STK4080/9080 SURVIVAL AND EVENT HISTORY ANALYSIS

Slides 5: Martingales

Bo Lindqvist
Department of Mathematical Sciences
Norwegian University of Science and Technology
Trondheim

https://www.ntnu.edu/employees/bo.lindqvist bo.lindqvist@ntnu.no
boli@math.uio.no
University of Oslo, Spring 2021

STOCHASTIC PROCESSES; COUNTING PROCESSES

A stochastic process is a collection of random variables, $\{X(t): t \in \mathcal{T}\}$ Index set \mathcal{T} is usually time, e.g.

- $\mathcal{T}=[0, \infty)$ ("continuous time") or
- $\mathcal{T}=\{0,1, \ldots\} \equiv \mathcal{N}$ ("discrete time")

COUNTING PROCESSES $\{N(t): t \geq 0\}$:

- $N(t)-N(s)=\#$ events in interval $(s, t]$ for $s<t$
- $N(t) \in\{0,1, \ldots\}$
- $N(t) \uparrow t$ in steps of height 1

EXAMPLES

DISCRETE TIME

Random walk X_{n} (A better's gain) Let Y_{i} be the result of a game where one flips a coin and wins 1 unit if "heads" comes up and loses 1 unit if "tails".
Then Y_{1}, Y_{2}, \ldots are independent with

$$
P\left(Y_{i}=1\right)=P\left(Y_{i}=-1\right)=1 / 2
$$

and $X_{n}=Y_{1}+\ldots+Y_{n}$ is the better's gain after n games, $n=1,2, \ldots$
This is a simple example of a random walk. (What are the important assumptions here?)

CONTINUOUS TIME

Poisson process $N(t)$
Wiener process $W(t)$ (Brownian motion)
(we will return to these processes)

IMPORTANT IN SURVIVAL ANALYSIS

The dynamic aspects of a process, i.e. given the past - what is most likely to happen in the future? What is the probability of various outcomes in the future?

More precisely we will be interested in
DISCRETE TIME:
Distribution of X_{n}, X_{n+1}, \ldots given $X_{1}, X_{2}, \ldots, X_{n-1}$ (i.e. "given \mathcal{F}_{n-1} ")

CONTINUOUS TIME

Distribution of $X(s)$ for $s \geq t$ given $X(u)$ for $0 \leq u<t$ (i.e. "given \mathcal{F}_{t-} ")

BASIC PROBABILITY THEORY

JOINT DISTRIBUTIONS

$X_{1}, X_{2}, \ldots, X_{n}$ random variables

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)(\text { discrete })
$$

$f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\lim _{\Delta_{i} \rightarrow 0} \frac{P\left(x_{1} \leq X_{1} \leq x_{1}+\Delta_{1}, \ldots, x_{n} \leq X_{n} \leq x_{n}+\Delta_{n}\right)}{\Delta_{1} \cdots \Delta_{n}}$ (contin.)

MARGINAL DISTRIBUTIONS
For $m<n$,

$$
f\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\left\{\begin{array}{l}
\sum_{x_{m+1}, \ldots, x_{n}} f\left(x_{1}, x_{2}, \ldots, x_{m}, x_{m+1}, \ldots, x_{n}\right) \\
\int \cdots \int f\left(x_{1}, x_{2}, \ldots, x_{m}, x_{m+1}, \ldots, x_{n}\right) d x_{m+1} \cdots d x_{n}
\end{array}\right.
$$

CONDITIONAL DISTRIBUTION

CONDITIONAL DENSITY OR POINT MASS

$$
f\left(x_{n} \mid x_{1}, x_{2}, \ldots, x_{n-1}\right)=\frac{f\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{f\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)}
$$

CONDITIONAL EXPECTATIONS

$$
E\left(X_{n} \mid x_{1}, x_{2}, \ldots, x_{n-1}\right)=\left\{\begin{array}{l}
\sum_{x_{n}} x_{n} f\left(x_{n} \mid x_{1}, x_{2}, \ldots, x_{n-1}\right) \\
\int x_{n} f\left(x_{n} \mid x_{1}, x_{2}, \ldots, x_{n-1}\right) d x_{n}
\end{array}\right.
$$

THE RULE OF DOUBLE EXPECTATION

- $E\left(X_{n} \mid x_{1}, x_{2}, \ldots, x_{n-1}\right) \equiv g\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$ is a number;
- $E\left(X_{n} \mid X_{1}, X_{2}, \ldots, X_{n-1}\right) \equiv g\left(X_{1}, X_{2}, \ldots, X_{n-1}\right)$ is a random variable; given as a function of $X_{1}, X_{2}, \ldots, X_{n-1}$

As such the latter has an expected value. What is this value?

$$
\begin{aligned}
E\left[E\left(X_{n} \mid X_{1}, X_{2}, \ldots, X_{n-1}\right)\right] & =E\left[g\left(X_{1}, X_{2}, \ldots, X_{n-1}\right)\right] \\
& =E\left(X_{n}\right)
\end{aligned}
$$

We can write this

$$
E\left[E\left(X_{n} \mid \mathcal{F}_{n-1}\right)\right]=E\left(X_{n}\right)
$$

INTERPRETATION OF "THE RULE OF DOUBLE EXPECTATION"

$$
E\left[E\left(X_{2} \mid X_{1}\right)\right]=E\left(X_{2}\right)
$$

"If I observe X_{1} many times, and each time compute the expected value $E\left(X_{2} \mid X_{1}\right)$, then on average I will get the value $E\left(X_{2}\right)$ ".

A CONDITIONAL DOUBLE EXPECTATION RESULT

$$
E\left[E\left(X_{3} \mid X_{1}, X_{2}\right) \mid X_{1}\right]=E\left(X_{3} \mid X_{1}\right)
$$

Note: If we here suppress the conditioning on X_{1} throughout, this is merely the rule of double expectation:
$E\left[E\left(X_{3} \mid X_{2}\right)\right]=E\left(X_{3}\right)$

EXERCISE 1

Throw a die several times. Let Y_{i} be result in i th throw, and let $X_{i}=Y_{1}+\ldots+Y_{i}$ be the sum of the i first throws.
(a) Find an expression for $f\left(x_{1}, x_{2}\right)$.
(b) Find an expression for $f\left(x_{2} \mid x_{1}\right)$.
(c) Find an expression for $E\left(X_{2} \mid x_{1}\right)$ as a function of x_{1}.
(d) Find the expectation of the random variable $E\left(X_{2} \mid X_{1}\right)$. Find $E\left(X_{2}\right)$ from this. Find also $E\left(X_{2}\right)$ without using the rule of double expectation.
(e) Find also $E\left(X_{3} \mid X_{2}\right), E\left(X_{3} \mid X_{1}, X_{2}\right)$ and $E\left(X_{3} \mid X_{1}\right)$.

THE HISTORY OF A PROCESS

Notation:

$$
\mathcal{F}_{n}=\text { "information contained in } X_{1}, X_{2}, \ldots, X_{n} "
$$

or "the history at time n ", or the 'past' at time n; meaning the set of all events that can be described in terms of $X_{1}, X_{2}, \ldots, X_{n}$, (these form a so called σ-algebra \mathcal{F}_{n} of events). Also, for a random variable Y we write $Y \in \mathcal{F}_{n}$ if all events involving Y are in \mathcal{F}_{n}.

REMARK: $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \mathcal{F}_{3} \subset \cdots$
EXAMPLE: The event $\left\{X_{2}>2 X_{4}\right\}$ is in \mathcal{F}_{4} and in \mathcal{F}_{17} but not in \mathcal{F}_{2}.

- We will write $E\left(X_{n} \mid X_{1}, X_{2}, \ldots, X_{n-1}\right)=E\left(X_{n} \mid \mathcal{F}_{n-1}\right)$
- More generally we can consider $E\left(Y \mid \mathcal{F}_{n}\right)$ for any random variable Y, meaning $E\left(Y \mid X_{1}, X_{2}, \ldots, X_{n-1}\right)$.

Notation:

Let \mathcal{F} be a set (σ-algebra) of events that includes all the \mathcal{F}_{n}, i.e. $\mathcal{F}_{n} \subset \mathcal{F}$ for all n. We can think of this as the set of "all events" in a specific application.

CONDITIONAL EXPECTATION GIVEN THE HISTORY

Let $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \mathcal{F}_{3} \subset \cdots \subset \mathcal{F}$ and let $Y \in \mathcal{F}$. Then the
conditional expectation

$$
E\left(Y \mid \mathcal{F}_{n}\right)\left(=E\left(Y \mid X_{1}, X_{2}, \ldots, X_{n}\right)\right)
$$

is interpreted as "what can be said about Y after having observed (only) $X_{1}, X_{2}, \ldots, X_{n}$, i.e. knowing only the history $\mathcal{F}_{n}{ }^{\prime \prime}$

It is theoretically characterized by (for any $Y \in \mathcal{F}$)

1. $E\left(Y \mid \mathcal{F}_{n}\right) \in \mathcal{F}_{n}$, i.e. is a function of $X_{1}, X_{2}, \ldots, X_{n}$ only.
2. For any $Z \in \mathcal{F}_{n}$ we have

$$
E\left[Z E\left(Y \mid \mathcal{F}_{n}\right)\right]=E[Z Y]
$$

Two useful consequences:

- $E\left[E\left(Y \mid \mathcal{F}_{n}\right)\right]=E[Y] \quad$ (double expectation; put $Z \equiv 1$ above.)
- If $Z \in \mathcal{F}_{n}$, then $E\left(Z Y \mid \mathcal{F}_{n}\right)=Z E\left(Y \mid \mathcal{F}_{n}\right)$ (puts a "constant" outside the expectation)

EXERCISE 2

Let X_{1}, X_{2}, \ldots be independent with $E\left(X_{n}\right)=\mu$ for all n.
Let $S_{n}=X_{1}+\ldots+X_{n}$.
Find $E\left(S_{4} \mid \mathcal{F}_{2}\right)$ and in general $E\left(S_{n} \mid \mathcal{F}_{m}\right)$ when $m \leq n$

GENERALIZATION OF $E\left(X_{3} \mid X_{1}\right)=E\left[E\left(X_{3} \mid X_{1}, X_{2}\right) \mid X_{1}\right]$

CHECK OUT THE FOLLOWING ...

$$
\begin{equation*}
E\left(X_{n} \mid X_{1}, \ldots, X_{m_{1}}\right)=E\left[E\left(X_{n} \mid X_{1}, \ldots, X_{m_{2}}\right) \mid X_{1}, \ldots, X_{m_{1}}\right] \tag{1}
\end{equation*}
$$

for $1 \leq m_{1}<m_{2}<n$
Now (1) can be written

$$
E\left(X_{n} \mid \mathcal{F}_{m_{1}}\right)=E\left[E\left(X_{n} \mid \mathcal{F}_{m_{2}}\right) \mid \mathcal{F}_{m_{1}}\right] \text { for } 1 \leq m_{1}<m_{2}<n
$$

More generally we have, for any $Y \in \mathcal{F}$,

$$
E\left(Y \mid \mathcal{F}_{m_{1}}\right)=E\left[E\left(Y \mid \mathcal{F}_{m_{2}}\right) \mid \mathcal{F}_{m_{1}}\right] \text { for } 1 \leq m_{1}<m_{2}
$$

MARTINGALES IN DISCRETE TIME

A stochastic process $M=\left\{M_{0}, M_{1}, M_{2}, \ldots\right\}$ is called a martingale if

$$
E\left(M_{n} \mid M_{0}, \ldots, M_{n-1}\right)=M_{n-1} \text { for } n=1,2, \ldots
$$

or, more compactly,

$$
\begin{equation*}
E\left(M_{n} \mid \mathcal{F}_{n-1}\right)=M_{n-1} \text { for } n=1,2, \ldots \tag{2}
\end{equation*}
$$

where $\mathcal{F}_{k}=$ all events described by $M_{0}, M_{1}, \ldots, M_{k}$.
Thus - given the history to time $n-1$, the expected value at the next step equals the current state.

This can be taken as the definition of a fair game:
If the gambler's gain after $n-1$ games is M_{n-1}, then the expected gain after the next game is the same as the current. (For example if wins or loses 1 unit with probability 1/2).

Remark: Time may also run from 1, in which case one considers the process M_{1}, M_{2}, \ldots

mORE GENERAL DEFINITION OF MARTINGALE

Instead of letting \mathcal{F}_{k} be the history of M_{0}, \ldots, M_{k} only, we may let the \mathcal{F}_{k} contain extra information, provided

- $\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \ldots$
- $M_{n} \in \mathcal{F}_{n}$ for each n
(we then say that the process M is adapted to the history $\left\{\mathcal{F}_{n}\right\}$)
- $E\left|M_{n}\right|<\infty$ for each n
- $E\left(M_{n} \mid \mathcal{F}_{n-1}\right)=M_{n-1}$ for $n=1,2, \ldots$
(The above is then the general definition of a discrete time martingale).

expected value of martingale is constant

Recall definition:

$$
E\left(M_{n} \mid \mathcal{F}_{n-1}\right)=M_{n-1}
$$

Taking the expected value on each side, the rule of double expectation gives

$$
E\left(M_{n}\right)=E\left(M_{n-1}\right)
$$

Hence

$$
E\left(M_{0}\right)=E\left(M_{1}\right)=\cdots=(\text { usually }) 0
$$

("mean zero martingale")

Often it is assumed that $M_{0}=0$ with probability 1 (w.p.1).

EXERCISE 3

Let X_{1}, X_{2}, \ldots be independent with

$$
P\left(X_{i}=1\right)=P\left(X_{i}=-1\right)=1 / 2
$$

Think of X_{i} as result of a game where one flips a coin and wins 1 unit if "heads" and loses 1 unit if "tails".

Let $M_{n}=X_{1}+\ldots+X_{n}$ be the gain after n games, $n=1,2, \ldots$ Show that M_{n} is a (mean zero) martingale.

EXERCISE 4

(a) Let X_{1}, X_{2}, \ldots be independent with $E\left(X_{n}\right)=0$ for all n. Let $M_{n}=X_{1}+\ldots+X_{n}$.
Show that M_{n} is a (mean zero) martingale.
(b) Let X_{1}, X_{2}, \ldots be independent with $E\left(X_{n}\right)=\mu$ for all n.

Let $S_{n}=X_{1}+\ldots+X_{n}$.
Compute $E\left(S_{n} \mid \mathcal{F}_{n-1}\right)$ (see Exercise 2). Is $\left\{S_{n}\right\}$ a martingale?
Can you find a simple transformation of S_{n} which is a martingale?
(c) Let X_{1}, X_{2}, \ldots be independent with $E\left(X_{n}\right)=1$ for all n.

Let $M_{n}=X_{1} \cdot X_{2} \cdot \ldots \cdot X_{n}$.
Show that M_{n} is a martingale. What is $E\left(M_{n}\right)$?

EXERCISE 5

Show that for a martingale $\left\{M_{n}\right\}$ is
(a) $E\left(M_{n} \mid \mathcal{F}_{m}\right)=M_{m}$ for all $m<n$.

This is essentially Exercise 2.1 in ABG.
(b) $E\left(M_{m} \mid \mathcal{F}_{n}\right)=M_{m}$ for all $m<n$
(c) Give verbal (intuitive) interpretations of each of (a) and (b).

EXERCISE 6

Define the martingale differences by

$$
\Delta M_{n}=M_{n}-M_{n-1}
$$

(a) Show that the definition of martingale, $E\left(M_{n} \mid \mathcal{F}_{n-1}\right)=M_{n-1}$, is equivalent to

$$
\begin{equation*}
E\left(M_{n}-M_{n-1} \mid \mathcal{F}_{n-1}\right)=0, \text { i.e. } E\left(\Delta M_{n} \mid \mathcal{F}_{n-1}\right)=0 \tag{3}
\end{equation*}
$$

(Hint: Why is $E\left(M_{n-1} \mid \mathcal{F}_{n-1}\right)=M_{n-1}$?)
(b) Show that for a martingale we have

$$
\begin{equation*}
\operatorname{Cov}\left(M_{n-1}-M_{n-2}, M_{n}-M_{n-1}\right)=0 \text { for all } n \tag{4}
\end{equation*}
$$

i.e. $\operatorname{Cov}\left(\Delta M_{n-1}, \Delta M_{n}\right)=0$. Explain in words what this means.
(c) Show that (3) and (4) automatically hold when $M_{n}=X_{1}+\ldots+X_{n}$ for independent X_{1}, X_{2}, \ldots
Note that in this case the differences $\Delta M_{n}=M_{n}-M_{n-1}=X_{n}$ are independent.
Thus (4) shows that martingale differences correspond to a weakening of the independent increments property

STOPPING TIMES

Let $M=\left\{M_{0}, M_{1}, \ldots\right\}$ be a process adapted to $\left\{\mathcal{F}_{n}\right\}$.
Let T be a positve integer valued random variable.
T is a stopping time if for all n the event $\{T=n\}$ is in \mathcal{F}_{n}, i.e. at any time n we can decide from $M_{0}, M_{1}, \ldots, M_{n}$ whether we should stop or not!

Examples of stopping times:

- Let k be a fixed integer and let $T=k$ w.p.1.
- Let A be a set and let T be the first time the process hits A. Example: If M_{n} is gain after n games (Exercise 3), then we may stop when $M_{n} \geq 10$.
- In survival analysis: T is usually a censoring time, i.e. unit is not observed beyond T even if still alive.

STOPPED PROCESS

The stopped process is denoted M^{T} and is defined by

$$
M_{n}^{T}=M_{n \wedge T} \equiv\left\{\begin{array}{l}
M_{n} \text { if } n \leq T \\
M_{T} \text { if } n>T
\end{array}\right.
$$

(so we "freeze" the process at time T).
It will be shown later, by using a more general result on transformations of martingales (Exercise 2.6 in ABG), that the stopped process M^{T} is a martingale.

TRANSFORMATION OF A MARTINGALE

Consider again EXERCISE 3: Let X_{1}, X_{2}, \ldots be independent with $P\left(X_{i}=1\right)=P\left(X_{i}=-1\right)=1 / 2 . X_{i}$ is result of a game where one flips a coin and wins 1 unit if "heads" and loses 1 unit if "tails".
$M_{n}=X_{1}+\ldots+X_{n}$ is the gain after n games, and is a martingale (Exercise 3).
Suppose now that in the nth game we make the bet H_{n}, where in order to determine H_{n} we may use information from the first $n-1$ games (i.e. \mathcal{F}_{n-1}). Now we either lose or win an amount H_{n} in the nth game. The gain after n games is therefore

$$
\begin{aligned}
Z_{n} & =H_{1} X_{1}+H_{2} X_{2}+\ldots+H_{n} X_{n} \\
& =H_{1}\left(M_{1}-M_{0}\right)+H_{2}\left(M_{2}-M_{1}\right)+\ldots+H_{n}\left(M_{n}-M_{n-1}\right)
\end{aligned}
$$

where $M_{0}=0$. This is a special case of what is called the transformation of M by H and is written $Z=H \bullet M$.

The interesting and useful property is that $Z=H \bullet M$ is a martingale whenever M is. The clue is that $H_{n} \in \mathcal{F}_{n-1}$ so that H is a so-called predictable process.

Main result: The transformation of a martingale by a predictable process is again a martingale.

PROOF OF MARTINGALE PROPERTY

Let

$$
Z_{n}=H_{1}\left(M_{1}-M_{0}\right)+H_{2}\left(M_{2}-M_{1}\right)+\ldots+H_{n}\left(M_{n}-M_{n-1}\right)
$$

Then

$$
\begin{aligned}
E\left(Z_{n}-Z_{n-1} \mid \mathcal{F}_{n-1}\right) & =E\left(H_{n}\left(M_{n}-M_{n-1}\right) \mid \mathcal{F}_{n-1}\right) \\
& =H_{n} E\left(M_{n}-M_{n-1} \mid \mathcal{F}_{n-1}\right) \\
& =0
\end{aligned}
$$

where we use that $H_{n} \in \mathcal{F}_{n-1}$ (i.e. that H is predictable).

Conclusion: "You cannot beat a fair game". But - see next slide...

ON MARTINGALES IN WIKIPEDIA

"Originally, martingale referred to a class of betting strategies that was popular in 18th century France. The simplest of these strategies was designed for a game in which the gambler wins his stake if a coin comes up heads and loses it if the coin comes up tails. The strategy had the gambler double his bet after every loss, so that the first win would recover all previous losses plus win a profit equal to the original stake. Since as a gambler's wealth and available time jointly approach infinity his probability of eventually flipping heads approaches 1 , the martingale betting strategy was seen as a sure thing by those who practiced it. Of course in reality the exponential growth of the bets would eventually bankrupt those foolish enough to use the martingale for a long time.

The concept of martingale in probability theory was introduced by Paul Pierre Lévy, and much of the original development of the theory was done by Joseph Leo Doob. Part of the motivation for that work was to show the impossibility of successful betting strategies."

MARTINGALE STRATEGY - FIRST WIN IS IN nth GAME

Game \#	Stake (H)	Result (Lose/Win)	Gain (Z)
1	1	L	-1
2	2	L	-3
3	4	L	-7
4	8	L	-15
\vdots	\vdots	\vdots	\vdots
$n-1$	2^{n-2}	L	$-\left(2^{n-1}-1\right)$
n	2^{n-1}	W	$2^{n-1}-\left(2^{n-1}-1\right)=1$
$n+1$	0	-	1
$n+2$	0	-	1
\vdots	\vdots	\vdots	\vdots

This process, stopped at first win ("heads"), is a transformation of the simple betting process with $X_{i}= \pm 1$, with

$$
\begin{aligned}
H_{n} & =2^{n-1} \text { if } X_{1}=X_{2}=\ldots=X_{n-1}=-1 \\
H_{n} & =0 \text { if } X_{i}=1 \text { for some } i=1,2, \ldots, n-1
\end{aligned}
$$

ROULETTE: PLAY RED/BLACK OR ODD/EVEN

PROBLEM WITH MARTINGALE STRATEGY EXERCISE 7

Requires unbounded capital, and requires that bank sets no upper bound for bets

- in order to have a sure win!

EXERCISE 7

Suppose that you use the martingale betting strategy, but that you in any case must stop after n games.

Calculate the expected gain. Can you "beat the game"?
(Hint: You either win 1 or lose $2^{n}-1$ units.)

EXERCISE 8

Do Exercise 2.6 in ABG:
Show that the stopped process M^{T} is a martingale. (Hint: Find a predictable process H such that $\left.M^{T}=H \bullet M\right)$.

This suggests that $E\left(M_{T}\right) \equiv E\left(M_{T}^{T}\right)=E\left(M_{0}^{T}\right)=E\left(M_{0}\right)=0$.
But this does obviously not hold for the martingale strategy case (where indeed the process is a martingale, stopped at a stopping time).
What is the clue here? (See next slide).

THE OPTIONAL SAMPLING THEOREM

states that under certain conditions, the expected value of a martingale at a stopping time, is equal to its initial value, i.e. $E\left(M_{T}\right)=E\left(M_{0}\right)$.

Here are some conditions which, together with the condition $P(T<\infty)=1$, are each sufficient (but none of which are satisfied in the martingale stratgy case):

- there is a constant d such that $\left|M_{n}^{T}\right| \leq d$ for all n
- there is a constant τ such that $P(T \leq \tau)=1$
- $E(T)<\infty$ and there is a constant c such that $\left|M_{n}-M_{n-1}\right| \leq c$ for all n

THE DOOB DECOMPOSITION

NOTE: The conclusion of section 2.1.4 in ABG is incomplete and should be replaced by the following. See also Doob decomposition theorem in Wikipedia

Theorem: Let $X=\left\{X_{0}, X_{1}, X_{2}, \ldots\right\}$ be adapted to the history $\left\{\mathcal{F}_{n}\right\}$. Then there exist (uniquely given) a martingale M and a predictable process X^{*} starting with $X_{0}^{*}=0$ such that

$$
X_{n}=X_{n}^{*}+M_{n} \text { for } n=0,1,2, \ldots
$$

Proof: Let

$$
\begin{aligned}
& X_{n}^{*}=\sum_{k=1}^{n}\left[E\left(X_{k} \mid \mathcal{F}_{k-1}\right)-X_{k-1}\right] \\
& M_{n}=X_{0}+\sum_{k=1}^{n}\left[X_{k}-E\left(X_{k} \mid \mathcal{F}_{k-1}\right)\right]
\end{aligned}
$$

Then $X_{n}^{*}+M_{n}=X_{n}$ for $n=0,1,2, \ldots$. The process X_{n}^{*} is predictable since $X_{n}^{*} \in \mathcal{F}_{n-1}$. Finally, M_{n} is a martingale since

$$
\begin{aligned}
E\left(M_{n}-M_{n-1} \mid \mathcal{F}_{n-1}\right) & =E\left[X_{n}-E\left(X_{n} \mid \mathcal{F}_{n-1}\right) \mid \mathcal{F}_{n-1}\right] \\
& =E\left(X_{n} \mid \mathcal{F}_{n-1}\right)-E\left(X_{n} \mid \mathcal{F}_{n-1}\right)=0
\end{aligned}
$$

EXERCISE 9

Suppose $X_{n}=U_{1}+\ldots+U_{n}$ where U_{1}, \ldots, U_{n} are independent with $E\left(U_{i}\right)=\mu$. Find the Doob decomposition of the process X and identify the predictable part X^{*} and the innovation part M.

PROCESSES IN CONTINUOUS TIME

Key elements:

- $X=\{X(t): t \in[0, \tau]\}$
- History (information) at time t is given by \mathcal{F}_{t}, with $\mathcal{F}_{s} \subset \mathcal{F}_{t}$ when $s<t$. Typically, \mathcal{F}_{t} corresponds to observation of $X(u)$ for $0 \leq u \leq t$
- $\left\{\mathcal{F}_{t}\right\}$ is called a filtration
- The process X is said to be adapted to $\left\{\mathcal{F}_{t}\right\}$ if $X(t) \in \mathcal{F}_{t}$ for all t.
- The process is called cadlag if its paths (trajectories on a graph) are right continuous with left hand limits
- A time T is a stopping time if $\{T \leq t\} \in \mathcal{F}_{t}$ for each t. This means that at time t we know whether $T \leq t$ or $T>t$

EXAMPLE OF A CADLAG SAMPLE PATH

MARTINGALES

IN CONTINUOUS TIME	IN DISCRETE TIME
$\mathcal{F}_{s} \subset \mathcal{F}_{t}$ whenever $s<t$	$\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \mathcal{F}_{3} \subset \ldots$
$M=\{M(t): t \in[0, \tau]\}$	$M=\left\{M_{n}: n=0,1, \ldots\right\}$
Definition:	Definition:
$E\left(M(t) \mid \mathcal{F}_{s}\right)=M(s)$ for all $t>s$	$E\left(M_{n} \mid \mathcal{F}_{m}\right)=M_{m}$ for all $n>m$
$\operatorname{Property:~}$	$\operatorname{Property:}$
Cov $(M(t)-M(s), M(v)-M(u))=0$	$\operatorname{Cov}\left(M_{k}-M_{j}, M_{n}-M_{m}\right)=0$
for $0 \leq s<t<u<v \leq \tau$	for $0 \leq j<k \leq m<n$

EXERCISE 10

Prove the results on the covariances on previous slide (see Exercise 6, and hint in Exercise 2.2 in ABG)

EQUIVALENT DEFINITIONS OF MARTINGALES

- Discrete time:

$$
E\left(\Delta M_{n} \mid \mathcal{F}_{n-1}\right)=E\left(M_{n}-M_{n-1} \mid \mathcal{F}_{n-1}\right)=0
$$

- Continuous time:

$$
E\left(d M(t) \mid \mathcal{F}_{t-}\right) \equiv E\left(M((t+d t)-)-M(t-) \mid \mathcal{F}_{t-}\right)=0
$$

Here we think of \mathcal{F}_{t-} as the history up to, but not including, time t.
Thus \mathcal{F}_{t-} contains the information in $\{M(u): 0 \leq u<t\}$

Note that $d M(t)$ is defined as the increment of $M(t)$ in the time interval $[t, t+d t)$, i.e.,

$$
d M(t)=M((t+d t)-)-M(t-)
$$

STOCHASTIC INTEGRALS

Recall for discrete time: The transformation of M by $H, Z=H \bullet M$, is defined for martingale M and predictable process H by

$$
Z_{n}=H_{1}\left(M_{1}-M_{0}\right)+H_{2}\left(M_{2}-M_{1}\right)+\ldots+H_{n}\left(M_{n}-M_{n-1}\right)=\sum_{i=1}^{n} H_{i} \Delta M_{i}
$$

Continuous time: Need to define predictable process. The process $H=\{H(t)\}$ is predictable if, informally, the value of $H(t)$ is known immediately before t. A sufficient condition for predictability of H is that it is adapted to \mathcal{F}_{t} and have left continuous sample paths.

The stochastic integral of a predictable process H with respect to a martingale M is now,

$$
I(t)=\int_{0}^{t} H(s) d M(s)=\operatorname{def} \lim _{n \rightarrow \infty} \sum_{i=1}^{n} H_{i} \Delta M_{i}
$$

where $[0, t]$ is partitioned into n parts of length t / n and

$$
H_{i}=H((i-1) t / n), \quad \Delta M_{i}=M(i t / n)-M((i-1) t / n)
$$

As for transformations in discrete time: The $I(t)$ are (mean zero) martingales.

THE DOOB-MEYER DECOMPOSITION

The process $X=\{X(t): t \in[0, \tau]\}$ is a submartingale if

$$
E\left(X(t) \mid \mathcal{F}_{s}\right) \geq X(s) \text { for all } t>s
$$

Every increasing (=non-decreasing) process - e.g. counting process - must be a submartingale, since

$$
E\left(X(t) \mid \mathcal{F}_{s}\right)-X(s)=E\left\{X(t)-X(s) \mid \mathcal{F}_{s}\right\} \geq 0 \text { for all } t>s
$$

Doob-Meyer decomposition for submartingales:

$$
X(t)=X^{*}(t)+M(t) \quad \text { (uniquely) }
$$

- X^{*} is an increasing predictable process, called the compensator of X
- M is a mean zero martingale

Recall for discrete time, for any \mathcal{F}_{n}-adapted process,

$$
X_{n}=X_{n}^{*}+M_{n}=\text { predictable part }+ \text { innovation }
$$

POISSON PROCESSES

$N(t)=\#$ events in $[0, t]$
Characterizing properties of a Poisson process with intensity λ :

- $N(t)-N(s)$ is Poisson-distributed with parameter $(t-s) \lambda$ for $s<t$
- $N(t)$ has independent increments, i.e. $N(t)-N(s)$ is independent of \mathcal{F}_{s} for $s<t$. Or, more intuitively: If $\left(s_{1}, t_{1}\right],\left(s_{2}, t_{2}\right], \ldots$ are disjoint intervals, then $N\left(t_{1}\right)-N\left(s_{1}\right), N\left(t_{2}\right)-N\left(s_{2}\right), \ldots$ are stochastically independent.

EXERCISE 11

Show that

$$
M(t)=N(t)-\lambda t
$$

is a martingale. Identify the compensator of $N(t)$ as λt.

Hint:
For $t>s$ is $E\left\{N(t) \mid \mathcal{F}_{s}\right\}=N(s)+\lambda(t-s)$

VARIATION PROCESSES

So far we have mostly looked at expected values. In applications we will also be interested in the variation of the processes:

CONSIDER FIRST DISCRETE TIME

The predictable variation process (which we have not yet considered) is defined by:

$$
\langle M\rangle_{n}=\sum_{i=1}^{n} E\left\{\left(M_{i}-M_{i-1}\right)^{2} \mid \mathcal{F}_{i-1}\right\}=\sum_{i=1}^{n} \operatorname{Var}\left(\Delta M_{i} \mid \mathcal{F}_{i-1}\right)
$$

The optional variation process is defined by:

$$
[M]_{n}=\sum_{i=1}^{n}\left(M_{i}-M_{i-1}\right)^{2}=\sum_{i=1}^{n}\left(\Delta M_{i}\right)^{2}
$$

EXERCISES

EXERCISE 12: This is Exercise 2.3 in ABG, plus a new questions (d). (a) was done as our Exercise 3(a)

Let X_{1}, X_{2}, \ldots be independent with $E\left(X_{n}\right)=0$ and $\operatorname{Var}\left(X_{n}\right)=\sigma^{2}$ for all n. Let $M_{n}=X_{0}+X_{1}+\ldots+X_{n}$ where $X_{0}=0$.
(a) Show that M_{n} is a (mean zero) martingale.
(b) Compute $\langle M\rangle_{n}$
(c) Compute $[M]_{n}$
(d) Compute $E\langle M\rangle_{n}, E[M]_{n}$ and $\operatorname{Var}\left(M_{n}\right)$.

EXERCISE 13: Consider a general discrete time martingale M. Show that:
(a) $M_{n}^{2}-\langle M\rangle_{n}$ is a mean zero martingale - Exercise 2.4 in ABG
(b) $M_{n}^{2}-[M]_{n}$ is a mean zero martingale - See ABG p. 45
(c) Use (a) and (b) to prove that

$$
\operatorname{Var}\left(M_{n}\right)=E\langle M\rangle_{n}=E[M]_{n}
$$

What is the intuitive essence of this result?

THE PREDICTABLE VARIATION OF A TRANSFORMATION

Recall: $(H \bullet M)_{n}=H_{1}\left(M_{1}-M_{0}\right)+H_{2}\left(M_{2}-M_{1}\right)+\ldots+H_{n}\left(M_{n}-M_{n-1}\right)$
$\Delta(H \bullet M)_{n}=H_{n}\left(M_{n}-M_{n-1}\right)=H_{n} \Delta M_{n}$
Recall: $\langle M\rangle_{n}=\sum_{i=1}^{n} E\left\{\left(M_{i}-M_{i-1}\right)^{2} \mid \mathcal{F}_{i-1}\right\}=\sum_{i=1}^{n} \operatorname{Var}\left(\Delta M_{i} \mid \mathcal{F}_{i-1}\right)$
From this: $\langle H \bullet M\rangle_{n}=\sum_{i=1}^{n} \operatorname{Var}\left(\Delta(H \bullet M)_{i} \mid \mathcal{F}_{i-1}\right)$
$=\sum_{i=1}^{n} \operatorname{Var}\left(H_{i} \Delta M_{i} \mid \mathcal{F}_{i-1}\right)$
$=\sum_{i=1}^{n} H_{i}^{2} \operatorname{Var}\left(\Delta M_{i} \mid \mathcal{F}_{i-1}\right)$
$=\sum_{i=1}^{n} H_{i}^{2} \Delta\langle M\rangle_{i}$
$=\left(H^{2} \bullet\langle M\rangle\right)_{n} \quad$ so $\langle H \bullet M\rangle=H^{2} \bullet\langle M\rangle$

THE OPTIONAL VARIATION OF A TRANSFORMATION

Recall: $(H \bullet M)_{n}=H_{1}\left(M_{1}-M_{0}\right)+H_{2}\left(M_{2}-M_{1}\right)+\ldots+H_{n}\left(M_{n}-M_{n-1}\right)$
$\Delta(H \bullet M)_{n}=H_{n}\left(M_{n}-M_{n-1}\right)=H_{n} \Delta M_{n}$
Recall: $[M]_{n}=\sum_{i=1}^{n}\left(M_{i}-M_{i-1}\right)^{2}=\sum_{i=1}^{n}\left(\Delta M_{i}\right)^{2}$
From this: $[H \bullet M]_{n}=\sum_{i=1}^{n}\left(\Delta(H \bullet M)_{i}\right)^{2}$

$$
=\sum_{i=1}^{n}\left(H_{i} \Delta M_{i}\right)^{2}
$$

$$
=\sum_{i=1}^{n} H_{i}^{2}\left(\Delta M_{i}\right)^{2}
$$

$$
=\sum_{i=1}^{n} H_{i}^{2} \Delta[M]_{i}
$$

$$
=\left(H^{2} \bullet[M]\right)_{n} \quad \text { so }[H \bullet M]=H^{2} \bullet[M]
$$

RESULTING FORMULAS

$$
\begin{aligned}
\langle H \bullet M\rangle & =H^{2} \bullet\langle M\rangle \\
{[H \bullet M] } & =H^{2} \bullet[M]
\end{aligned}
$$

with similarities to the elementary formula from introductory statistics courses

$$
\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)
$$

VARIATION PROCESSES IN CONTINUOUS TIME

The discrete predictable variation process

$$
\langle M\rangle_{n}=\sum_{i=1}^{n} \operatorname{Var}\left(\Delta M_{i} \mid \mathcal{F}_{i-1}\right) \quad \text { where } \Delta M_{i}=M_{i}-M_{i-1}
$$

becomes in continuous time

$$
\langle M\rangle(t)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \operatorname{Var}\left(\Delta M_{i} \mid \mathcal{F}_{(i-1) t / n}\right)
$$

where

- $[0, t]$ is partitioned into n parts of length t / n
- $\Delta M_{i}=M(i t / n)-M((i-1) t / n)$

Informally:
$d\langle M\rangle(t)=\operatorname{Var}\left(d M(t) \mid \mathcal{F}_{t-}\right)$

VARIATION PROCESSES IN CONTINUOUS TIME

The discrete optional variation process

$$
[M]_{n}=\sum_{i=1}^{n}\left(\Delta M_{i}\right)^{2} \quad \text { where } \Delta M_{i}=M_{i}-M_{i-1}
$$

becomes

$$
[M](t)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\Delta M_{i}\right)^{2}
$$

where

- $[0, t]$ is partitioned into n parts of length t / n
- $\Delta M_{i}=M(i t / n)-M((i-1) t / n)$

For processes of finite variation (as in our applications), we have

$$
[M](t)=\sum_{s \leq t}(M(s)-M(s-))^{2}, \text { i.e. sum of squares of all jumps of } M(t)
$$

FROM DISCRETE TO CONTINUOUS TIME

IN CONTINUOUS TIME	IN DISCRETE TIME
$M^{2}(t)-\langle M\rangle(t)$ is a mean zero martingale	$M_{n}^{2}-\langle M\rangle_{n}$ is a mean zero martingal
$M^{2}(t)-[M](t)$ is a mean zero martingale	$M_{n}^{2}-[M]_{n}$ is a mean zero martingal
$\operatorname{Var}(M(t))=E\langle M\rangle(t)=E[M](t)$	$\operatorname{Var}\left(M_{n}\right)=E\langle M\rangle_{n}=E[M]_{n}$

CHARACTERIZATION OF $\langle M\rangle$ IN CONTINUOUS CASE

First, M^{2} is a submartingale because

$$
E\left(M^{2}(t) \mid \mathcal{F}_{s}\right) \geq\left(E\left(M(t) \mid \mathcal{F}_{s}\right)\right)^{2}=M(s)^{2}
$$

by Jensen's inequality.
Since $M^{2}-\langle M\rangle$ is a martingale, i.e. $M^{2}=\langle M\rangle+$ a martingale, it follows by uniqueness of Doob-Meyer decomposition that

- $\langle M\rangle$ is the compensator of M^{2}

But we also have that $M^{2}-[M]$ is a martingale. Why doesn't it follow from this that also $[M]$ is the compensator of M^{2} ?

VARIATION PROCESSES FOR STOCHASTIC INTEGRALS

Recall that $I(t)=\int_{0}^{t} H(s) d M(s)$ is a mean zero martingale whenever M is, and is similar to the transformations $\mathrm{H} \bullet M$.

Recall for discrete time:

$$
\begin{aligned}
\langle H \bullet M\rangle & =H^{2} \bullet\langle M\rangle \\
{[H \bullet M] } & =H^{2} \bullet[M]
\end{aligned}
$$

Corresponding formulas for continuous time:

$$
\begin{aligned}
\left\langle\int H d M\right\rangle & =\int H^{2} d\langle M\rangle \\
{\left[\int H d M\right] } & =\int H^{2} d[M]
\end{aligned}
$$

EXERCISE 14

Consider again the Poisson process, where we have shown that

$$
M(t)=N(t)-\lambda t
$$

is a martingale.
Prove now that:

$$
M^{2}(t)-\lambda t
$$

is a martingale (Exercise 2.9 in ABG)
Then prove that $\langle M\rangle(t)=\lambda t$
What is $[M](t)$?

Hint:
For $t>s$ is $E\left(N(t) \mid \mathcal{F}_{s}\right)=N(s)+\lambda(t-s)$
For $t>s$ is $E\left(N^{2}(t) \mid \mathcal{F}_{s}\right)=N(s)^{2}+2 N(s) \lambda(t-s)+\lambda(t-s)+(\lambda(t-s))^{2}$

