
Exercise 3.3

a) Let g be a strictly increasing continuously differentiable function. Then we have
the Taylor series expansion:
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It follows that the distribution of g
(
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)
is approximately the same as the distri-
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(E.1)

If we use that Â(t) is approximately normally distributed with mean A(t), we see
that (E.1) is approximately normally distributed with mean g

(
A(t)

)
and variance{

g′
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)}2
VarÂ(t). The latter is estimated by

{
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)}2
σ̂2(t). This shows the

result.

b) By the result in question a we have that
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)
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)
σ̂(t)

is approximately standard normally distributed. It then follows by a standard
argument that

g
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)± z1−α/2 g′
(
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σ̂(t)

is an approximate 100(1 − α)% confidence interval for g(A(t)). Here ± means +
for the upper limit and − for the lower limit of the confidence interval.

c) With g(x) = log x, we have g′(x) = 1/x. Thus an approximate 100(1 − α)%
confidence interval for log A(t) is

log Â(t)± z1−α/2 σ̂(t)/Â(t)

By exponentiating the lower and upper limits of this confidence interval, we get the
following confidence interval for A(t):

exp
{
log Â(t)± z1−α/2 σ̂(t)/Â(t)

}

i.e.

Â(t) exp
{
±z1−α/2 σ̂(t)/Â(t)

}

This is (3.7) in the ABG-book.
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