
(when considered as a process in t0). The variance of the test statistic is estimated by

V11(t0) =

∫ t0

0

L2(t)

Y1(t)Y2(t)
dN�(t) (3.55)

If the null hypothesis holds true, we have the decomposition

dN�(t) = α(t)Y�(t) dt+ dM�(t)

From (3.54) and (3.55) it follows that under H0 we may write

V11(t0) =

∫ t0

0

L2(t)

Y1(t)Y2(t)

{
α(t)Y�(t) dt+ dM�(t)

}

= 〈Z1〉(t0) +
∫ t0

0

L2(t)

Y1(t)Y2(t)
dM�(t)

Here the last term on the right-hand side is a mean zero martingale, and hence

E {V11(t0)} = E {〈Z1〉(t0)}+ 0 = E {〈Z1〉(t0)}
Further by (2.24) in the ABG-book we know that

Var {Z1(t0)} = E {〈Z1〉(t0)}
Thus (3.55) is an unbiased variance estimator under H0.

Exercise 3.11

Under the null hypothesis Z1(t0) is a point along the sample path of a mean-zero
martingale. For the log-rank test Z1(t0) can be rewritten (cf. page 108 in the ABG-
book):

Z1(t0) = N1(t0)−
∫ t0

0

Y1(u)

Y�(u)
dN·(u) = N1(t0)− E1(t0). (E.21)

Since E{Z1(t0)} = 0, we can take expectations on both sides of (E.21) to get

0 = E{N1(t0)} − E{E1(t0)}.
Therefore E{E1(t0)] = E{N1(t0)}.

Exercise 3.12

N(t) is a counting process with multiplicative intensity process λ(t) = α(t)Y (t).
We want to test the null hypothesis

H0 : α(t) = α0(t) for all t ∈ [0, t0]

for a known function α0(t).
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a) We introduce J(t) = I{Y (t) > 0}, the Nelson-Aalen estimator

Â(t) =

∫ t

0

J(s)

Y (s)
dN(s) (E.22)

and

A∗
0(t) =

∫ t

0

J(s)α0(s) ds (E.23)

When the null hypothesis holds true, we have that

M(t) = N(t)−
∫ t

0

α0(s)Y (s) ds

is a mean-zero martingale. Hence under H0 we have that

Â(t)− A∗
0(t) =

∫ t

0

J(s)

Y (s)
dN(s)−

∫ t

0

J(s)α0(s) ds

=

∫ t

0

J(s)

Y (s)

(
dN(s)− α0(s)Y (s) ds

)

=

∫ t

0

J(s)

Y (s)
dM(s) (E.24)

From (E.24) we see that under the null hypothes, Â(t) − A∗
0(t) is the integral of

the predictable process J(s)/Y (s) with respect to the martingale M(s). Therefore

Â(t)− A∗
0(t) is a stochastic integral, and hence a mean-zero martingale, under H0.

b) When the null hypothesis holds true, we have that λ(t) = α0(t)Y (t), and it follows

by (E.24) and (2.48) in the ABG-book that Â(t)− A∗
0(t) has predictable variation

process

〈
Â− A∗

0

〉
(t) =

∫ t

0

(
J(s)

Y (s)

)2

λ(s) ds

=

∫ t

0

(
J(s)

Y (s)

)2

α0(s)Y (s) ds

=

∫ t

0

J(s)

Y (s)
α0(s) ds (E.25)

In the last equality, we use that J(s) can only take the values 0 and 1, and therefore
J2(s) = J(s).

c) We now consider the test statistic

Z(t0) =

∫ t0

0

L(t)
(
dÂ(t)− dA∗

0(t)
)

(E.26)
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where L(t) is a nonnegative predictable weight process that is 0 whenever Y (t) = 0.
Under H0 we have by (E.24) that

Z(t0) =

∫ t0

0

L(t)
J(t)

Y (t)
dM(t) (E.27)

which is a stochastic integral and hence a mean-zero martingale (when considered
as a process in t0). Hence, under H0 we have that E{Z(t0)} = 0. Further we see
from (E.26) that when α(t) > α0(t) the test statistic Z(t0) tends to be positive,
while when α(t) < α0(t) it tends to be negative. Therefore Z(t0) is a reasonable
test statistic.

d) By (E.27) and (2.48) in the ABG-book we have under the null hypothesis that

〈Z〉(t0) =
∫ t0

0

{
L(t)

J(s)

Y (s)

}2

λ(s) ds

=

∫ t0

0

{
L(t)

J(s)

Y (s)

}2

α0(s)Y (s) ds (E.28)

=

∫ t0

0

L2(s)

Y (s)
α0(s) ds (E.29)

The final equality uses the assumption that L(t) = 0 whenever Y (t) = 0.

We note that since α0(t) is known, 〈Z〉(t0) can be computed from data. Further by
(2.24) in the ABG-book

E{〈Z〉(t0)} = Var{Z(t0)}

so 〈Z〉(t0) is an unbiased estimator for the variance og Z(t0) under H0.

e) Using the martingale central limit theorem, one may prove that under the null hy-
pothesis Z(t0) is approximately normally distributed with mean zero and a variance
that may be estimated by 〈Z〉(t0).
Therefore the standardized test statistic

Z(t0)√〈Z〉(t0)
is approximately standard normally distributed when H0 holds true.
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f) When L(t) = Y (t), we have from (E.22), (E.23), and (E.26) that

Z(t0) =

∫ t0

0

Y (t)
(
dÂ(t)− dA∗

0(t)
)

=

∫ t0

0

Y (s)

(
J(s)

Y (s)
dN(s)− J(s)α0(s) ds

)

=

∫ t0

0

J(s)
(
dN(s)− α0(s)Y (s) ds

)

= N(t0)−
∫ t0

0

Y (s)α0(s) ds

= N(t0)− E(t0).

Under the null hypothesis E{Z(t0)} = 0. Therefore E{N(t0)} = E{E(t0)}, so E(t0)
may be interpreted as the expected number of events under the null hypothesis.

g) By (E.29) we have when L(t) = Y (t) that

〈Z〉(t0) =
∫ t0

0

Y 2(t)

Y (t)
α0(t) dt =

∫ t0

0

Y (t)α0(t) dt = E(t0)

Combining this with the results of parts e) and f), we find that the standardized
test statistic

N(t0)− E(t0)√
E(t0)

is approximately standard normally distributed under H0.

Chapter 4

Exercise 4.1

Each counting process Ni(t) has intensity process λi(t) = Yi(t) exp
(
β�xi

)
α0(t). Let

T1 < T2 < · · · be the failure times, let Rj denote the risk set at time Tj, and let
ij denote the index of the individual who has an event at time Tj (assuming no tied
failure times). Then the partial likelihood is given by

L(β) =
∏
Tj

exp
(
β�xij

)
∑

�∈Rj
exp

(
β�x�

)
It follows that the log partial likelihood takes the form

�(β) =
∑
Tj

{
β�xij − log

( ∑
�∈Rj

exp
(
β�x�

))}
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