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Counting Processes N(t): Notation and basic facts
(See section 1.4 in ABG)

N(t) = # events in (0, t]. Some basic facts:

I N(t) makes jumps of size 1 at events

I N(t) is right-continuous
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... notation and basic facts

Recall that we earlier defined dM(t) as increase in M(t) in the interval
[t, t + dt), which is M((t + dt)−)−M(t−). For a counting process we
can then define

dN(t) = # events in [t, t + dt) =

{
1 if event at time t
0 if no event at time t

We shall also write

N(t) =

∫ t

0
dN(s) and

∫ t

0
H(s)dN(s) =

k∑
i=1

H(ti )

where t1, t2, . . . , tk are the jump times of N(t).
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Poisson process N(t)

From course in stochastic processes, the Poisson process is such that

P(N(t + h)− N(t) = 1) = λh + o(h)

P(N(t + h)− N(t) ≥ 2) = o(h)

as h→ 0, and N(t) has independent increments. In slides 5 we wrote
the last assumption to mean N(t)− N(s) is independent of Fs for s < t.

With the new notation we can write

P(dN(t) = 1) = P(one event in [t, t + dt)) = λdt

P(dN(t) ≥ 2) = P(two or more events in [t, t + dt)) = 0

(the latter result is a general property we shall assume for counting
processes)
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Intensity process for a general point process

Recall for Poisson process,

P(dN(t) = 1) ≡ P(event in [t, t + dt)) = λdt

For a point process, what happens in [t, t + dt) may depend on the past
before t, Ft−. We therefore define the intensity process λ(t) in general
such that

P(dN(t) = 1|Ft−) ≡ P(event in [t, t + dt) | Ft−) = λ(t)dt

NOTE: This means that the intensity may be random; being a function
of N(s) for s < t. AND, since λ(t) is known right before t, it is a
predictable function.

BUT: For the Poisson process, what happens in [t,∞) is independent of
Ft−, so for the Poisson process, λ(t) = λ, i.e. a deterministic constant
(which is trivially predictable).
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Nonhomogenous Poisson process (NHPP) and extension
An NHPP assumes that λ may depend on t,

P(dN(t) = 1) = λ(t)dt

λ(t) is then also the intensity function as defined on the previous slide.

The NHPP is muched used in reliability analyses of repairable systems,
where the events are failure times of a technical system. The system is
then assumed to be repaired in negligible time and restarted after each
failure.

λ(t) will reasonably be a decreasing function of time. But it may also
happen that frequent repairs may decrease the intensity even more. A
more general model for the intensity function has been suggested for
failures of water pipes:

P(dN(t) = 1|Ft−) ≡ λ(t)dt = (N(t−) + β)α(t)dt

for a positive parameter β and a deterministic function α(t). The intensity
is thus a random variable, and is seen to be a predictable process.
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A single lifetime T modeled by a counting process
Let T be a lifetime with hazard function α(t). Then we can define the
counting process

N(t) = I{T ≤ t} for all t ≥ 0

in which case

P(dN(t) = 1|Ft−) ≡ P(t ≤ T ≤ t + dt|Ft−) =

{
α(t)dt for T ≥ t
0 for T < t

Thus the intensity function can be written

λ(t) = α(t)I{T ≥ t} ≡ α(t)Y (t)

Here Y (t) ≡ I{T ≥ t} is called the “at risk” function. The Y (t) is seen
to be in Ft−, since it is known right before T , and Y (t) is furthermore
left-continuous. See figure next slide.

NOTE THE CONCEPTUAL DIFFERENCE BETWEEN THE HAZARD
FUNCTION α(t) AND THE INTENSITY FUNCTION λ(t).
EXPLAIN!
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A single lifetime T modeled by a counting process
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A single, possibly right censored, lifetime

Let T be a lifetime with hazard function α(t) and C a potential censoring
time. Then the observations are (T̃ ,D), where

T̃ = min(T ,C ), D = I{T = T̃}

Define

I N(t) = I{T̃ ≤ t,D = 1} (counting process)

I Y (t) = I{T̃ ≥ t} (’at risk’ process)

Again, the intensity is λ(t) = α(t)Y (t), which is a function of the
history Ft−.

See graphs on next slide
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N(t) = I{T̃ ≤ t,D = 1}, Y (t) = I{T̃ ≥ t}
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Right censored data

The standard setup for data from n individuals:

Ti = survival time for ind. i

Ci = censoring time for ind. i

T̃i = min(Ti ,Ci ) = observed time for ind. i

D̃i = I (Ti = T̃i ) = indicator for observed time for ind. i

Goal for statistical inference:

Estimate

αi (t) = hazard rate of Ti (possibly the αi (t) are equal)

Ai (t) =

∫ t

0
αi (s)ds = cumulative hazard rate of Ti

Si (t) = e−Ai (t) = survival function of Ti

Bo Lindqvist Slides 6: Counting processes ()STK4080/9080 2021 11 / 33



The aggregated counting process
Let for i = 1, . . . , n,

Ni (t) = I (T̃i ≤ t,Di = 1) = counting process

Yi (t) = I (T̃i ≥ t) = ’at risk’ indicator

λi (t) = αi (t)Yi (t) = intensity function

Then define the aggregated process:

N(t) =
n∑

i=1

Ni (t)

λ(t) =
n∑

i=1

λi (t) =
n∑

i=1

αi (t)Yi (t)

Now N(t) satisfies the requirements for a counting process with
intensity λ(t). If the αi (t) ≡ α(t), then

λ(t) = α(t)
n∑

i=1

Yi (t) ≡ α(t)Y (t)

which is known as Aalen’s multiplicative model.
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Independent censoring

Let Ft be the history of all individuals, their censorings and failures, i.e.,
Ft contains {(Ni (s),Yi (s)), s ≤ t, i = 1, . . . , n}

Independent censoring means by definition (p. 30-31 in book):

P(t ≤ T̃i < t + dt,Di = 1|T̃i ≥ t,Ft−) = P(t ≤ Ti < t + dt|Ti ≥ t)

= αi (t)dt

ABG makes the point that

independent censoring ⇐⇒ λi (t) = αi (t)Yi (t) (∗)

where λi (t) is the intensity of the observed process Ni (t), recall

λi (t)dt =def P(dNi (t) = 1|Ft−)

(see next page for an argument for (∗))
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Proof of (∗)

Claim: independent censoring ⇐⇒ λi (t) = αi (t)Yi (t) (∗)

λi (t)dt = P(dNi (t) = 1|Ft−)

= P(t ≤ T̃i < t + dt,Di = 1|Ft−)

= using total probability rule:

P(t ≤ T̃i < t + dt,Di = 1|T̃i ≥ t,Ft−)P(T̃i ≥ t|Ft−)

+ P(t ≤ T̃i < t + dt,Di = 1|T̃i < t,Ft−)P(T̃i < t|Ft−)

= P(t ≤ T̃i < t + dt,Di = 1|T̃i ≥ t,Ft−)P(T̃i ≥ t|Ft−) + 0

= by def. of independent censoring:

αi (t)dt E (I (T̃i ≥ t)|Ft−)

= αi (t)dt I (T̃i ≥ t) (the event {T̃i ≥ t} is known at t−)

= αi (t)dt Yi (t)

(the above shows in fact the equivalence in (∗))
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Left truncation, p. 4-5 in book

I In a clinical study, the patients come under observation some time
after the initiating event (i.e. the event defining t = 0)

I If time t is age, the individuals may be under observation from
different ages
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Independent left truncation and right-censoring
The counting process results considered so far generalize almost
immediately when left-truncation is included.

Under left-truncation, the observation for the ith individual is

(Vi , T̃i ,Di )

where Vi is the left-truncation time (i.e., the time of entry) for the
individual, and T̃i and Di are as before.

We then have independent left-truncation and right-censoring
provided that the counting process

Ni (t) = I{T̃i ≤ t,Di = 1}

has intensity process given by λi (t) = αi (t)Yi (t), where the at risk
indicator now takes the form

Yi (t) = I{Vi < t ≤ T̃i}
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Revisiting martingale theory
Recall the definition of intensity: P(dN(t) = 1|Ft−) = λ(t)dt.

Since dN(t) has possible values 0 and 1, this is equivalent to

E (dN(t)|Ft−) = λ(t)dt

which implies

E (dN(t)− λ(t)dt|Ft−) = 0 (since λ(t) predictable) (∗)

Thus if we introduce the process

M(t) = N(t)−
∫ t

0
λ(s)ds

then M(t) is a martingale since

dM(t) = dN(t)− λ(t)dt

satisfies (*).
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... revisiting martingale theory

Recall from previous slide that

M(t) = N(t)−
∫ t

0
λ(s)ds

is a (zero-mean) martingale. That is,

N(t) =

∫ t

0
λ(s)ds + M(t)

= predictable increasing process + zero-mean martingale

which is exactly the unique Doob-Meyer decomposition.

Recall that Λ(t) ≡
∫ t
0 λ(s)ds is called the compensator of N(t).

See Slides 5 p. 39++ where we also showed that M(t) = N(t)− λt
is a martingale when N(t) is a Poisson process.
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Variation of counting processes
We now reinterpret concepts for general martingales to the case of
counting process martingales.

Predictable variation process 〈M〉 (t)

Recall the general definition

d 〈M〉 (t) = Var(dM(t)|Ft−)

For the counting process case we have

dM(t) = dN(t)− λ(t)dt

so (see ABG p. 54)

d 〈M〉 (t) = Var(dM(t)|Ft−) = Var(dN(t)− λ(t)dt|Ft−)

= Var(dN(t)|Ft−)

because λ(t)dt is a ’constant’ in this variance (why?) Hence, informally,

d 〈M〉 (t) ≈ λ(t)dt(1− λ(t)dt) ≈ λ(t)dt

and we conclude that 〈M〉 (t) =
∫ t
0 λ(s)ds = Λ(t).
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Variation of counting processes
Recall from last slide, the predictable variation process is

〈M〉 (t) =

∫ t

0
λ(s)ds = Λ(t)

Optional variation process [M](t)

[M](t) =
∑
s≤t

(M(s)−M(s−))2 (general)

= N(t) (counting process)

Recall also the general property

Var(M(t)) = E 〈M〉 (t) = E [M](t)

which for counting processes becomes

Var(M(t)) = E (Λ(t)) = E (N(t))

We can recognize this for the Poisson process, where N(t) is
Poisson-distributed with expected value and variance λt.
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Stochastic integral of general counting process

Consider a general counting process N(t) and recall the decompositiom

M(t) = N(t)−
∫ t

0
λ(s)ds

Let further T1 < T2 < · · · be the jump times of N(t).

Then a stochastic integral
∫ t
0 H(s)dM(s) for a predictable process H(s)

can be handled as follows:

I (t) =

∫ t

0
H(s)dM(s)

=

∫ t

0
H(s)dN(s)−

∫ t

0
H(s)λ(s)ds

=
∑
Tj≤t

H(Tj)−
∫ t

0
H(s)λ(s)ds
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Variation processes of stochastic integrals of
counting process martingales
Recall first general facts:〈∫

HdM

〉
=

∫
H2d 〈M〉[∫

HdM

]
=

∫
H2d [M]

and the special facts for counting processes

〈M〉 (t) =

∫ t

0
λ(s)ds

[M] (t) = N(t)

From this we get the formulas:〈∫
HdM

〉
(t) =

∫ t

0
H2(s) λ(s)ds[∫

HdM

]
(t) =

∫ t

0
H2(s) dN(s)
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The multiplicative intensity model
Assume that the counting process N(t) has intensity function

λ(t) = α(t)Y (t)

where α(t) is a deterministic function representing the risk (hazard rate)
for each unit under study, and Y (t) is the predictable process counting the
number of units which are present immediately before t (“at risk”) and
hence may fail at time t.

We have the general expression

N(t) =

∫ t

0
λ(s)ds + M(t)

so we can write

dN(s) = λ(s)ds + dM(s) = α(s)Y (s) + dM(s) (∗)

Our goal is to estimate α(t), but it turns out to be easier to estimate its
integral A(t) =

∫ t
0 α(s)ds, which we will do.

Assume for simplicity that we know that Y (t) > 0 for all t. Then -
dividing through the equation (∗) by Y (t) we get

1

Y (s)
dN(s) = α(s)ds +

1

Y (s)
dM(s)
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The multiplicative intensity model (cont.)

1

Y (s)
dN(s) = α(s)ds +

1

Y (s)
dM(s)

Integrating we get that∫ t

0

1

Y (s)
dN(s) = A(t) +

∫ t

0

1

Y (s)
dM(s)

The rightmost expression is a mean zero integral (since Y (s) is a
predictable process), so this suggests the (Nelson-Aalen) estimator

Â(t) =

∫ t

0

1

Y (s)
dN(s) =

∑
Tj≤t

1

Y (Tj)
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Properties of the estimator
We have

Â(t)− A(t) =

∫ t

0

1

Y (s)
dM(s)

and hence Â(t) is an unbiased estimator (since the right hand side is a
mean zero martingale). Further (see earlier page 18)〈

Â− A
〉

(t) =

∫ t

0

1

Y 2(s)
α(s)Y (s)ds =

∫ t

0

1

Y (s)
α(s)ds

[
Â− A

]
(t) =

∫ t

0

1

Y 2(s)
dN(s) =

∑
Tj≤t

1

Y 2(Tj)
(1)

We also know from our earlier formulas that

Var(Â(t)) = Var(Â(t)− A(t)) = E
([

Â− A
]

(t)
)

so that (1) is an unbiased estimator of Var(Â(t))
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Asymptotic distribution of Nelson-Aalen estimator

Suppose that our data were based on observation of a large number n
units. We shall let n tend to infinity in the relation

√
n(Â(t)− A(t)) =

∫ t

0

√
n

1

Y (s)
dM(s)

and hence we need to look at the limiting behaviour of the mean zero
martingale on the right hand side.

This brings us to the need for an asymptotic theory for martingales.
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Wiener process

A Wiener process (Brownian motion) with variance parameter 1 is a
stochastic process W (t) with values in the real numbers satisfying

1. W (0) = 0

2. For any s1 ≤ t1 ≤ s2 ≤ t2 ≤ · · · ≤ sn ≤ tn, the random variables
W (t1)−W (s1), . . . ,W (tn)−W (sn) are independent.

3. For any s < t, the random variables W (t)−W (s) are normal with
expected value 0 and variance (t − s)

4. The paths are continuous.
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Wiener process
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Gaussian martingales

Let V (t) be a strictly increasing continuous function with V (0) = 0 and
consider the stochastic process

U(t) = W (V (t))

(i.e. a time transformation of W (t).)

The process U(t) is a Gaussian process which is moreover

I a mean zero martingale

I has predictable variation process 〈U〉 (t) = V (t)

(exercise 2.12 in book).

U is called a Gaussian martingale.
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Rebolledo’s martingale convergence theorem

Let M̃(n)(t) be a sequence of mean zero martingales for t ∈ [0, τ ].

ABG gives a precise formulation of conditions under which M̃(n)(t)
converges in distribution to a Gaussian martingale U(t) as defined on the
previous page.

What is needed is that as n→∞,

(i)
〈

M̃(n)(t)
〉
→ V (t) in probability for all t ∈ [0, τ ] as n→∞

(ii) The sizes of the jumps of M̃(n)(t) go to zero (in probability)
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Application to counting process martingales

We will consider martingales of the form

M̃(n)(t) =

∫ t

0
H(n)(s)dM(n)(s)

where H(n)(s) is a predictable process and

M(n)(t) = N(n)(t)−
∫ t

0
λ(n)(s)ds

is a counting process martingale.

Assume that we can write V (t) =
∫ t
0 v(s)ds. Then sufficient conditions

for Rebolledo’s theorem are

(i) (H(n)(s))2λ(n)(s)→ v(s) > 0 for all s ∈ [0, τ ]

(ii) H(n)(s)→ 0 for all s ∈ [0, τ ]
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Nelson-Aalen example

Recall that
√

n(Â(t)− A(t)) =

∫ t

0

√
n

Y (s)
dM(s)

so that we have

H(n)(t) =

√
n

Y (t)

Assume that there is a deterministic positive function y(t) such that
Y (t)/n→ y(t) > 0 in probability. Then the two sufficient conditions for
Rebolledo’s theorem are satisfied:

(H(n)(s))2λ(n)(s) =
n

Y 2(s)
· α(s)Y (s) =

α(s)

Y (s)/n
→ α(s)

y(s)
≡ v(s)

H(n)(s) =

√
n

Y (s)
=

1/
√

n

Y (s)/n
→ 0
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Nelson-Aalen example (cont.)

Conclusion:

√
n(Â(t)− A(t)) =

∫ t

0

√
n

Y (s)
dM(s)

converges in distribution to the mean zero Gaussian martingale
U(t) = W (V (t)) with predictable variation process

V (t) =

∫ t

0
v(s)ds =

∫ t

0

α(s)

y(s)
ds

In particular, for each t is Â(t) asymptotically normally distributed, and

Var(Â(t)) ≈ 1

n
·
∫ t

0

α(s)

Y (s)/n
ds =

∫ t

0

α(s)

Y (s)
ds =

〈
Â− A

〉
(t)
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