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Regression models

Assume that we have a sample of n individuals, and let Ni (t) count the
observed occurrences of the event of interest for individual i as a function
of (study) time t,

We have the decomposition

dNi (t) = λi (t)dt + dMi (t)

We will consider regression models where the intensity process λi (t) for
individual i depends on a vector of (possibly) time-dependent covariates

xi (t) = (xi1(t), . . . , xip(t))T

The intensity for individual i may then be given as

λi (t) = Yi (t)α(t|xi )

The new issue is hence that the hazard α depends on the values of the
covariates.
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Regression models

A regression model specifies how the hazard rate α(t|xi ) depends on the
covariates.

We will consider two types of regression models:

Relative risk regression models (section 4.1)

Additive regression models (section 4.2)
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A note on covariates

Throughout we will assume that the covariate processes

xi (t) = (xi1(t), . . . , xip(t))T

are predictable

This implies that:

fixed covariates should be measured in advance (i.e. at time zero)
and remain fixed throughout the study

the values at time t of time-dependent covariates should be known
“just before” time t

Covariates should not depend on information from the future!
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More on covariates

It is useful to distinguish between external (or exogenous) and internal (or
endogenous) covariates

Examples of external covariates are:

Fixed covariates

Defined time-dependent covariates: the covariate path is given at the
outset of the study (e.g. a person’s age at study time t)

Ancillary time-dependent covariates: the path of a stochastic process that
is not influenced by the event being studied (e.g. observed
level of air pollution)

Time-dependent covariates that are not external, are called internal

One example of an internal covariate is a biomarker measured for the
individuals during follow-up

Interpretation of regression analyses with internal time-dependent
covariates is not at all straightforward!
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Relative risk regression models

Assume that the hazard rate for individual i takes the form

α(t|xi ) = α0(t)r(β, xi (t))

We assume r(β, 0) = 1, so the baseline hazard α0(t) is the hazard for an
individual with all covariates equal to zero.

r(β, xi (t)) is called the relative risk function.

We make no assumptions of the form of the baseline hazard α0(t).

Thus the model contains a nonparametric part (the baseline hazard) and a
parametric part (the relative risk function) We say that the model is
semiparametric
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Cox’ regression model

The common choice of relative risk function is

r(β, xi (t)) = exp
(
βTxi (t)

)
= exp (β1xi1(t) + · · ·+ βpxip(t))

which gives Cox’ regression model.

Consider two individuals, indexed 1 and 2, and assume that all
components of x1(t) and x2(t) are equal, except the jth component,
where x2j(t) = x1j(t) + 1.

Then:

α(t|x2)

α(t|x1)
=
α0(t) exp

(
βTx2(t)

)
α0(t) exp

(
βTx1(t)

) = exp
(
βT (x2(t)− x1(t))

)
= eβj

Thus eβj is the hazard ratio for one unit’s increase in the j-th covariate,
keeping all other covariates constant

Bo Lindqvist Slides 11: Regression ()STK4080 7 / 37



Partial likelihood and estimation of β

Ordinary ML-estimation does not work for the relative risk regression
models (due to the nonparametric baseline).

Instead we have to use a partial likelihood, which we will now derive.

The intensity process of Ni (t) is given as

λi (t) = Yi (t)α(t|xi ) = Yi (t)α0(t)r(β, xi (t))

The intensity process of the aggregated counting process
N•(t) =

∑n
i=1Ni (t) takes the form (assuming no joint events)

P(dN•(t) = 1|Ft−) = λ•(t) =
n∑

i=1

λi (t) =
n∑

i=1

Yi (t)α0(t)r(β, xi (t))
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Cox’ partial likelihood

We consider the conditional probability of observing an event for individual
i at time t, given the past and given that an event is observed at time t :

π(i |t) = P(dNi (t) = 1|dN•(t) = 1,Ft−)

=
P(dNi (t) = 1|Ft−)

P(dN•(t) = 1|Ft−)
=
λi (t)

λ•(t)
=

Yi (t)r(β, xi (t))∑n
`=1 Y`(t)r(β, x`(t))

We obtain the partial likelihood for β by multiplying together the
conditional probabilites π(i |t) over all observed event times Tj :

L(β) =
∏
j

π(ij |Tj) =
∏
j

Yij (Tj)r(β, xij (Tj))∑n
`=1 Y`(Tj)r(β, x`(Tj))

=
∏
j

r(β, xij (Tj))∑
`∈Rj

r(β, x`(Tj))

Here ij is the index of the individual who experiences the event at Tj ,
while Rj = {` | Y`(Tj) = 1} is the risk set at Tj .
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Cox’ partial likelihood for β

Cox noted that since the baseline hazard α0(t) is completely unknown, the
times between events are not relevant for estimation of β.

Cox’ partial likelihood is essentially the likelihood of the observed failing
individuals i1, i2, . . .:

L(β) = “P(I1 = i1, I2 = i2, · · · , Ir = ir )′′

where Ij is the index of the individual that fails at time Tj .
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A simple example

Model : α(t|x) = α0(t)eβx .

Thus we have a single fixed covariate, x , while r(β, x) = eβx

Data:

i T̃i xi Di

1 5 12 0
2 10 10 1
3 40 3 0
4 80 5 0
5 120 3 1
6 400 4 1
7 600 1 0

j Tj Rj ij
1 10 {2, 3, 4, 5, 6, 7} 2
2 120 {5, 6, 7} 5
3 400 {6, 7} 6

L(β) =
e10β

e10β + e3β + e5β + e3β + e4β + eβ
· e3β

e3β + e4β + eβ
· e4β

e4β + eβ
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Simple example: Cox’ partial likelihood L(β)

Maximum partial likelihood estimate: β̂ = 0.765.
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Simple example: Cox’ log partial likelihood

Maximum partial likelihood estimate: β̂ = 0.765.
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Statistical inference in relative risk regression

It can be shown that the maximum partial likelihood estimator enjoys “the
usual properties” of ML-estimators.

Thus β̂ is approximately multivariate normally distributed around the true
value of β with a covariance matrix that may be estimated by I(β̂)−1,
where

I(β̂) =

{
− ∂2

∂βh∂βj
log L(β)

}
is the observed information matrix.
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Standard test and confidence interval for βj

To test the null hypothesis H0 : βj = 0 it is common to use the Wald test
statistic

Z =
β̂j

SE (β̂j)

which is approximately standard normally distributed under the null
hypothesis.

To obtain a confidence interval for the hazard ratio eβj we transform the
limits of the standard confidence interval for βj to get the 95% confidence
interval

exp{β̂j ± 1.96SE (β̂j)}
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Tests for the vector β

To test the simple null hypothesis H0 : β = β0 for a specified value of β0

(typically 0) we may apply the usual likelihood based tests statistics:

The likelihood ratio test statistic:

χ2
LR = 2{log L(β̂)− log L(β0)}

The score test statistic:

χ2
SC = U(β0)T I(β0)−1U(β0)

where U(β) = ∂
∂β

log L(β) is the vector of score functions

The Wald test statistic:

χ2
W = (β̂ − β0)T I(β̂)(β̂ − β0)

All the test statistics are approximately χ2-distributed with df = p under
the null hypothesis.
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Simple example: Testing H0 : β = 0

Using the data from the simple example we will test H0 : β = 0 versus
H1 : β 6= 0 by using the likelihood ratio test:

χ2
LR = 2(log L(β̂)− log L(0)) ∼ χ2

1

under the null hypothesis.

From the figure: χ2
LR = 2(−1.35− (−3.45)) = 2 · 2.10 = 4.2, so we reject

H0 at 5% level (critical value 3.84).
Bo Lindqvist Slides 11: Regression ()STK4080 17 / 37



Tests for composite hypotheses

All the tests may be generalized to a composite null hypothesis, where on
want to test the hypothesis that r of the regression coefficients are zero
(or equivalently, after a reparameterization, that there are r linear
restrictions among the regression coefficients).

In particular if β∗ is the maximum partial likelihood estimator under the
null hypothesis, the likelihood ratio test statistic takes the form

χ2
LR = 2(log L(β̂)− log L(β∗))

which is approximately χ2-distributed with df = r under the null
hypothesis.
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Using R

For illustration we use the melanoma data (cf practical exercises 1 and 2)

# Read data:

path="http://www.uio.no/studier/emner/matnat/math/STK4080/h14/melanoma.txt"

melanoma=read.table(path,header=T)

# We first consider the model with log-thickness as the only covariate:

fit.t=coxph(Surv(lifetime,status==1) log2(thickn),data=melanoma)

summary(fit.t)

# Note that we use base 2 logarithms for ease of interpretation

# Then we consider the model with log-thickness and sex as covariates:

fit.ts=coxph(Surv(lifetime,status==1) log2(thickn)+sex,data=melanoma)

summary(fit.ts)

# Note that since sex is a binary covariate (coded 1 and 2), we get the

# same estimates if we treat sex as a numeric covariate or as a

# categorical covariate [by using factor(sex) in the coxph-command]

# The two models may be compared using the likelihood ratio test:

anova(fit.t,fit.ts,test="Chisq")
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Simple example with R

library(survival)

coxdata=read.table("https://folk.ntnu.no/bo/STK4080/cox-hand.txt",header=T)

fit.c=coxph(Surv(Time,Status==1)∼x, data=coxdata)

summary(fit.c)
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Estimation of cumulative baseline hazard

We will estimate the cumulative baseline hazard

A0(t) =

∫ t

0
α0(u)du

We take the aggregated counting process N•(t) =
∑n

i=1Ni (t) as our
starting point.

Its intensity process is given by

λ•(t) =
n∑

i=1

λi (t) =

(
n∑

i=1

Yi (t)r(β, xi (t))

)
α0(t)

If we knew β, this would have been an example of the multiplicative
intensity model.
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Estimation of cumulative baseline hazard

For a given value of β, we may therefore estimate A0(t) by

Â0(t;β) =

∫ t

0

dN•(u)∑n
`=1 Y`(u)r(β, x`(u))

Since β is unknown, we replace it by β̂ to obtain the Breslow estimator :

Â0(t;β) =

∫ t

0

dN•(u)∑n
`=1 Y`(u)r(β̂, x`(u))

=
∑
Tj≤t

1∑
`∈Rj

r(β̂, x`(Tj))
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Estimation of individual cumulative hazards

If all covariates are fixed, the cumulative hazard corresponding to an
individual with a given covariate vector x0 is

A(t|x0) =

∫ t

0
α(u|x0)du =

∫ t

0
r(β, x0(u))α0(u)du = r(β, x0)A0(u)

and it may be estimated by

Â(t|x0) = r(β̂, x0)Â0(u)

For a given path x0(s) : 0 < s ≤ t of an external time-dependent
covariate, the cumulative hazard

A(t|x0) =

∫ t

0
r(β, x0(u))α0(u)du

may be estimated by

Â(t|x0) =

∫ t

0
r(β̂, x0(u))dÂ0(u) =

∑
Tj≤t

r(β̂, x0(Tj))∑
`∈Rj

r(β̂, x`(Tj))
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Estimation of individual survival functions

The corresponding survival function is given by the product integral

S(t|x0) =
∏
u≤t
{1− dA(u|x0)}

and may be estimated by

Ŝ(t|x0) =
∏
u≤t
{1− dÂ(u|x0)} =

∏
Tj≤t

{
1−

r(β̂, x0(Tj))∑
`∈Rj

r(β̂, x`(Tj))

}

Alternatively we may use (as is done in R):

S̃(t|x0) = exp{−Â(t|x0)}

The estimators of the cumulative hazards and survival functions are
approximately normal and their variances may be estimated as described in
section 4.1.6 (which is not part of the curriculum)
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Using R

For illustration we continue to use the melanoma data

# We first consider ulceration as the only covariate and start by

# making Nelson-Aalen plots for patients with and without ulceration:

fit.su=coxph(Surv(lifetime,status==1) strata(ulcer),data=melanoma)

surv.su=survfit(fit.su)

plot(surv.su,fun="cumhaz", mark.time=F,xlim=c(0,10),ylim=c(0,0.70),

xlab="Years since operation",ylab="Cumulative hazard",lty=1:2)

legend("topleft",c("Ulceration","No ulceration"),lty=1:2)

# We then fit a Cox model with ulceration as the only covariate and plot

# the model based estmates of the cumulative hazards in the same plot:

fit.u=coxph(Surv(lifetime,status==1) ulcer,data=melanoma)

surv.u=survfit(fit.u,newdata=data.frame(ulcer=c(1,2)))

lines(surv.u,fun="cumhaz", mark.time=F,conf.int=F, lty=1:2,col="red")
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Using R

# We then consider the model with ulceration and log-thickness

fit.ut=coxph(Surv(lifetime,status==1) ulcer+log2(thickn),data=melanoma)

summary(fit.ut)

# We will plot the cumulative hazards for the four covariate

combinations

# 1) ulcer=2, thickn=1

# 2) ulcer=2, thickn=4

# 3) ulcer=1, thickn=4

# 3) ulcer=1, thickn=8

new.covariates=data.frame(ulcer=c(2,2,1,1),thickn=c(1,4,4,8))

surv.ut=survfit(fit.ut,newdata= new.covariates)

plot(surv.ut,fun="cumhaz", mark.time=F, xlim=c(0,10), xlab="Years since

operation",ylab="Cumulative hazard",lty=1:4)

legend("topleft",c("1","2","3","4"), lty=1:4)

# To plot the survival functions for the same combinations of the

# covariates we just omit the "cumhaz" option:

plot(surv.ut,mark.time=F, xlim=c(0,10), xlab="Years since

peration",lty=1:4)

legend("bottomleft",c("1","2","3","4"), lty=1:4)
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Case-study: PBC-data from Mayo Clinic

424 patients with PBC (primary biliary cirrhosis (rare disease))

A randomized clinical trial with drug DPCA versus Placebo: 312 patients
chosen

Patients included in trial: January 1974 - May 1984

Follow-up until July 1986

First: Compared DPCA group and Placebo group by Kaplan Meier.

(Source: Fleming, Thomas R., and David P. Harrington. Counting
processes and survival analysis. Vol. 169. John Wiley & Sons, 2011.)

Bo Lindqvist Slides 11: Regression ()STK4080 27 / 37



KM-plot for DPCS vs. placebo
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Cox regression model for DPCS vs. placebo

Model: α(t|x) = α0(t)eβx

x=0 for DCPA α0(t)
x=1 for Placebo α0(t)eβ

β̂ = −0.0571, χ2
LR = 2(log L(β̂)− log L(0)) = 0.102 (not significant)

ŜE (β̂) = 0.1792
95% confidence interval for β : β̂ ± 1.96 · 0.1792
(-0.408, 0.294)

so CI for relative risk eβ: (0.66, 1.34)

Conclusion: In the best case the new drug leads to 1.34 relative risk for
not using it (would need at least 1.50 to do further investigations).
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Natural history model for PBC

The data on the 312 PBC randomized patients can be used to build a
statistical model for the influence of covariates on disease outcome.

The data contains 14 clinical, biochemical and histological variables.

Their model is (now α(·) is used instead of z(·) for hazard rate):

α(t|x) = α0(t)eβ1x1+β2x2+···+βkxk

In the beginning k=14
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Covariates
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Which covariates to keep in the model?

→ Bilirubin most significant

→ Take out expensive/complicated covariates:
stage, urine, copper, SGOT

Remains 11 variables; then a step-down procedure is used to eliminate one
(non-significant) variable at a time, arriving at lower table on next slide.
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Variable selection: Table
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Variable selection: Explanation

Table 4.4.2: Cox with 11 variable.

Recall: Z stat means Coef/Std.Err.

Step-down procedure: From (a) to (b): 5 variables taken out;

Log-likelihood statistic:

2 · difference in log likelihood = 7.268

should be compared to χ2
5 : P(χ2

5 > 7.268) = 0.201, so we do not reject
the null hypothesis that all these 5 variables have coefficients equal to 0.
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log-transformations

Then is considered log-transformations of continuous variables - four
variables using logs are added to model, and this leads to increased
likelihood!

Finally: Arrives at model 4.4.3(c)
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Final model (c)
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Estimation of survival probabilities

Recall:

S(t|x) = exp{−A(t|x)} = exp{−A0(t)eβ
′
x} = exp{−A0(t)eR}

where R = β1x1 + β2x2 + · · ·+ βkxk = β
′
x is called Risk Score.

The estimated survival function for a patient with estimated risk score R̂ is
hence

Ŝ(t|R̂) = e−Â0(t)eR̂

In the data we have the median risk score R̂ = 5.24, and for this value we
get the one- and five-year survival estimates:

Ŝ(1|R̂) = 0.982, Ŝ(5|R̂) = 0.845

A low-risk example: Age 52; Albumin 4.5; Bilirubin 0.5; Edema 0;
Prothrombin 10.1; gives

R̂ = 0.0333 · 52− 3.0553 · ln 4.5 + 0.879 · ln 0.5− · · · = 3.49

so Ŝ(5|R̂) = 0.97
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