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The multiplicative intensity model (Ch. 3.1.2 in book)
The counting process N(t) has intensity function
A(t) = at)Y(2)

where a(t) > 0 is a deterministic parameter function and Y(t) is a
predictable process that does not depend on unknown parameters.

Typically, Y(t) counts the number of units “at risk” at time t.

We have the general expression

SO we can write

dN(s) = A(s)ds + dM(s) = a(s) Y (s)ds + dM(s)
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The Nelson-Aalen estimator in a minute (see Slides 6)
dN(s) = a(s)Y(s)ds+ dM(s)

dN(s) = a(s)ds—l—Y}S)dM(s)

t |
——dN(s) = A(t) +/ ——~dM(s)
/0 Y(s) o Y(s)
This suggests the (Nelson-Aalen) estimator
~ t 1
At
0= v -2
which is unbiased (?) and asymptotically normal, with variance estimator

R ! 1
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WHY the (?) above: A slight modification of the argument is needed
since Y(t) may be 0 ... See the last pages of these slides
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Calculation of Nelson-Aalen estimator (from Slides 4)
Let the survival data be (4+ means right censored)
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= 0.06250
=0.12917
= 0.20060
= 0.28393
= 0.37484
= 0.62484
+1 =1.12484
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Nelson-Aalen plot using R
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Pointwise confidence limits (p. 72 in ABG)

Recall the variance estimator

R t 1 1
0= [ peMa) = Xy

100(1 — )% pointwise confidence limits are obtained as

A(t) £ 21-a/26(t)

Alternatively, by a log-transformation (Exercise 3.3) we can use

A(t) exp {izla/gA(t) }

Q>

A(t)
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Nelson-Aalen plots with confidence intervals (using R)
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Competing risks (ABG p. 77)
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Fig. 3.5 A model for competing risks with k = 3.
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The multiplicative intensity model in competing risks

Consider a competing risks model with k causes of death.
For each cause h we define the cause-specific hazard given by
aon(t) = P(die from cause hin [t,t + dt) | alive at t—)

Based on a sample from a population, we let Ny, count the number of
observed 0 — h-transitions in [0, t], and let Yp(t) be the number at risk
(i.e. in state 0) just prior to time t.

The intensity process of Ny, takes the multiplicative form
)\Oh(t) = aoh(t) Yo(t)

so the Nelson-Aalen estimator can be applied.
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Competing risks and causes of death in Norway
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Fig. 3.6 Nelson-Aalen estimates of the eumulative cause-specific hazard rates for four causes of
death among middle-aged Norwegian males (left) and females (right). 1) Cancer; 2) cardiovas-
cular disease including sudden death; 3) other medical causes; 4) alcohol abuse, chronic liver
disease, and accidents and violence.
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Mulitiplicative model in relative mortality
Consider survival data where N;(t) as usual counts the observed number
of deaths (0 or 1) for individual i. Assume that the intensity process takes
the form

A(t) = Yi(H)a(e)u(?)
Here Y;(t) is the usual 'at risk’ indicator for individual i, while p;(t) is the
(assumed known) mortality rate of an individual of the same gender, age,
etc. as individual J.

Assume that the individuals i = 1, ... n under study are from a specific
population where one wants to study the relative mortality, denoted «a(t),
of this population as compared to the general population.

The aggregated counting process N(t) = >_7 ; N;(t) has intensity process
of the multiplicative form A(t) = Y °7_; \i(t) = Y(t)a(t), with

Y(6) = Yi(e)ni(o)
i=1

which is a predictable process. Nelson-Aalen estimator is hence at hand:
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Relative mortality after hip replacements (ABG p. 79)

Let t measure time since hip replacement.

Let ur(a), um(a) be (known) mortality rates for females and males,
respectively, of age a.

Let g; be gender and a; the age of the jth patient.

Then the intensity function of the jth patient can be modeled by
Ai(t) = Yi(t)a(t)ug(ai + t)

The aggregated process N(t) thus has intensity of the multiplicative form
A(t) = Y(t)a(t) where

n
Y(t) = Yi(t)ug(ai +t)
i=1
(and is not integer valued as in earlier applications...)
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Relative mortality after hip replacements (ABG p. 79)
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Fig. 3.7 Nelson-Aalen estimate of the relative cumulative relative mortality with 95% standard
confidence intervals for patients who have had a hip replacement in Norway in the period 1987—
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97. A dotied line with unit stope is included for easy reference.
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Small sample properties of the Nelson-Aalen estimator
(3.1.5 in ABG)

Since there is a possibility that some Y'(t) = 0, we introduce the indicator
J(t) = 1{Y(t) > 0} and use the convention 0/0 = 0.

Then, since dN(s) = Y(s)a(s)ds + dM(s),

2‘("“)_/otv /J

_ /”( (Y(s)a(s)ds + dM(s)}

o Y(s)
_ . tJ(s) .
—Jo ) +/ Y(S)dM( )
= A1)+ (1)

( ~ A() mean-zero martingale )
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Expectation and variance of the Nelson-Aalen estimator

E{A(t)} = E{A"(t)+I(t)} = E{A (1)}

- E{/ o(s)ds} = /P(Y ) > 0)a(s)ds
A(t)

Q

Furthermore, since A(t) — A*(t) = [ J((S)) dM(s), it follows that

[A - A*} (t) = /Ot ;2 2 dN(s Y2 = 52(t)

T;<t

which is hence an unbiased estimator for the variance of A(t) — A*(t) and

hence an approximately unbiased estimator of the variance of /A4(t)

Here we use the general result that Var(M(t)) = E[M](t)
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Asymptotics of Nelson-Aalen estimator (3.1.6 in ABG)
(See Slides 6 for details)

Asymptotically there is no difference between A(t) and A*(t), and it hence
follows from Rebolledo’s theorem that both

VA(A() = A(£)) and V/A(A(t) — A(t))

converge in distribution to the mean zero Gaussian martingale
U(t) = W(V/(t)) with predictable variation process

V(t) = /Ot v(s)ds = /Ot jg;;ds

Thus, for a fixed value t, the Nelson-Aalen estimator /A4(t) is approximately
normally distributed with variance that can be estimated by

. 1
0= 2 vy

Ti<t
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