Exercise 3.3

a) Let q be a strictly increasing continuously differentiable function. Then we have the Taylor series expansion:

$$
g(\widehat{A}(t)) \approx g(A(t)) + g'(A(t))(\widehat{A}(t) - A(t))
$$

It follows that the distribution of $g(\hat{A}(t))$ is approximately the same as the distribution of bution of

$$
g(A(t)) + g'(A(t))(\widehat{A}(t) - A(t))
$$
\n(E.1)

If we use that $A(t)$ is approximately normally distributed with mean $A(t)$, we see
that $(E, 1)$ is approximately normally distributed with mean $a(A(t))$ and variance that (E.1) is approximately normally distributed with mean $g(A(t))$ and variance $\{g'(A(t))\}^2$ Var $\widehat{A}(t)$. The latter is estimated by $\{g'(\widehat{A}(t))\}^2 \widehat{\sigma}^2(t)$. This shows the result.

b) By the result in question a we have that

$$
\frac{g(\widehat{A}(t)) - g(A(t))}{g'(\widehat{A}(t))\widehat{\sigma}(t)}
$$

is approximately standard normally distributed. It then follows by a standard argument that

$$
g(\widehat{A}(t)) \pm z_{1-\alpha/2} g'(\widehat{A}(t)) \widehat{\sigma}(t)
$$

is an approximate $100(1 - \alpha)$ % confidence interval for $q(A(t))$. Here \pm means + for the upper limit and − for the lower limit of the confidence interval.

c) With $g(x) = \log x$, we have $g'(x) = 1/x$. Thus an approximate $100(1 - \alpha)\%$ confidence interval for $\log A(t)$ is confidence interval for $log A(t)$ is

$$
\log \widehat{A}(t) \pm z_{1-\alpha/2} \widehat{\sigma}(t) / \widehat{A}(t)
$$

By exponentiating the lower and upper limits of this confidence interval, we get the following confidence interval for $A(t)$:

$$
\exp\Big\{\log \,\widehat{A}(t) \pm z_{1-\alpha/2}\,\widehat{\sigma}(t)/\widehat{A}(t)\Big\}
$$

i.e.

$$
\widehat{A}(t)\exp\left\{\pm z_{1-\alpha/2}\,\widehat{\sigma}(t)/\widehat{A}(t)\right\}
$$

This is (3.7) in the ABG-book.