallel with the initial ROCOF w (¢).

Doyen and Gaudoin (2002a) propose an age reduction model where the repair
action reduces the virtual age of the system with an amount proportional to its age
just before the repair action. Let p denote the percentage of reduction of the virtual
age. In the interval (0, S;) the conditional ROCOF is we(t) = w) (7). Just after the
first failure (when the repair is completed) the virtual age is S| — pS§j, and in the
interval (S7, S2) the conditional ROCOF is we(f) = wi(t — pSy). Just before the
second failure at time S, the virtual age is S — p S}, and just after the second failure
the virtual age is S — pS1 — p(S2 — pS1). In the interval (57, S3) the conditional
ROCOF is we(t) = w(t — pS) — p(S2 — pS1)) which may be written as wc (1) =
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wy(t—p(l— p)”Sz —p(1—=p)'8)). By continuing this argument, it is easy to realize
that the conditional ROCOF of this age reduction model is

N1

we)=wi [t —p Y (1 - p)'Snp-i (7.150)
i=0

This model is by Doyen and Gaudoin (2002a) called arithmetic reduction of age with
infinite memory (ARA,;). The same model has also been introduced by Yun and
Choung (1999). We note that when p = 0, we get wc(r) = wi(r) and we have an
NHPP. When p = 1, we get we(t) = wi(t — Sy()) which represents that the repair
action leaves the system in an “as good as new” condition. The NHPP and the renewal
process are therefore special cases of the ARA_, model.

Malik (1979) introduced a model in which the repair action at time §; reduces the
last operating time from S; — S;_| to p(S; — Si—) where as before, 0 < p < 1.
Using this model, Shin et al. (1996) developed an optimal maintenance policy and
derived estimates for the various parameters. The corresponding conditional ROCOF
is

we(t) = wi(t — pSnqy)

The minimal wear intensity is equal to w((1 — p)t). This model is by Doyen and
Gaudotin (2002a) called arithmetic reduction of age with memory one (ARA;).

In analogy with the failure rate reduction models, we may define a model called
arithmetic reduction of age with memory m by

min{m—1,N(1)}

w)=w [t—p D> (1—p) Sy
=0

The minimal wear intensity is
Win (1) = wi((1 — B)"¢)

Kijima and Sumita (1986) introduced a model which they called the generalized
renewal process for modeling the imperfect repair process. This model has later been
extended by Kaminskiy and Krivstov (1998). The model is an age reduction model
that is similar to the models described by Doyen and Gaudoin (2002a). Estimation of
the parameters of the generalized renewal model is discussed by Yaifies et al. (2002).

Trend Renewal Process let S, S, ... denote the times when failure occur in
an NHPP with ROCOF w(tz), and let W(r) denote the mean number of failures in
the interval (0, r]. On page 281 we showed that the time-transformed process with
occurrence times W (8y), W(S52), .. .isan HPP withrate 1. In the transformed process,
the mean time between failures (and renewals) will then be 1. Lindgvist (1993, 1998)
generalized this model, by replacing the HPP with rate 1 with a renewal process with
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= > - £ > TRP(Fw)
I _,;_Renewal
0o WSy W(S5) W(S3) process (F)

Fig. 7.23 Ilustration of the transformation of a TRP(F, w) to a renewal process. (Adapted
from Lindgvist 1999).

underlying distribution F(-) with mean 1. He called the resulting process a trend-
renewal process, TRP(F, w). To specify the process we need to specify the rate w(z)
of the initial NHPP and the distribution F(t).

If we have a TRP(F, w) with failure times S, 52, . . ., the time-transformed process
with occurrence times W(S1), W(S2), ... will be a renewal process with underlying
distribution F(¢). The transformation is illustrated in Fig. 7.23. The requirement that
F(t) has mean value 1 is made for convenience. The scale is then taken care of by
the rate w(z). Lindqvist (1998) shows that the conditional ROCOF of the TRP(F, w)
is

wekt () = 2 (W (1) — W(Sn—))) w(t) (7.151)

where z(t) 1s the failure rate (FOM) function of the distribution F(z). The conditional
ROCOF of the TRP(F, w) is hence a product of a factor, w(t), that depends on the age
t of the system, and a factor that depends on the (transformed) time from the previous
failure. When both the failure rate (FOM) function z(¢) and the initial ROCOF w(t)
are increasing functions, then the conditional ROCOF (7.151) at time ¢ after a failure
at time sg is

z (W(t +50) — W(so)) w(t + s0)
To check the properties of the TRP we may look at some special cases:

e If z(#) = X and w(¢) = B are both constant, the conditional ROCOF is also
constant, we(t) = A - B. Hence the HPP is a special case of the TRP.

e If z(t) = A is constant, the conditional ROCOF is wc(t) = A - w(?), and the
NHPP is hence a special case of the TRP.

e If z(0) = 0, the conditional ROCOF is equal to O just after each failure, that is,
we(Sney)) = 0.

e If w(t) = B is constant, we have an ordinary renewal process, wc(¢) = z{t —
Snaoy).

e If z(0) > O, the conditional ROCOF just after a failure is z(0) - w(Sn¢,)) and
is increasing with r when w(r) is an increasing function
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Fig. 7.24 Illustration of the conditional ROCOF w¢(t) in Example 7.17 for some possible
failure times.

e If z(t) is the failure rate (FOM) function of a Weibull distribution with shape
parameter o and w(t) is a power law (Weibull) process with shape parameter 8,
the conditional ROCOF will have a Weibull form with shape parameter o8 — 1.

Example 7.17

Consider a trend renewal process with initial ROCOF w(r) = 2021, that is, a linearly
increasing ROCOF, and a distribution F(¢) with failure rate (FOM) function z (1) =
2.51%3 . 113 that is, a Weibull distribution with shape parameter @ = 2.5 and scale
parameter A. For the mean value of F(z) to be equal to 1, the scale parameter must
be A =~ 0.88725. The conditional ROCOF in the interval until the first failure is from
(7.151)

we(t) =51%6° . 1* for 0<1t < 8

Just after the first failure, wc (S1+) = 0. Generally, we can find w¢(¢) from (7.151).
Between failure n and failure n + 1, the conditional ROCOF is

wet) =52236%. (12 = S35 .t for Sy <t < Spyi

The conditional ROCOF wc (¢) is illustrated for some possible failure times S, Sz, ...
in Fig. 7.24. O

The trend renewal process is further studied by Lindqvist (1993, 1998) and Elve-
bakk (1999) who also provides estimates for the parameters of the model.

7.6 MODEL SELECTION

A simple framework for model selection for a repairable system is shown in Fig. 7.25.
The figure is inspired by a figure in Ascher and Feingold (1984), but new aspects have
been added.
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Failure data (interoccurrence
times) in original chronological
order. May be one or several
samples

Homogeneous
samples?

Yes

Interoccurrence times in original
chronological order from a
homogeneous sample

Must split the data set in
homogeneous samples
and treat each sample
separately

Yes

No

Repairable systems models
NHPP-models (section 8.4)
or imperfect repair models
(section 8.5)

Interoccurrence times identically
distributed, but not necessarily
independent

Dependence?

Branching Poisson process
models. (Not covered in
this book)

Interoccurrence times
independent and identically
distributed

Standard analytical techniques,
see Chapter 10

Fig. 7.25 Model selection framework.
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We will illustrate the model selection framework by a simple example. In OREDA
(2002), failure data from 449 pumps were collected from 61 different installations.
A total of 524 critical failures were recorded, that is, on the average 1.17 failures per
pump. To get adequate results we have to merge failure data from several valves. Itis
important that the data that are merged are homogeneous, meaning that the valves are
of the same type and that the operational and environmental stresses are comparable.
Since there are very few data from each valve, this analysis will have to be qualitative.
The total data set should be split into homogeneous subsets and each subset has to
be analyzed separately. A very simple problem related to inhomogeneous samples is
illustrated in Section 2.9.

We now continue with a subset of the data that is deemed to be homogeneous. The
next step is to check whether or not there is a trend in the ROCOF. This may be done
by establishing a Nelson-Aalen plot as described in Section 7.4.3 on page 282. If the
plot is approximately linear we conclude that the ROCOF is close to constant. If the
plot is convex (concave) we conclude that the ROCOF is increasing (decreasing). The
ROCOF may also be increasing in one part of the lifelength and decreasing in another
part.

If we conclude that the ROCOF is increasing or decreasing, we may use €ither a
NHPP or one of the imperfect repair models described in Section 7.5. Which model to
use must (usually) be decided by a qualitative analysis of the repair actions, whether
it is a minimal repair or and age, or failure rate, reduction repair. In some cases we
may have close to minimal repairs during a period followed by a major overhaul. In
the Norwegian offshore sector, such overhauls are often carried our during annual
revision stops. When we have decided a model, we may use the methods described in
this chapter to analyze the data. More detailed analyses are described, for example,
in Crowder et al. (1991).

If no trend in the ROCOF is detected, we conclude that the intervals between failures
are identically distributed, but not necessarily independent. The next step is then to
check whether or not the data may be considered as independent. Several plotting
techniques and formal tests are available. These methods are, however, not covered
in this book. An introduction to such methods may, for example, be found in Crowder
et al. (1991).

If we can conclude that the intervals between failures are independent and identi-
cally distributed, we have a renewal process, and we can use the methods described
in Chapter 11 to analyze the data.

If the intervals are dependent, we have to use methods that are not described in this
book. Please consult, for example, Crowder et al. (1991) for relevant approaches.
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PROBLEMS

7.1 Consider a homogeneous Poisson process (HPP) {N(?),t = O} and lett,s > 0.
Determine

E(N(t)- Nt +5))

7.2 Consider an HPP {N(¢), t > 0} withrate A > 0. Verify that

n\ [ 1\* 3
Pr(N(t):klN(s)=n)=(k)(;) (1—;) forO<t<sand0<k<n

7.3 Let T; denote the time to the first occurrence of an HPP {N(¢), t > 0} with rate
A. Show that

Pr(TlgslN(r)zl):§ fors <1

74 Let {N(t),t > 0} be a counting process, with possible values 0, 1,2, 3, ....
Show that the mean value of N(¢) can be written

E(N(1)) = ZPr(N(r) >n) = ZPr(N(x) > n) (7.152)

n=I n=0
7.5 Let S;, 53, ... be the occurrence times of an HPP {N(t),t > 0} with rate A.

Assume that N (t) = n. Show that the random variables S1, S, .. ., S, have the joint
probability density function

n!
f81,nSalN@)=n (815 - -, Sp) = 7 forO0 <sp <---<sp <1
7.6 Consider a renewal process {N(t), t > 0}. Is it true that
(@) N(t) <rifandonlyif S, > 1?

(b) N(t) <rifandonlyif S, > ?
(c) N(t) > rifand onlyif S, < 1?

7.7 Consider a nonhomogeneous Poisson process (NHPP) with rate
t+1
w(t) = A- - fort >0

(a) Make a sketch of w(t) as a function of 7.

(b) Make a sketch of the cumulative ROCOF, W (t), as a function of ¢.
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7.8 Consider an NHPP (N (2), t > 0} with rate:

6—-2t for 0<t<?2
w(t) = 2 for 2<t<20
—18+¢t for t> 20

(a) Make a sketch of w(z) as a function of 7.

(b) Make a sketch of the corresponding cumulative ROCOF, W(z), as a function of
I.

(c) Estimate the number of failures/events in the interval (0, 12)

7.9 In Section 7.3.8 it is claimed that the superposition of independent renewal
processes is generally not a renewal process. Explain why the superposition of in-
dependent homogeneous Poisson processes (HPP) is a renewal process. What is the
renewal density of this superimposed process?

7.10 Table 7.2 shows the intervals in operating hours between successive failures
of air-conditioning equipment in a Boeing 720 aircraft. The data are from Proschan

(1963).

Table 7.2 Time Between Failures in Operating Hours of Air-conditioning Equipment.

413 14 58 37 100 65 9 169
447 184 36 201 118 34 31 18
18 67 57 62 7 22 34

First interval is 413, the second is 14, and so on. Source: Proschan (1963).

(a) Establish the Nelson-Aalen plot (N(¢) plot) of the data set. Describe (with
words) the shape of the ROCOF.

7.11 Atwood (1992) uses the following parametrization for the power law model,
the linear model and the log-linear model:

w(t) = Ao (1/19)? (power law model)
w(t) = Agll + B(t — t9)] (linear model)
w(r) = AgePl—10) (log-linear model)

(a) Discuss the meaning of tg item[(b)] Show that Atwood’s parameterization is
compatible with the parameterization used in Section 7.4.4.

(¢) Show that w(z) = Ag when t = ¢y for all the three models.

(d) Show that w(r) is increasing if 8 > 0, is constant if 8 = 0, and decreasing if
B < 0, for all the three models.
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7.12 Use the MIL-HDBK test described in Section 7.4.5 to check if the “increasing
trend” of the data in Example 7.1 is significant (5% - level).

7.13 Table 7.3 shows the intervals in days between successive failures of a piece
of software developed as part of a large data system. The data are from Jelinski and
Moranda (1972).

Table 7.3 Intervals in Days Between Successive Failures of a Piece of Software.

9 12 11 4 7 2 5 8 5 7

1 6 1 9 4 1 3 3 6 1

11 33 7 91 2 1 87 47 12 9
135 258 16 35

First interval is 9, the second is 12, and so on. Source: Jelinski and Moranda (1972).

(a) Establish the Nelson-Aalen plot (N(z) plot) of the data set. Is the ROCOF
increasing or decreasing?

(b) Assume that the ROCOF follows a log-linear model, and find the maximum
likelihood estimates (MLE) for the parameters of this model.

(c) Draw the estimated cumulative ROCOF in the same diagram as the Nelson-
Aalen plot. Is the fit acceptable?

(d) Use the Laplace test to determine whether the ROCOF is decreasing or not (use
a 5% level of significance).



