Slides 5: Martingales

SOLUTIONS TO EXERCISES

Bo Lindqvist

EXERCISE 1

Throw a die several times. Let Y_{i} be result in i th throw, and let $X_{i}=Y_{1}+\ldots+Y_{i}$ be the sum of the i first throws.
(a) Find an expression for $f\left(x_{1}, x_{2}\right)$.

$$
f\left(x_{1}, x_{2}\right)=P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)=\frac{1}{36} I\left(1 \leq x_{1} \leq 6,1+x_{1} \leq x_{2} \leq 6+x_{1}\right)
$$

(b) Find an expression for $f\left(x_{2} \mid x_{1}\right)$.
$* * * * * * * * * *$

$$
f\left(x_{2} \mid x_{1}\right)=\frac{f\left(x_{1}, x_{2}\right)}{f\left(x_{1}\right)}=\frac{1}{6} I\left(1+x_{1} \leq x_{2} \leq 6+x_{1}\right)
$$

(c) Find an expression for $E\left(X_{2} \mid x_{1}\right)$ as a function of x_{1}.
$* * * * * * * * * *$

$$
E\left(X_{2} \mid x_{1}\right)=x_{1}+7 / 2
$$

(d) Find the expectation of the random variable $E\left(X_{2} \mid X_{1}\right)$. Find $E\left(X_{2}\right)$ from this. Find also $E\left(X_{2}\right)$ without using the rule of double expectation.

$$
\begin{aligned}
& E\left(X_{2} \mid X_{1}\right)=X_{1}+7 / 2 \\
& E\left(X_{2}\right)=E\left(E\left(X_{2} \mid X_{1}\right)\right)=E\left(X_{1}\right)+7 / 2=7
\end{aligned}
$$

or

$$
E\left(X_{2}\right)=E\left(Y_{1}+Y_{2}\right)=E\left(Y_{1}\right)+E\left(Y_{2}\right)=7 / 2+7 / 2=7
$$

(e) Find also $E\left(X_{3} \mid X_{2}\right), E\left(X_{3} \mid X_{1}, X_{2}\right)$ and $E\left(X_{3} \mid X_{1}\right)$.
$* * * * * * * * * *$

$$
\begin{aligned}
& E\left(X_{3} \mid X_{2}\right)=X_{2}+7 / 2 \\
& E\left(X_{3} \mid X_{1}, X_{2}\right)=X_{2}+7 / 2 \\
& E\left(X_{3} \mid X_{1}\right)=X_{1}+7
\end{aligned}
$$

EXERCISE 2

Let X_{1}, X_{2}, \ldots be independent with $E\left(X_{n}\right)=\mu$ for all n.
Let $S_{n}=X_{1}+\ldots+X_{n}$.
Find $E\left(S_{4} \mid \mathcal{F}_{2}\right)$ and in general $E\left(S_{n} \mid \mathcal{F}_{m}\right)$ when $m<n$
$* * * * * * * * * *$

$$
\begin{aligned}
E\left(S_{4} \mid \mathcal{F}_{2}\right) & =E\left(X_{1}+X_{2}+X_{3}+X_{4} \mid X_{1}, X_{2}\right) \\
& =X_{1}+X_{2}+E\left(X_{3}\right)+E\left(X_{4}\right) \\
& =X_{1}+X_{2}+2 \mu \\
E\left(S_{n} \mid \mathcal{F}_{m}\right) & =S_{m}+(n-m) \mu
\end{aligned}
$$

EXERCISE 3

Let X_{1}, X_{2}, \ldots be independent with

$$
P\left(X_{i}=1\right)=P\left(X_{i}=-1\right)=1 / 2
$$

Think of X_{i} as result of a game where one flips a coin and wins 1 unit if "heads" and loses 1 unit if "tails".

Let $M_{n}=X_{1}+\ldots+X_{n}$ be the gain after n games, $n=1,2, \ldots$
Show that M_{n} is a (mean zero) martingale.
$* * * * * * * * * *$

$$
\begin{aligned}
E\left(M_{n} \mid \mathcal{F}_{n-1}\right) & =E\left(X_{1}+\ldots+X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& =X_{1}+\ldots+X_{n-1}+E\left(X_{n}\right) \\
& =M_{n-1}
\end{aligned}
$$

EXERCISE 4

(a) Let X_{1}, X_{2}, \ldots be independent with $E\left(X_{n}\right)=0$ for all n.

Let $M_{n}=X_{1}+\ldots+X_{n}$.
Show that M_{n} is a (mean zero) martingale.

Same proof as for Exercise 3
(b) Let X_{1}, X_{2}, \ldots be independent with $E\left(X_{n}\right)=\mu$ for all n.

Let $S_{n}=X_{1}+\ldots+X_{n}$.
Compute $E\left(S_{n} \mid \mathcal{F}_{n-1}\right)$ (see Exercise 2). Is $\left\{S_{n}\right\}$ a martingale?
Can you find a simple transformation of S_{n} which is a martingale?

$$
E\left(S_{n} \mid \mathcal{F}_{n-1}\right)=S_{n-1}+\mu
$$

This is a martingale only if $\mu=0$.
Easy to see that $M_{n}=S_{n}-n \mu$ is a martingale.
(c) Let X_{1}, X_{2}, \ldots be independent with $E\left(X_{n}\right)=1$ for all n.

Let $M_{n}=X_{1} \cdot X_{2} \cdot \ldots \cdot X_{n}$.
Show that M_{n} is a martingale. What is $E\left(M_{n}\right)$?

$$
\begin{aligned}
& E\left(M_{n} \mid \mathcal{F}_{n-1}\right)=E\left(X_{1} \cdots X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
&=X_{1} \cdots X_{n-1} E\left(X_{n}\right) \\
&=M_{n-1} \\
& E\left(M_{n}\right)=1
\end{aligned}
$$

EXERCISE 5

Show that for a martingale $\left\{M_{n}\right\}$ is
(a) $E\left(M_{n} \mid \mathcal{F}_{m}\right)=M_{m}$ for all $m<n$.

This is essentially Exercise 2.1 in book.
$* * * * * * * * * * * * * * * *$
We use induction on k to prove that
(*) $E\left(M_{n} \mid \mathcal{F}_{n-k}\right)=M_{n-k}$ for $k=1,2, \ldots, n-1$
$k=1$ is definition of martingale
Suppose (*) holds for k. Then

$$
E\left(M_{n} \mid \mathcal{F}_{n-k-1}\right)=E\left\{E\left(M_{n} \mid \mathcal{F}_{n-k}\right) \mid \mathcal{F}_{n-k-1}\right\}=E\left(M_{n-k} \mid \mathcal{F}_{n-k-1}\right)=M_{n-k-1}
$$

Hence (*) holds for all the required k.
(b) $E\left(M_{m} \mid \mathcal{F}_{n}\right)=M_{m}$ for all $m<n$
$* * * * * * * * * * * * * *$
This holds trivially since $M_{m} \in \mathcal{F}_{n}$
(c) Give verbal (intuitive) interpretations of each of (a) and (b).

EXERCISE 6

Define the martingale differences by

$$
\Delta M_{n}=M_{n}-M_{n-1}
$$

(a) Show that the definition of martingale, $E\left(M_{n} \mid \mathcal{F}_{n-1}\right)=M_{n-1}$, is equivalent to

$$
\begin{equation*}
E\left(M_{n}-M_{n-1} \mid \mathcal{F}_{n-1}\right)=0, \text { i.e. } E\left(\Delta M_{n} \mid \mathcal{F}_{n-1}\right)=0 \tag{1}
\end{equation*}
$$

(Hint: Why is $E\left(M_{n-1} \mid \mathcal{F}_{n-1}\right)=M_{n-1}$?)
$* *$
The following are clearly equivalent by 'Hint' which is obvious:

$$
\begin{gathered}
E\left(M_{n} \mid \mathcal{F}_{n-1}\right)=M_{n-1} \\
E\left(M_{n} \mid \mathcal{F}_{n-1}\right)-M_{n-1}=0 \\
E\left(M_{n} \mid \mathcal{F}_{n-1}\right)-E\left(M_{n-1} \mid \mathcal{F}_{n-1}\right)=0 \\
E\left(M_{n}-M_{n-1} \mid \mathcal{F}_{n-1}\right)=0
\end{gathered}
$$

(b) Show that for a martingale we have

$$
\begin{equation*}
\operatorname{Cov}\left(M_{n-1}-M_{n-2}, M_{n}-M_{n-1}\right)=0 \text { for all } n \tag{2}
\end{equation*}
$$

i.e.

$$
\operatorname{Cov}\left(\Delta M_{n-1}, \Delta M_{n}\right)=0
$$

Explain in word what this means.

$$
\begin{aligned}
\operatorname{Cov}\left(M_{n-1}-M_{n-2}, M_{n}-M_{n-1}\right) & =E\left\{\left(M_{n-1}-M_{n-2}\right)\left(M_{n}-M_{n-1}\right)\right\} \\
& =E\left[E\left\{\left(M_{n-1}-M_{n-2}\right)\left(M_{n}-M_{n-1}\right) \mid \mathcal{F}_{n-1}\right\}\right] \\
& =E\left[\left(M_{n-1}-M_{n-2}\right) E\left\{\left(M_{n}-M_{n-1}\right) \mid \mathcal{F}_{n-1}\right\}\right] \\
& =0
\end{aligned}
$$

(c) Show that (1) and (2) automatically hold when $M_{n}=X_{1}+\ldots+X_{n}$ for independent X_{1}, X_{2}, \ldots
Note that in this case the differences $\Delta M_{n}=M_{n}-M_{n-1}=X_{n}$ are independent.
Thus (2) shows that martingale differences correspond to a weakening of the independent increments property

EXERCISE 7

Suppose that you use the martingale betting strategy, but that you in any case must stop after n games.

Calculate the expected gain. Can you "beat the game"?
(Hint: You either win 1 or lose $2^{n}-1$ units.)

You lose all n times with probability $1 / 2^{n}$. The loss is then $1+2+4+$ $\cdots+2^{n-1}=2^{n}-1$.

You otherwise win 1 , which must have probability $1-1 / 2^{n}$. Hence expected gain is:

$$
-\left(2^{n}-1\right) \cdot\left(1 / 2^{n}\right)+1 \cdot\left(1-1 / 2^{n}\right)=-1+1 / 2^{n}+1-1 / 2^{n}=0
$$

so you do not "beat the game"

EXERCISE 8

Do Exercise 2.6 in book:
Show that the stopped process M^{T} is a martingale. (Hint: Find a predictable process H such that $\left.M^{T}=H \bullet M\right)$.

We have

$$
M_{n}^{T}=M_{n \wedge T} \equiv\left\{\begin{array}{l}
M_{n} \text { if } n \leq T \\
M_{T} \text { if } n>T
\end{array}\right.
$$

Want to write

$$
\text { (*) } \quad M_{n}^{T}=H_{1}\left(M_{1}-M_{0}\right)+H_{2}\left(M_{2}-M_{1}\right)+\ldots+H_{n}\left(M_{n}-M_{n-1}\right)
$$

Let

$$
H_{i}=\left\{\begin{array}{l}
1 \text { if } T \geq i \\
0 \text { otherwise }
\end{array}\right.
$$

Then H_{i} is known at time $i-1$ and we may check that (*) does the job.
$* *$
This suggests that $E\left(M_{T}\right) \equiv E\left(M_{T}^{T}\right)=E\left(M_{0}^{T}\right)=E\left(M_{0}\right)=0$.
But this does obviously not hold for the martingale strategy case (where indeed the process is a martingale, stopped at a stopping time).
What is the clue here? We can conclude from the above that $E\left(M_{n}^{T}\right)=$ 0 for all n, but not that this n can be replaced by a random T. But see next slide in lecture!

EXERCISE 9

Suppose $X_{n}=U_{1}+\ldots+U_{n}$ where U_{1}, \ldots, U_{n} are independent with $E\left(U_{i}\right)=\mu$.

Find the Doob decomposition of the process X and identify the predictable part and the innovation part.

We have

$$
E\left(X_{n} \mid \mathcal{F}_{n-1}\right)=E\left(X_{n-1}+U_{n} \mid \mathcal{F}_{n-1}\right)=X_{n-1}+\mu
$$

Using this, the Doob decomposition is $X=X^{*}+M$, where

$$
\begin{aligned}
X_{n}^{*} & =\sum_{k=1}^{n}\left[E\left(X_{k} \mid \mathcal{F}_{k-1}\right)-X_{k-1}\right]=n \mu \\
M_{n} & =X_{0}+\sum_{k=1}^{n}\left[X_{k}-E\left(X_{k} \mid \mathcal{F}_{k-1}\right)\right]=X_{n}-n \mu
\end{aligned}
$$

and the innovation is hence

$$
X_{n}-\left(X_{n-1}+\mu\right)=X_{n}-X_{n-1}-\mu=U_{n}-\mu
$$

Thus the decomposition is $X_{n}=n \mu+\left(X_{n}-n \mu\right)$, where $n \mu$ is the predictable part and $X_{n}-n \mu$ is the innovation (sometimes called "surprise")

EXERCISE 10

Prove the results on the covariances (see Exercise 2.2 in book)
$* *$

Let $0 \leq s<t<u<v \leq \tau$

$$
\begin{aligned}
\operatorname{Cov}(M(t)-M(s), M(v)-M(u)) & =E\{(M(t)-M(s))(M(v)-M(u))\} \\
& =E\left[E\left\{(M(t)-M(s))(M(v)-M(u)) \mid \mathcal{F}_{u}\right\}\right] \\
& =E\left[(M(t)-M(s)) E\left\{(M(v)-M(u)) \mid \mathcal{F}_{u}\right\}\right] \\
& =0
\end{aligned}
$$

POISSON PROCESSES

$N(t)=\#$ events in $[0, t]$
Characterizing properties:

- $N(t)-N(s)$ is Poisson-distributed with parameter $\lambda(t-s)$
- $N(t)$ has independent increments, i.e. number of events in disjoint intervals are independent.

EXERCISE 11

Show that

$$
M(t)=N(t)-\lambda t
$$

is a martingale. Identify the compensator of $N(t)$.

Hint:
For $t>s$ is $E\left(N(t) \mid \mathcal{F}_{s}\right)=N(s)+\lambda(t-s)$
$* * * * * * * * * * * * * * * * *$
The compensator must be λt by Doob-Meyer (and λt is increasing, predictable.

$$
\begin{aligned}
E\left(M(t) \mid \mathcal{F}_{s}\right) & =E\left\{N(t)-\lambda t \mid \mathcal{F}_{s}\right\} \\
& =E\left\{N(t) \mid \mathcal{F}_{s}\right\}-\lambda t \\
& =E\left\{N(t)-N(s)+N(s) \mid \mathcal{F}_{s}\right\}-\lambda t \\
& =E\left\{N(t)-N(s) \mid \mathcal{F}_{s}\right\}+N(s)-\lambda t \\
& =E\{N(t)-N(s)\}+N(s)-\lambda t \\
& =\lambda t-\lambda s+N(s)-\lambda t \\
& =N(s)-\lambda s=M(s)
\end{aligned}
$$

EXERCISE 12

This is Exercise 2.3 in book, plus a new question (d). (a) was done as our Exercise 3(a)

Thus let X_{1}, X_{2}, \ldots be independent with $E\left(X_{n}\right)=0$ and $\operatorname{Var}\left(X_{n}\right)=\sigma^{2}$ for all n. Let $M_{n}=X_{1}+\ldots+X_{n}$.
(a) Show that M_{n} is a (mean zero) martingale.
(b) Compute $\langle M\rangle_{n}$
$* * * * * * * * * * * * * * * * * * * *$

$$
\langle M\rangle_{n}=\sum_{i=1}^{n} \operatorname{Var}\left(\Delta M_{i} \mid \mathcal{F}_{i-1}\right)
$$

Here $\Delta M_{i}=M_{i}-M_{i-1}=X_{i}$, so we get

$$
\langle M\rangle_{n}=\sum_{i=1}^{n} \operatorname{Var}\left(\Delta M_{i} \mid \mathcal{F}_{i-1}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i} \mid \mathcal{F}_{i-1}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=n \sigma^{2}
$$

since X_{i} is independent of \mathcal{F}_{i-1}. (Why?)
(c) Compute $[M]_{n}$
$* * * * * * * * * * * * * * * * * * *$

$$
[M]_{n}=\sum_{i=1}^{n}\left(\Delta M_{i}\right)^{2}=\sum_{i=1}^{n} X_{i}^{2}
$$

(d) Compute $E\langle M\rangle_{n}, E[M]_{n}$ and $\operatorname{Var}\left(M_{n}\right)$.
$* * * * * * * * * * * * * * *$

$$
E\langle M\rangle_{n}=E[M]_{n}=\operatorname{Var}\left(M_{n}\right)=n \sigma^{2}
$$

(and these are equal in general, see next exercise)

EXERCISE 13

Consider a general discrete time martingale M
(a) $M_{n}^{2}-\langle M\rangle_{n}$ is a mean zero martingale - Exercise 2.4 in book

Write

$$
\begin{aligned}
M_{n}^{2} & =\left(M_{n-1}+M_{n}-M_{n-1}\right)^{2} \\
& =M_{n-1}^{2}+2 M_{n-1}\left(M_{n}-M_{n-1}\right)+\left(M_{n}-M_{n-1}\right)^{2}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& E\left\{M_{n}^{2}-\langle M\rangle_{n} \mid \mathcal{F}_{n-1}\right\} \\
& =E\left\{M_{n-1}^{2}+2 M_{n-1}\left(M_{n}-M_{n-1}\right)+\left(M_{n}-M_{n-1}\right)^{2}-\langle M\rangle_{n} \mid \mathcal{F}_{n-1}\right\} \\
& =M_{n-1}^{2}+2 M_{n-1} E\left\{\left(M_{n}-M_{n-1}\right) \mid \mathcal{F}_{n-1}\right\}+E\left\{\left(M_{n}-M_{n-1}\right)^{2} \mid \mathcal{F}_{n-1}\right\} \\
& -\sum_{i=1}^{n} E\left\{\left(M_{i}-M_{i-1}\right)^{2} \mid \mathcal{F}_{i-1}\right\} \\
& =M_{n-1}^{2}+2 \cdot 0-\sum_{i=1}^{n-1} E\left\{\left(M_{i}-M_{i-1}\right)^{2} \mid \mathcal{F}_{i-1}\right\} \\
& =M_{n-1}^{2}-\langle M\rangle_{n-1}
\end{aligned}
$$

(b) $M_{n}^{2}-[M]_{n}$ is a mean zero martingale - See book p. 45
(c) Use (a) and (b) to prove that

$$
\operatorname{Var}\left(M_{n}\right)=E\langle M\rangle_{n}=E[M]_{n}
$$

What is the intuitive essence of this result?

EXERCISE 14

Consider again the Poisson process, where we have shown that

$$
M(t)=N(t)-\lambda t
$$

is a martingale.
Prove now that:

$$
M^{2}(t)-\lambda t
$$

is a martingale (Exercise 2.10 in book)
Then prove that $\langle M\rangle(t)=\lambda t$
What is $[M](t)$?

Hint:
For $t>s$ is $E\left(N(t) \mid \mathcal{F}_{s}\right)=N(s)+\lambda(t-s)$
For $t>s$ is $E\left(N^{2}(t) \mid \mathcal{F}_{s}\right)=N(s)^{2}+2 N(s) \lambda(t-s)+\lambda(t-s)+(\lambda(t-s))^{2}$

