(when considered as a process in ty). The variance of the test statistic is estimated by

Via(to) = /0 0 #%ow.(t) (3.55)

If the null hypothesis holds true, we have the decomposition
dN,(t) = a(t)Y.(t)dt + dM. (t)

From (3.54) and (3.55) it follows that under Hy we may write

Via(to) = AO#%{Q(t)y(t)dH dM.(1)}

- @)+ [ %dww

Here the last term on the right-hand side is a mean zero martingale, and hence
E{Vii(to)} = E{(Z1)(t0)} + 0 = E{(Z1)(t0)}

Further by (2.24) in the ABG-book we know that
Var {Z:(to)} = E{(21)(to)}

Thus (3.55) is an unbiased variance estimator under Hp.

Exercise 3.11

Under the null hypothesis Z;(ty) is a point along the sample path of a mean-zero
martingale. For the log-rank test Z;(ty) can be rewritten (cf. page 108 in the ABG-
book):

Zi(to) = Ni(to) — / 0 3;1((2)) AN.(u) = Ny (to) — Ei(to). (E.21)

0

Since E{Z;(ty)} = 0, we can take expectations on both sides of (E.21) to get
0=E{MN(to)} — E{E1(to)}-
Therefore E{E1 (to)] = E{Nl(t())}

Exercise 3.12

N(t) is a counting process with multiplicative intensity process A(t) = a(t)Y (¢).
We want to test the null hypothesis

Hp : a(t) = ap(t) for all ¢ € [0,t0]

for a known function ay(t).
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a) We introduce J(t) = I{Y (t) > 0}, the Nelson-Aalen estimator

At) = /0 ;((3 dN(s) (E.22)

and

Aé(t):/o J(s)ap(s)ds (E.23)

When the null hypothesis holds true, we have that

M(t) = N(t) — /0 ao(5)Y (s) ds

is a mean-zero martingale. Hence under Hy we have that

A(t) — Ax(t) = /O (5) sy - /0 J(8)ag(s) ds

- dM(s) (E.24)

From (E.24) we see that under the null hypothes, A\(t) — A{(t) is the integral of
the predictable process J(s)/Y (s) with respect to the martingale M (s). Therefore

o~

A(t) — Aj(t) is a stochastic integral, and hence a mean-zero martingale, under Hy.

b) When the null hypothesis holds true, we have that A(t) = ao(t)Y (¢), and it follows
by (E.24) and (2.48) in the ABG-book that A(t) — Aj(t) has predictable variation

roces
(-0 = [ (22 5o
Y
)

_ [ ap(s)ds
_/0 o au(s)d (B.25)

In the last equality, we use that J(s) can only take the values 0 and 1, and therefore
J*(s) = J(s).

¢) We now consider the test statistic
to R
Z(ty) = /0 L(t)(dA(t) - dA;;(t)) (E.26)
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where L(t) is a nonnegative predictable weight process that is 0 whenever Y (¢) = 0.
Under H,y we have by (E.24) that

Z(ty) = /0 0L<t)% AM(%) (E.27)

which is a stochastic integral and hence a mean-zero martingale (when considered
as a process in ty). Hence, under Hy we have that E{Z(t;)} = 0. Further we see
from (E.26) that when «(t) > ag(t) the test statistic Z(to) tends to be positive,
while when a(t) < ap(t) it tends to be negative. Therefore Z(ty) is a reasonable
test statistic.

By (E.27) and (2.48) in the ABG-book we have under the null hypothesis that
fo J(s))”
@) = [ {roge ) Aeas
0

- /;0 {L(t);(z) }2 ao(s)Y (s) ds (E.28)

B to L2(8)a o) ds
= ¥ o(s)d (E.29)

The final equality uses the assumption that L(t) = 0 whenever Y (¢) = 0.

We note that since ag(t) is known, (Z)(to) can be computed from data. Further by
(2.24) in the ABG-book

E{{Z)(to)} = Var{Z(to)}
so (Z)(to) is an unbiased estimator for the variance og Z(tp) under Hp.

Using the martingale central limit theorem, one may prove that under the null hy-
pothesis Z(ty) is approximately normally distributed with mean zero and a variance
that may be estimated by (Z)(to).

Therefore the standardized test statistic
Z(to)
(Z)(to)

is approximately standard normally distributed when Hj holds true.
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Y (t), we have from (E.22), (E.23), and (E.26) that
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(Va)

N—

= N(to) — /0 i Y (s)ap(s)ds

= N(to) — E(to)-

Under the null hypothesis E{Z(t)} = 0. Therefore E{N(to)} = E{E(to)}, so E(to)
may be interpreted as the expected number of events under the null hypothesis.

g) By (E.29) we have when L(t) = Y (t) that

@ - [ %aw) at= [ Y(autt @t = (e

Combining this with the results of parts e) and f), we find that the standardized
test statistic

N(to) — E(to)
E(to)

is approximately standard normally distributed under Hj.

Chapter 4

Exercise 4.1

Each counting process N;(t) has intensity process \;(t) = Yi(t) exp (8" x;)ao(t). Let
Ty < Ty < --- be the failure times, let R; denote the risk set at time 7}, and let
i; denote the index of the individual who has an event at time 7} (assuming no tied
failure times). Then the partial likelihood is given by

exp (BTXZ‘ )
L _ J
W=l e ()

It follows that the log partial likelihood takes the form

(=23 {ﬂ T, —log (3 exp (BTX“))}

Tj éGRj
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