STK4080/9080 SURVIVAL AND EVENT HISTORY ANALYSIS Slides 3: Censoring and truncation

Bo Lindqvist Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim

https://www.ntnu.edu/employees/bo.lindqvist bo.lindqvist@ntnu.no boli@math.uio.no

University of Oslo, Spring 2021

CENSORING

Lifetime data typically include *censored* data, meaning that:

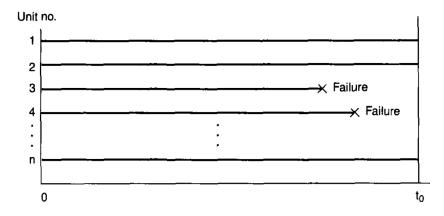
- some lifetimes are known to have occurred only within certain intervals.
- The remaining lifetimes are known exactly.

Categories of censoring:

- right censoring (most common, "inevitable" in survival studies)
- left censoring
- interval censoring

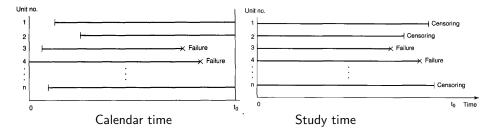
TYPE I (RIGHT) CENSORING

n units put on test at time t = 0. Experiment stopped at time $t = t_0$.



GENERALIZED TYPE I CENSORING ("STAGGERED ENTRY")

Individuals enter the study at different times, and the terminal point of the study is predetermined.



3

(日) (同) (日) (日) (日)

n units are put on test at time t = 0.

The study continues until r individuals have failed, where r is some predetermined integer (r < n).

Advantage: It could take a very long time for all items to fail. Also, the statistical treatment of Type II censored data is simpler because the joint distribution of the order statistics is available.

RANDOM RIGHT CENSORING

- For each unit we define
 - *T_i* to be the potential lifetime
 - C_i to be the potential censoring time

where

- ► *T_i*, *C_i* are independent random variables.
- Then we *observe* the pair (\tilde{T}_i, D_i) , where

$$egin{array}{rcl} \widetilde{T}_i &=& \min(T_i,C_i) \ D_i &=& egin{cases} 1 & ext{if} & T_i \leq C_i \ 0 & ext{if} & T_i > C_i \end{array} \end{array}$$

Example of use: Cancer treatment, with T_i being the time of death due to this cancer; while C_i is the time of death of another cause, or an accident, or migration, etc.

GENERAL FORMULATION OF RIGHT CENSORING

Right censoring of Type I and II, or random censoring, can all be represented as follows:

n units are observed, with potential i.i.d. lifetimes T_1, T_2, \dots, T_n . For each *i*, we observe a time \tilde{T}_i which is either the true lifetime T_i , or a censoring time $C_i < T_i$, in which case the true lifetime is "to the right" of the observed time C_i .

The observation from a unit is the pair (\tilde{T}_i, D_i) where the *censoring indicator* D_i is defined by

 $D_i = \begin{cases} 1 & \text{if} & \tilde{T}_i = T_i, \text{ in which case we observe the true lifetime } T_i \\ 0 & \text{if} & \tilde{T}_i = C_i, \text{ in which case it is only known that } T_i > Y_i \end{cases}$

イロト イヨト イヨト イヨト ヨー のくの

INDEPENDENT CENSORING

Consider a situation where *n* individuals are followed from time t = 0. The *i*th individual is followed until $\tilde{T}_i = \min(T_i, C_i)$, i.e. until either failure (death) or censoring at time C_i .

The ith individual is said to be at risk at time t if $t < \tilde{T}_i$, i.e. if the individual has not yet been censored and have not failed.

A sensoring scheme is said to satisfy the property of **independent censoring** if, at any time t, the individuals that are *at risk* are representative for the distribution of T in the sense that their probaility of failing in a small time interval (t, t + h) is (in the limit as h tends to 0) is $\alpha(t)h$.

The censoring types we have considered so far all satisfy this independent censoring property.

LEFT TRUNCATION (ABG p. 4-5)

- In a clinical study, the patients come under observation some time after the initiating event (i.e. the event defining t = 0)
- If time t is age, the individuals may be under observation from different ages
- Only individuals for which the event has not already happened are inclluded in the study

Observations

