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The multiplicative intensity model (Ch. 3.1.2 in book)

The counting process N(t) has intensity function

λ(t) = α(t)Y (t)

where α(t) ≥ 0 is a deterministic parameter function and Y (t) is a
predictable process that does not depend on unknown parameters.

Typically, Y (t) counts the number of units “at risk” at time t.

We have the general expression

N(t) =

∫ t

0
λ(s)ds + M(t)

so we can write

dN(s) = λ(s)ds + dM(s) = α(s)Y (s)ds + dM(s)
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The Nelson-Aalen estimator in a minute (see Slides 6)

dN(s) = α(s)Y (s)ds + dM(s)

1

Y (s)
dN(s) = α(s)ds +

1

Y (s)
dM(s)∫ t

0

1

Y (s)
dN(s) = A(t) +

∫ t

0

1

Y (s)
dM(s)

This suggests the (Nelson-Aalen) estimator

Â(t) =

∫ t

0

1

Y (s)
dN(s) =

∑
Tj≤t

1

Y (Tj)

which is unbiased (?) and asymptotically normal, with variance estimator

σ̂2(t) =

∫ t

0

1

Y (s)2
dN(s) =

∑
Tj≤t

1

Y (Tj)2

WHY the (?) above: A slight modification of the argument is needed
since Y (t) may be 0 ... See the last pages of these slides
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Calculation of Nelson-Aalen estimator (from Slides 4)
Let the survival data be (+ means right censored)

31.7 39.2 57.5 65.0+ 65.8 70.0 75.0+ 75.2+
87.5+ 88.3+ 94.2+ 101.7+ 105.8 109.2+ 110.0 130.0+

Time at risk di
ni

Nelson-Aalen estimate

31.7 16 1
16

1
16 = 0.06250

39.2 15 1
15

1
16 + 1

15 = 0.12917

57.5 14 1
14

1
16 + 1

15 + 1
14 = 0.20060

65.8 12 1
12

1
16 + 1

15 + 1
14 + 1

12 = 0.28393

70.0 11 1
11

1
16 + 1

15 + 1
14 + 1

12 + 1
11 = 0.37484

105.8 4 1
4

1
16 + 1

15 + 1
14 + 1

12 + 1
11 + 1

4 = 0.62484

110.0 2 1
2

1
16 + 1

15 + 1
14 + 1

12 + 1
11 + 1

4 + 1
2 = 1.12484
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Nelson-Aalen plot using R

31.7 39.2 57.5 65.0+ 65.8 70.0 75.0+ 75.2+
87.5+ 88.3+ 94.2+ 101.7+ 105.8 109.2+ 110.0 130.0+
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Pointwise confidence limits (p. 72 in ABG)

Recall the variance estimator

σ̂2(t) =

∫ t

0

1

Y (s)2
dN(s) =

∑
Tj≤t

1

Y (Tj)2

100(1− α)% pointwise confidence limits are obtained as

Â(t)± z1−α/2σ̂(t)

Alternatively, by a log-transformation (Exercise 3.3) we can use

Â(t) exp

{
±z1−α/2

σ̂(t)

Â(t)

}
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Nelson-Aalen plots with confidence intervals (using R)

conf.type="plain" conf.type="log"
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Competing risks (ABG p. 77)
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The multiplicative intensity model in competing risks

Consider a competing risks model with k causes of death.

For each cause h we define the cause-specific hazard given by

αoh(t) = P(die from cause h in [t, t + dt) | alive at t−)

Based on a sample from a population, we let N0h count the number of
observed 0→ h-transitions in [0, t], and let Y0(t) be the number at risk
(i.e. in state 0) just prior to time t.

The intensity process of N0h takes the multiplicative form

λ0h(t) = α0h(t)Y0(t)

so the Nelson-Aalen estimator can be applied.
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Competing risks and causes of death in Norway
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Mulitiplicative model in relative mortality
Consider survival data where Ni (t) as usual counts the observed number
of deaths (0 or 1) for individual i . Assume that the intensity process takes
the form

λi (t) = Yi (t)α(t)µi (t)

Here Yi (t) is the usual ’at risk’ indicator for individual i , while µi (t) is the
(assumed known) mortality rate of an individual of the same gender, age,
etc. as individual i .

Assume that the individuals i = 1, . . . n under study are from a specific
population where one wants to study the relative mortality, denoted α(t),
of this population as compared to the general population.

The aggregated counting process N(t) =
∑n

i=1 Ni (t) has intensity process
of the multiplicative form λ(t) =

∑n
i=1 λi (t) = Y (t)α(t), with

Y (t) =
n∑

i=1

Yi (t)µi (t)

which is a predictable process. Nelson-Aalen estimator is hence at hand.
Bo Lindqvist Slides 7: Nelson-Aalen ()STK4080/9080 2021 11 / 16



Relative mortality after hip replacements (ABG p. 79)

Let t measure time since hip replacement.

Let µf (a), µm(a) be (known) mortality rates for females and males,
respectively, of age a.

Let gi be gender and ai the age of the ith patient.

Then the intensity function of the ith patient can be modeled by

λi (t) = Yi (t)α(t)µgi (ai + t)

The aggregated process N(t) thus has intensity of the multiplicative form
λ(t) = Y (t)α(t) where

Y (t) =
n∑

i=1

Yi (t)µgi (ai + t)

(and is not integer valued as in earlier applications...)
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Relative mortality after hip replacements (ABG p. 79)
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Small sample properties of the Nelson-Aalen estimator
(3.1.5 in ABG)

Since there is a possibility that some Y (t) = 0, we introduce the indicator
J(t) = I{Y (t) > 0} and use the convention 0/0 = 0.

Then, since dN(s) = Y (s)α(s)ds + dM(s),

Â(t) =

∫ t

0

dN(s)

Y (s)
=

∫ t

0

J(s)

Y (s)
dN(s)

=

∫ t

0

J(s)

Y (s)
{Y (s)α(s)ds + dM(s)}

=

∫ t

0
J(s)α(s)ds +

∫ t

0

J(s)

Y (s)
dM(s)

≡ A∗(t) + I (t)

( ≈ A(t) + mean-zero martingale )

Bo Lindqvist Slides 7: Nelson-Aalen ()STK4080/9080 2021 14 / 16



Expectation and variance of the Nelson-Aalen estimator

E{Â(t)} = E{A∗(t) + I (t)} = E{A∗(t)}

= E{
∫ t

0
J(s)α(s)ds} =

∫ t

0
P(Y (s) > 0)α(s)ds

≈ A(t)

Furthermore, since Â(t)− A∗(t) =
∫ t
0

J(s)
Y (s)dM(s), it follows that

[
Â− A∗

]
(t) =

∫ t

0

J(s)

Y 2(s)
dN(s) =

∑
Tj≤t

1

Y 2(Tj)
≡ σ̂2(t)

which is hence an unbiased estimator for the variance of Â(t)− A∗(t) and
hence an approximately unbiased estimator of the variance of Â(t).

Here we use the general result that Var(M(t)) = E [M](t)
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Asymptotics of Nelson-Aalen estimator (3.1.6 in ABG)
(See Slides 6 for details)

Asymptotically there is no difference between A(t) and A∗(t), and it hence
follows from Rebolledo’s theorem that both

√
n(Â(t)− A∗(t)) and

√
n(Â(t)− A(t))

converge in distribution to the mean zero Gaussian martingale
U(t) = W (V (t)) with predictable variation process

V (t) =

∫ t

0
v(s)ds =

∫ t

0

α(s)

y(s)
ds

Thus, for a fixed value t, the Nelson-Aalen estimator Â(t) is approximately
normally distributed with variance that can be estimated by

σ̂2(t) =
∑
Tj≤t

1

Y 2(Tj)
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