Extra exercises in STK4080 2021

Solution Exercise E5.1

Let the situation be as on pages 15-17 in Slides 15.

Assume now that $\alpha(t) = \lambda$ is a constant, and let $Z \sim \text{Gamma}(1/\delta, 1/\delta)$.

a) Write down the resulting expressions for $A(t), \mu(t), S(t)$ and f(t). Solution:

$$\begin{aligned} A(t) &= \lambda t \\ \mu(t) &= \lambda (1 + \delta \lambda t)^{-1} \\ S(t) &= (1 + \delta \lambda t)^{-\frac{1}{\delta}} \\ f(t) &= \mu(t) S(t) = \lambda (1 + \delta \lambda t)^{-\frac{1}{\delta} - 1} \end{aligned}$$

Let (\tilde{T}_i, D_i) ; i = 1, 2, ..., n be a (possibly right censored/independent censoring) sample from the distribution. Observe that this is the same situation as considered in Exercise 1 of Slides 16, but now assuming that each cluster consists of exactly one item (individual).

b) Use the cited Exercise 1 to write down the likelihood and log likelihood for the present problem. Show that the log likelihood can be written

$$\ell(\lambda,\delta) = D_{\bullet} \log \lambda - \sum_{i=1}^{n} \left(D_{i} + \frac{1}{\delta} \right) \log \left(1 + \delta \lambda \tilde{T}_{i} \right)$$

where $D_{\bullet} = \sum_{i=1}^{n} D_i$ is the number of events.

Solution: Use the expression for log L on p. 7 in Slides 16. Note that we now have $n_i = 1$ and $V_i = \lambda \tilde{T}_i$. Further, $D_{i\bullet} = D_i$ and $\mathcal{L}(c) = (1+\delta c)^{-1/\delta}$, $\mathcal{L}'(c) = -(1+\delta c)^{-1/\delta-1}$. Check that the above expression corresponds to the one of p. 7 in Slides 16 both for $D_i = 0$ and $D_i = 1$.

c) Derive the score functions and explain how you can find the maximum likelihood estimates for λ and δ .

Solution: It is straightforward to derive the equations $\frac{\partial \ell(\lambda, \delta)}{\partial \lambda} = 0$ and $\frac{\partial \ell(\lambda, \delta)}{\partial \delta} = 0$.

Exercise E5.2

We have intuitively explained the fact that the hazard rates are "dragged down" on p. 18 of Slides 15 by the fact that for large values of δ , there are many individuals with high hazard, and which fail first.

In this exercise we will show that the expression for $E(Z_i|H_i)$ on p. 11 of Slides 16 can be used to get some information on this effect of "failing first".

The calculation in Slides 16 is for a cluster of n_i individuals. We can, however, put $n_i = 1$.

a) Consider the population hazard as calculated in Slides 15 on p. 16 and illustrated on p. 17. Explain why the formula on p. 11 of Slides 16 implies that

$$E(Z|T=t) = \frac{\delta+1}{\delta A(t)+1}$$

Describe in words what this equation tells us about the size of Z for an individual that fails at time t. Consider in particular t = 0.

Solution: The setting is now without data, so there is no censoring. Moreover, $n_i = 1$ so $D_{i\bullet} = 1$ and $V_i = A(t)$. Thus the formula on p. 11, Slides 16 gives the result of the exercise. This tells us the expected value of the frailty Z for an individual that fails at time t. It is a decreasing function of t, meaning intuitively that the most frail individuals fail first. Close to 0, the value is $\delta + 1$, which is the maximum value of the expectation.

b) Let now $\alpha(t) = t^2$ as on p. 17 of Slides 15. Calculate E(Z|T = t) for some values of t and comment. For which value of t is E(Z|T = t) = 1? Solution:

$$E(Z|T=t) = \frac{3\delta + 3}{t^3\delta + 3}$$

This equals 1 if $t = 3^{1/3} \approx 1.44$.