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Example: A multistate model for breast cancer

From:

Putter, H., Fiocco, M., & Geskus, R. B. (2007). Tutorial in biostatistics:
competing risks and multi-state models. Statistics in Medicine,
26(11), 2389-2430.
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Multistate models

We will consider stochastic processes X (t) which move within finite state
spaces S = {0, 1, . . . , k}; e.g.,

We will in particular consider

I The competing risks model

I The illness-death (e.g. healthy-illness-death)) model

I The general case (Aalen-Johansen estimator)
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Competing risks

Suppose that for each individual we observe

I the time to the event of interest (“failure”), T

I the cause of failure, H ∈ {1, 2, . . . , k}

The pair (T ,H) is the observation in a case of competing risks.
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Examples

I Classical competing risks: Individuals subjected to multiple causes of
death, for example

I David Bernoulli (1760): How to disentangle the risk of dying from
smallpox from other causes.

I Demography and actuarial sciences
I “Multiple-decrement analysis”

I Cancer research:
I Age at onset of cancer and cancer type
I Disease relapse vs death in remission

I Reliability: Breakdown of a mechanical component, with several
possible root causes for failure:

I vibration
I corrosion
I etc.
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Latent failure time approach to competing risks
Suppose the k causes are represented by potential failure times T1, . . . ,Tk

One observes only:

I The smallest time, T = minh Th

I Its index H = arg minh Th (assumed unique)

Important issues:

I The marginal distributions of the Tj are often of primary interest, but
are non-identifiable in general by observation of (T ,H) only (even if
we have an infinite number of observations of (T ,H))

I Additional, but non-testable, assumptions may lead to identifiability
(for example, independence of the Tj).

I In biostatistics, one usually avoids the latent failure time
approach and restricts attention to the pair (T ,H).

I Independent censoring at time C can easily be included, leading to
the observation of the time T̃ = min(T ,C ) together with H, where
H = 0 means censoring.
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Model specification: The cumulative incidence
function

I The joint distribution of the observed pair (T ,H) is given by the
cumulative incidence function

Fh(t) = P(T ≤ t,H = h) for t > 0, h = 1, ...k

I The marginal distributions of T and H are hence given by

F (t) = P(T ≤ t) =
k∑

h=1

Fh(t) for t > 0

πh = P(H = h) = Fh(∞) for h = 1, ...k
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Specification by cause-specific hazard rates

I The distribution of (T ,H) can alternatively be specified by the
cause-specific hazard functions:

αh(t) = lim
∆t→0

P (t < T ≤ t + ∆t,H = h|T > t)

∆t
=

fh(t)

S(t)

where fh(t) = F ′h(t) is the derivative of the cumulative incidence
function and S(t) = 1− F (t) is the survival function of T .

I It follows that fh(t) = S(t)αh(t) and hence we get, by integration,
the sometimes useful formula for the cumulative incidence function,

Fh(t) =

∫ t

0
S(s)αh(s)ds
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General notation of Chapter 3.4 in ABG

We consider stochastic processes X (t) with state space S = {0, 1, . . . , k},
assumed to satisfy the Markov assumption:

P (X (t) = h|X (s) = g) = P (X (t) = h|X (s) = g ,Fs) , s < t, g , h ∈ S

We can then define transition probabilities

Pgh(s, t) = P (X (t) = h|X (s) = g) , s < t, g , h ∈ S

and transition intensities

αgh(t) = lim
∆t↓0

1

∆t
P(X (t + ∆t) = h|X (t−) = g) for g 6= h
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Competing risks (3.4.1 in ABG)

Let X (t) be the state at time t. The process then starts at X (0) = 0 and
jumps to one (and only one) of the states (“causes”) {1, 2, . . . , k}.

Then if we let T be the time when the process jumps from state 0, and let
H be the new state entered (i.e. the absorbing state), then we have

P00(0, t) = P(T > t) = S(t) (the survival function)

P0h(0, t) = P(T ≤ t, H = h) = Fh(t) (the cumulative incidence function)
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Competing risks (3.4.1 in ABG)

The cause-specific hazard αh(t) of cause h, as defined earlier, then is the
transition intensity

α0h(t) = lim
∆t↓0

1

∆t
P(X (t + ∆t) = h|X (t−) = 0) for h = 1, 2, . . . , k

which in the counting process framework can be written

α0h(t)dt = P(die from cause h in [t, t + dt)| alive at t−)
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Estimation of the cumulative cause-specific hazard
Assume that we have a sample of n individuals, where each individual is
followed from an entry time to death or censoring.

I Let T1 < T2 < . . . be the times when deaths from any cause are
observed,

I let N0h(t) be the process counting the number of individuals who are
observed to die from cause h (i.e., make a transition from state 0 to
state h) in the interval [0, t],

I let N0•(t) =
∑k

h=1 N0h(t) for the total number of deaths in [0, t], and
let Y0(t) denote the number of individuals at risk (i.e., in state 0)
just prior to time t.

Then the cumulative cause-specific hazard function for cause h,
A0h(t) =

∫ t
0 α0h(s)ds, is estimated by the Nelson-Aalen estimator

Â0h(t) =

∫ t

0

dN0h(s)

Y0(s)
=
∑
Tj≤t

∆N0h(Tj)

Y0(Tj)

Notation used here: ∆N0h(Tj) = #transitions 0→ h at Tj (usually 0 or 1)
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Estimation of the cumulative incidence function
The relations:

(Survival function) S(t) = P00(0, t) = exp

(
−
∫ t

0

k∑
h=1

α0h(u)du

)

(Cumulative incidence) Fh(t) = P0h(0, t) =

∫ t

0
P00(0, u−)α0h(u)du

suggest the estimators

P̂00(0, t) =
∏
Tj≤t

(
1−

∆N0•(Tj)

Y0(Tj)

)
, where N0• =

k∑
h=1

N0h(t)

P̂0h(0, t) =
∑
Tj≤t

P̂00(0,Tj−1)
∆N0h(Tj)

Y0(Tj)

I P̂00(0, t) is exactly the KM-estimator for S(t)
I α0h(u) is estimated by the increment of the NA-estimator for A0h(t).
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Estimated cumulative incidence function
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Simulated competing risks data

There are n = 1000 individuals, with latent failure times:

I T1 ∼Weibull(k = 2, b = 1), P(T1 > t) = exp{−t2}
I T2 ∼Weibull(k = 0.5, b = 1), P(T2 > t) = exp{−t0.5}
I C ∼ U[0, 2], (censoring times)

The observations are hence (T̃ ,H) where

T̃ = min(T1,T2,C ), H = 1, 2, 0 according to whether T̃ = T1,T2,C

#R-CODE:

n=1000

time1=rweibull(n,2)

time2=rweibull(n,0.5)

censtime=runif(n)*2

obstime=pmin(time1,time2,censtime)

h = 1*(obstime==time1)+2*(obstime==time2)
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Estimation of cumulative cause-specific hazard
library(survival)

ch1 = survfit(Surv(obstime,h==1)∼1,type="fh2")
ch2 = survfit(Surv(obstime,h==2)∼1,type="fh2")
par(mfrow=c(1,2))

plot(ch1,fun="cumhaz",mark.time=F,main="Cum.haz.1")

plot(ch2,fun="cumhaz",mark.time=F,main="Cum.haz.2")
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Estimation of cumulative incidence functions
#Estimation in the ’survival’ package

ci.surv = survfit(Surv(obstime,h,type="mstate")∼1)
plot(ci.surv,lty=1:2,main="Cum.incidence")
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Estimation of cumulative incidence functions
#Estimation in the ’mstate’ package

library(mstate)

library(ggplot2)

ci.sim = Cuminc(time=obstime,status=h)

plot(x = ci.sim,use.ggplot = TRUE,conf.type = "log",lty =

1:2,conf.int = 0.95)
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The illness-death model without recovery

The transition intensities α01(t), α02(t) and α12(t) give the instantaneous
probability of transition from one state to another (where arrows show the
possible transitions).
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Transition probabilities

Pgh(s, t) = P(in state h at time t | in state g at time s)

Then one may show

P00(s, t) = exp

{
−
∫ t

s
[α01(u) + α02(u)]du

}
P11(s, t) = exp

{
−
∫ t

s
α12(u)du

}
P01(s, t) =

∫ t

s
P00(s, u−)α01(u)P11(u, t)du
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Transition probabilities

Pgh(s, t) = P(in state h at time t | in state g at time s)

Further, one may show

P02(s, t) =

∫ t

s
P00(s, u−)α02(u)du +

∫ t

s
P01(s, u−)α12(u)du

P12(s, t) = 1− P11(s, t)

P22(s, t) = 1
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Estimation of cumulative transition intensities

Based on a sample from a population, we let Ngh(t), for
(g , h) = (0, 1), (0, 2), (1, 2), count the number of observed transitions from
state g to state h in [0, t], and let Yg (t) be the number of individuals in
state g just prior to time t.

The intensity process of Ngh(t) takes the multiplicative form

λgh(t) = αgh(t)Yg (t), so we may use the Nelson-Aalen estimator Âgh(t)
to estimate Agh(t) =

∫ t
0 αgh(u)du.
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Example 3.16: Bone marrow transplantation

I Platelet recovery, relapse and death for bone marrow transplant
patients.

I 137 patients with acute leukemia have had a bone marrow
transplantation.

I The time of the events “platelet recovery” and “death/relapse” are
recorded
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Example 3.16: Bone marrow transplantation.
Estimation of cumulative transition intensities
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Estimation of transition probabilities

Recall: P00(s, t) = exp

{
−
∫ t

s
[α01(u) + α02(u)]du

}
P11(s, t) = exp

{
−
∫ t

s
α12(u)du

}
P01(s, t) =

∫ t

s
P00(s, u)α01(u)P11(u, t)du

This suggests the estimators:

P̂00(s, t) =
∏

s<Tj≤t

(
1−

∆N0•(Tj)

Y0(Tj)

)
, where N0•(t) = N01(t) + N02(t)

P̂11(s, t) =
∏

s<Tj≤t

(
1−

∆N12(Tj)

Y1(Tj)

)
P̂01(s, t) =

∑
s<Tj≤t

P̂00(s,Tj−1)dÂ01(Tj)P̂11(Tj , t)
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Example 3.16: Bone marrow transplantation.
Estimation of transition probabilities P01(0, t)

Bo Lindqvist Slides 9: Multistate models ()STK4080/9080 2021 26 / 28



A general Markov chain
Consider now a Markov chain X (t) with state space S = {0, 1, . . . , k}
with transition probabilities

Pgh(s, t) = P (X (t) = h | X (s) = g) , s < t, g , h ∈ S

and transition intensities

αgh(t) = lim
∆t↓0

1

∆t
P(X (t + ∆t) = h | X (t−) = g) for g 6= h

Consider the transition probability matrix

P(s, t) =


P00(st) P01(s, t) · · · P0k(s, t)
P10(st) P11(s, t) · · · P1k(s, t)
· · · · · · · · · · · ·

Pk0(st) Pk1(s, t) · · · Pkk(s, t)


The key is to represent this matrix in terms of the transition intensities.
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The Aalen-Johansen estimator
We have

Pgh(u, u + du) = αgh(u)du; g 6= h

Pgg (u, u + du) = 1−
∑
h 6=g

αgh(u)du

It can be deduced from this that the matrix P(s, t) can be represented as
a matrix-valued product-integral

P(s, t) =
∏

s≤u≤t
(I + dA(u)) (∗)

where A(t) = (Agh(t)) with Agh(t) =
∫ t

0 αgh(u)du being the cumulative
transition intensities.

The Agh(t) are estimated by “ordinary” Nelson-Aalen estimators. and the
P(s, t) are then estimated by plugging in the Nelson-Aalen estimates
in (*). This corresponds to what we did in the special cases, and leads to
the so-called Aalen-Johansen estimator.
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