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Regression models

Assume that we have a sample of n individuals, and let N;(t) count the
observed occurrences of the event of interest for individual 7 as a function
of (study) time t,

We have the decomposition
dN;(t) = \i(t)dt + dM;(t)

We will consider regression models where the intensity process \(t) for
individual / depends on a vector of (possibly) time-dependent covariates

xi(t) = (xia(t), ..., xip(t) T

The intensity for individual / may then be given as

Ai(t) = Yi(t)a(t]x;)

The new issue is hence that the hazard o depends on the values of the
covariates.
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Regression models

A regression model specifies how the hazard rate «(t|x;) depends on the
covariates.

We will consider two types of regression models:

o Relative risk regression models (section 4.1)

e Additive regression models (section 4.2)
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A note on covariates

Throughout we will assume that the covariate processes

X,'(t) = (Xil(t), - ,X,'p(t))T

are predictable

This implies that:

o fixed covariates should be measured in advance (i.e. at time zero)
and remain fixed throughout the study

@ the values at time t of time-dependent covariates should be known
“just before” time t

Covariates should not depend on information from the future!
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More on covariates

It is useful to distinguish between external (or exogenous) and internal (or
endogenous) covariates

Examples of external covariates are:

Fixed covariates

Defined time-dependent covariates: the covariate path is given at the
outset of the study (e.g. a person’s age at study time t)

Ancillary time-dependent covariates: the path of a stochastic process that
is not influenced by the event being studied (e.g. observed
level of air pollution)

Time-dependent covariates that are not external, are called internal

One example of an internal covariate is a biomarker measured for the
individuals during follow-up

Interpretation of regression analyses with internal time-dependent
covariates is not at all straightforward!
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Relative risk regression models

Assume that the hazard rate for individual i/ takes the form

a(t|x;) = ao(t)r(B, xi(t))

We assume r(/3,0) = 1, so the baseline hazard «aq(t) is the hazard for an
individual with all covariates equal to zero.

r(B,x;(t)) is called the relative risk function.
We make no assumptions of the form of the baseline hazard aq(t).

Thus the model contains a nonparametric part (the baseline hazard) and a
parametric part (the relative risk function) We say that the model is
semiparametric
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Cox’ regression model

The common choice of relative risk function is
r(B.xi(t)) = exp (B7xi(1)) = exp (Bixa () + - + o)

which gives Cox' regression model.

Consider two individuals, indexed 1 and 2, and assume that all
components of x1(t) and x2(t) are equal, except the jth component,
where xp;(t) = x(t) + 1.

Then:

a(t|xz) _ ao(t)exp (87 x2(1))
a(tlx1)  ag(t)exp (BT xi(t))

= exp (BT (xa(t) — (1)) ) = €

Thus e is the hazard ratio for one unit’s increase in the j-th covariate,
keeping all other covariates constant
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Partial likelihood and estimation of 3

Ordinary ML-estimation does not work for the relative risk regression
models (due to the nonparametric baseline).

Instead we have to use a partial likelihood, which we will now derive.

The intensity process of N;(t) is given as

Ai(t) = Yi(t)a(tlx;) = Yi(t)ao(t)r(B,xi(t))

The intensity process of the aggregated counting process
No(t) = >-7_; Nj(t) takes the form (assuming no joint events)

P(dNy(t) = 1|/ F;_) ZA = Yi(t)ao(t)r(B,xi(t))

i=1
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Cox' partial likelihood

We consider the conditional probability of observing an event for individual
i at time t, given the past and given that an event is observed at time t :

7(ilt) = P(dNi(t) = 1|dNa(t) = 1, Fp_)
P(dNi(t) = 11F:-) _ Xi(t) _  Yi(®)r(B,xi(t))
P(dNe(t) = 1|Fe—)  Ae(t) 2oy Ye(t)r(B, xe(t))

We obtain the partial likelihood for 3 by multiplying together the
conditional probabilites 7(i|t) over all observed event times T;:

' B,XIJ( ))
1@ = TG Hzg 1»@ T)r(B,x(T)))

r(8,x;(T}))
; Z[e’Rj r(ﬂ,Xg(Tj))

Here i is the index of the individual who experiences the event at T,
while R; = {¢| Y,(T;) = 1} is the risk set at T;.
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Cox' partial likelihood for 3

1 5
I ! —ee.. } S
0 T, T_2' T\r_
Atrisk R, Atrisk: Ry Atrisk: Ry
Failing: No.i, Failing: No.i, Failing No.i,

Cox noted that since the baseline hazard ag(t) is completely unknown, the
times between events are not relevant for estimation of 3.

Cox' partial likelihood is essentially the likelihood of the observed failing
individuals i1, o, . . .:

L(l@) = “P(Il = [1’ I2 = [27 e ’Ir — I'r)//

where [; is the index of the individual that fails at time T;.
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A simple example

Model: o(t|x) = ag(t)e?.

Thus we have a single fixed covariate, x, while r(j3, x) = e%*

Data:
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Simple example: Cox’ partial likelihood L(/5)
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Maximum partial likelihood estimate: 3 = 0.765

STK4080
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Simple example: Cox’ log partial likelihood
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Maximum partial likelihood estimate: 3 = 0.765

STK4080
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Statistical inference in relative risk regression

It can be shown that the maximum partial likelihood estimator enjoys “the
usual properties” of ML-estimators.

Thus B is approximately multivariate normally distributed around the true
value of 3 with a covariance matrix that may be estimated by 1(3)71,

B) = {505 e (5}

is the observed information matrix.

where

STK4080
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Standard test and confidence interval for j3;

To test the null hypothesis Hp : 8; = 0 it is common to use the Wald test
statistic

A

SE(B))
which is approximately standard normally distributed under the null
hypothesis.

To obtain a confidence interval for the hazard ratio €% we transform the
limits of the standard confidence interval for §; to get the 95% confidence
interval

exp{Bj £ 1.96SE(5;)}
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Tests for the vector 3

To test the simple null hypothesis Hy : 3 = 3 for a specified value of 3
(typically 0) we may apply the usual likelihood based tests statistics:

@ The likelihood ratio test statistic:

Xir = 2{log L(B) — log L(Bo)}
@ The score test statistic:

ngc = U(Bo)Tl(ﬁo)_lu(Bo)

where U(B) = % log L(B) is the vector of score functions
@ The Wald test statistic:

X%v = (B - 50)T|(B)(B — Bo)

All the test statistics are approximately x?-distributed with df = p under
the null hypothesis.
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Simple example: Testing Hy : 5 =0

Using the data from the simple example we will test Hy : 5 = 0 versus
Hi : 8 # 0 by using the likelihood ratio test:

Xir = 2(log L(B) — log L(0)) ~ xi
under the null hypothesis.

From the figure: x5 = 2(—1.35 — (—3.45)) = 2-2.10 = 4.2, so we reject
Ho at 5% level (critical value 3.84).
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Tests for composite hypotheses

All the tests may be generalized to a composite null hypothesis, where on
want to test the hypothesis that r of the regression coefficients are zero
(or equivalently, after a reparameterization, that there are r linear
restrictions among the regression coefficients).

In particular if 3* is the maximum partial likelihood estimator under the
null hypothesis, the likelihood ratio test statistic takes the form

Xir = 2(log L(B) — log L(B*))

which is approximately y?-distributed with df = r under the null
hypothesis.
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For illustration we use the melanoma data (cf practical exercises 1 and 2)

# Read data:
path="http://www.uio.no/studier/emner/matnat/math/STK4080/h14/melanoma.txt"
melanoma=read.table(path,header=T)

# We first consider the model with log-thickness as the only covariate:
fit.t=coxph(Surv(lifetime,status==1) log2(thickn),data=melanoma)
summary (fit.t)

# Note that we use base 2 logarithms for ease of interpretation

# Then we consider the model with log-thickness and sex as covariates:
fit.ts=coxph(Surv(lifetime,status==1) log2(thickn)+sex,data=melanoma)
summary (fit.ts)

# Note that since sex is a binary covariate (coded 1 and 2), we get the
# same estimates if we treat sex as a numeric covariate or as a

# categorical covariate [by using factor(sex) in the coxph-command]

# The two models may be compared using the likelihood ratio test:

anova(fit.t,fit.ts,test="Chisq")
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Simple example with R

library(survival)

coxdata=read.table("https://folk.ntnu.no/bo/STK4080/cox-hand.txt" ,header=T)
fit.c=coxph(Surv(Time,Status==1)~x, data=coxdata)
summary (fit.c)

Call:
coxph {(formula = Surv(Time, S5tatus = 1) ~ x, data = coxdata)

n= 7, number of events= 3

coef expl{coef) =e(coef) z Pri>|z]
x 0.7650 2.1481 0.6057 1.263 0.207

exp {coef) exp(-coef) lower .55 upper .85

X 2.149 0.4653 0.8557 7.044
Concordance= 0.875 (=e = 0.242

Esquare= 0.472 {max po==zible= 0.641 )
Likelihood ratio test= 4.46 on 1 df, p=0.0348
Wald test = lah enldE; p=0.2085

Score (logrank) test 4.81 on 1 d4f; p=0.0283
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Estimation of cumulative baseline hazard

We will estimate the cumulative baseline hazard

Ao(t) = /Otoco(u)du

We take the aggregated counting process No(t) = >_7_; Ni(t) as our
starting point.

Its intensity process is given by

)\o(t) = Z)\l(t) = (Z \/,‘(t)r(,B,X,'(t))> CVo(t)
i=1 i=1

If we knew 3, this would have been an example of the multiplicative
intensity model.
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Estimation of cumulative baseline hazard

For a given value of 3, we may therefore estimate Ag(t) b

dNe(u)
olt:8) = /‘zgl ()r(B, xe(w))

Since 3 is unknown, we replace it by ,[AB to obtain the Breslow estimator:

N dN.(u)
Aolt) /‘EE1Wu>< (1)

%iZm@dﬁm(ﬂ)
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Estimation of individual cumulative hazards

If all covariates are fixed, the cumulative hazard corresponding to an
individual with a given covariate vector xq is

Altlxo) = [ alulxo)du = [ r(8,x0(u))ao(u)du = r(B.xa)Aofu)
0 0
and it may be estimated by
A(t[xo) = (B, x0)Ao(u)

For a given path xg(s) : 0 < s < t of an external time-dependent
covariate, the cumulative hazard

A(t|xo) = /Ot r(8, xo(u))ao(u)du

may be estimated by

~ = tr 3, xo(u Ao(u) = r(/&XO(Tj))
Aleixo) = [ r(Bxo(u))do(e) 25 (BoxdT)
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Estimation of individual survival functions

The corresponding survival function is given by the product integral

S(tlxo) = JJ{1 — dA(ulx0)}

u<t

and may be estimated by

S(tlxo) = [ [{1 - dA(ulxo)} = ] { r(B,%o(T5) }

u<t Ti<t ZZER (Bvxf(TJ))

Alternatively we may use (as is done in R):

§(t|x0) = exp{—/z\(t]xo)}

The estimators of the cumulative hazards and survival functions are
approximately normal and their variances may be estimated as described in
section 4.1.6 (which is not part of the curriculum)
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For illustration we continue to use the melanoma data

# We first consider ulceration as the only covariate and start by

# making Nelson-Aalen plots for patients with and without ulceration:
fit.su=coxph(Surv(lifetime,status==1) strata(ulcer),data=melanoma)
surv.su=survfit(fit.su)

plot(surv.su,fun="cumhaz", mark.time=F,xlim=c(0,10),ylim=c(0,0.70),
xlab="Years since operation",ylab="Cumulative hazard",lty=1:2)
legend("topleft",c("Ulceration","No ulceration"),lty=1:2)

# We then fit a Cox model with ulceration as the only covariate and plot
# the model based estmates of the cumulative hazards in the same plot:
fit.u=coxph(Surv(lifetime,status==1) ulcer,data=melanoma)
surv.u=survfit (fit.u,newdata=data.frame(ulcer=c(1,2)))
lines(surv.u,fun="cumhaz", mark.time=F,conf.int=F, 1lty=1:2,col="red")
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# We then consider the model with ulceration and log-thickness
fit.ut=coxph(Surv(lifetime,status==1) ulcer+log2(thickn),data=melanoma)
summary (fit.ut)

# We will plot the cumulative hazards for the four covariate
combinations

# 1) ulcer=2, thickn=1

# 2) ulcer=2, thickn=4

# 3) ulcer=1, thickn=4

# 3) ulcer=1, thickn=8
new.covariates=data.frame(ulcer=c(2,2,1,1),thickn=c(1,4,4,8))
surv.ut=survfit (fit.ut,newdata= new.covariates)
plot(surv.ut,fun="cumhaz", mark.time=F, xlim=c(0,10), xlab="Years since
operation",ylab="Cumulative hazard",lty=1:4)
legend("topleft",c("1","2" "3","4"), 1ty=1:4)

# To plot the survival functions for the same combinations of the

# covariates we just omit the "cumhaz" option:
plot(surv.ut,mark.time=F, x1lim=c(0,10), xlab="Years since
peration",lty=1:4)

legend("bottomleft",c("1","2","3","4"), lty=1:4)
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Case-study: PBC-data from Mayo Clinic

424 patients with PBC (primary biliary cirrhosis (rare disease))

A randomized clinical trial with drug DPCA versus Placebo: 312 patients
chosen

Patients included in trial: January 1974 - May 1984
Follow-up until July 1986
First: Compared DPCA group and Placebo group by Kaplan Meier.

(Source: Fleming, Thomas R., and David P. Harrington. Counting
processes and survival analysis. Vol. 169. John Wiley & Sons, 2011.)

Bo Lindquist Slides 11: Regression STK4080




KM-plot for DPCS vs. placebo
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Figure 4.4.1 Estimated survival curves in DPCA and placebo groups, PBC data,
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Cox regression model for DPCS vs. placebo

Model: a(t|x) = ag(t)e’

x=0 for DCPA  «p(t)

x=1 for Placebo ap(t)e”

B = —0.0571, X2p = 2(log L(B) — log L(0)) = 0.102 (not significant)
SE(B) = 0.1792

95% confidence interval for (3 : B 4+1.96-0.1792

(-0.408, 0.294)

so Cl for relative risk e®: (0.66, 1.34)

Conclusion: In the best case the new drug leads to 1.34 relative risk for
not using it (would need at least 1.50 to do further investigations).
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Natural history model for PBC

The data on the 312 PBC randomized patients can be used to build a
statistical model for the influence of covariates on disease outcome.

The data contains 14 clinical, biochemical and histological variables.

Their model is (now «f(-) is used instead of z(-) for hazard rate):
a(t]x) = ap(t)elra+iaxet+Bix

In the beginning k=14
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Covariates

Table 4.4.1  Prognostic Factors: Summary of Univariate Statistics
(312 Patients in the PBC Clinical Trial of DPCA)

Demographic min 1stQ med 3rdQ max Missing Rao y*(1 d.f.)

Age (years) 263 42.1 49.8 56.7 T84 0 20.86

Sex male: 36 fermale: 276 0 4.27
Clinical Absent Present Missing Rao x*(1 d.f)
Asciles 288 24 0 104.02
Hepatomegaly 152 160 0 40.18
Spiders 222 20 0 30,31
Edema’ 0: 263 1/2: 29 1: 20 0 97.89
Biochemical min 15tQ med 3rdQ max Missing Rao x*(1 df)
Bilirubin 0.3 0.8 1.35 345 28.0 1] 190.62
Albumin 1.96 331 3.55 3.80 4.64 U] T0.83
Urine Copper 4 41 73 123 588 2 84,35

Pro Time 9.0 10.0 10.6 11.1 17.1 0 51.76
Platelet Count 62 200 257 323 563 4 12.15
Alkaline Phos 289 867 1259 1985 13862 (1} 258
SGOT 26 81 115 152 457 0 29.59
Histwologic 1 2 3 4 Missing Rao x"(l d.f.)
Stage 16 67 120 109 0 46.49
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Which covariates to keep in the model?

— Bilirubin most significant

— Take out expensive/complicated covariates:
stage, urine, copper, SGOT

Remains 11 variables; then a step-down procedure is used to eliminate one
(non-significant) variable at a time, arriving at lower table on next slide.
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Variable selection: Table

Table 4.4.2  Results of variable selection procedure
in 312 randomized cases with PBC.

(a) First Swep, log likelihood —550.603

Coef. Sud. Err. Z stal.
Age 2819 e2 9538 -3 2.96
Albumin ~9.713 e-1  2.681 e-1 —3.62
Alk. Phos 1.445 e-5  3.544 e-5 041
Ascites 2813el 3093 el 0.91
Bilirubin 1057 e-1  1.667 e-2 6.34
Edema 6915 el  3.226 e-1 2.14
Hepatomegaly 4853 e-1 2913 e-1 221
Platelets —6.063 e-d 1025 e-3 -0.5%
Prothrombin Time 2428 e-1  R.420 e-2 2.88
Sex —4.769 e-1  2.643 e-1 —1.80
Spiders 2889 el 2093 e-1 1.38

(b) Last Step, log likelihood —554.237

Coel. Std. Err. Z stat,
Age 0.0338 0.00925 3.65
Albumin ~1.0752 0.24103 —4.46
Bilirubin 0.1070 0.01528 7.00
Edema 0.8072 0.30775 2.62
Hepatomegaly 0.5903 0.21179 279
Prothrombin Time 0.2603 0.07786 334
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Variable selection: Explanation

Table 4.4.2: Cox with 11 variable.

Recall: Z stat means Coef/Std.Err.

Step-down procedure: From (a) to (b): 5 variables taken out;
Log-likelihood statistic:

2 - difference in log likelihood = 7.268

should be compared to x2 : P(x2 > 7.268) = 0.201, so we do not reject
the null hypothesis that all these 5 variables have coefficients equal to 0.
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log-transformations

Then is considered log-transformations of continuous variables - four

variables using logs are added to model, and this leads to increased
likelihood!

Finally: Arrives at model 4.4.3(c)
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Final model (c

Table 443  Regression models with log transformations
of continuous variables, 312 randomized cases with PBC.

(a) Log likelihood —538.274

Coef. S5ud. Emr.  Z stat.
Age —0.028% 007141 -041
log(age) 32248  3.71828 0.87
Albumin 1.0068 1.73450 0.58
log(Albumin) —5.8629 542315 108
Bilirubin —0.0461 0.03547 -1.30
log(Bilirubin) L0774 0.21127 5.10
Edema 0.8238 0.30386 27
Prothrombin Time ~0.6175 1.14523 —0.54
log(Pro Time) 10.1928 1336131 0.76
Hepatomegaly 0.1964 0.22628 0.87

(b) Log likelihood —541.064
Coef. Sid. Err. 7 stat.
Age 0.0337  0.00864 3.89

Albumin —0.9473 023713 —3.99%
log(Bilirubin) 0.8845  0.09854 898
Edema 0.8006  0.29914 2.68

Prothrombin Time 0.2463  0.08426 292
(¢) Log likelihood —540.412
Coef. Sid. Err. 7 star.

Age 0.0333  0.00866 3.84
log(Albumin) —3.0553 0.72408 —4.22
log(Bilirubin) 08792 0.09873 890
Edema 0.7847 029913 2.62

log(Prothrombin Time) 3.0157 1.02380 295
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Estimation of survival probabilities

Recall:
S(tlx) = exp{—A(tlx)} = exp{—Ao(t)eP *} = exp{~Aq(t)e"}
where R = [1x1 + Boxo + -+ + Brxx = le is called Risk Score.

The estimated survival function for a patient with estimated risk score Ris

hence o N
S(t|R) = e Aolt)e

In the data we have the median risk score R = 5.24, and for this value we

get the one- and five-year survival estimates:
S(1|R) = 0.982, 5(5|R) = 0.845
A low-risk example: Age 52; Albumin 4.5; Bilirubin 0.5; Edema 0;
Prothrombin 10.1; gives
R =0.0333-52 — 3.0553-In4.5+0.879 - In0.5 — - - - = 3.49
so 5(5|R) = 0.97
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