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LIFETIME (SURVIVAL TIME)

The lifetime T of an individual or unit is a positive and continuously
distributed random variable.

I The probability density function (pdf) is usually called f (t),
I the cumulative distribution function (cdf) F (t) is then given by

F (t) = P(T ≤ t) =
∫ t
0 f (u)du,

I the survival) function is defined as
S(t) = P(T > t) = 1− F (t) =

∫∞
t f (u)du.
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EXAMPLE: EXPONENTIAL DISTRIBUTION

f (t) = λe−λt

F (t) = 1− e−λt

S(t) = e−λt
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INTERPRETATION OF DENSITY FUNCTION

f (t) = F ′(t)

P(a < T ≤ b) =

∫ b

a
f (u)du = F (b)− F (a)

P(t < T ≤ t + h) =

∫ t+h

t
f (u)du ≈ f (t) · h

Hence,

f (t) ≈ P(t < T ≤ t + h)

h
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FROM DENSITY TO HAZARD FUNCTION OF T

From last slide,
P(t < T ≤ t + h) ≈ f (t) · h

If we know that the unit is alive (functioning) at time t, i.e. T > t, we
may be interested in the conditional probability

P(t < T ≤ t + h|T > t).

Using the conditional probability formula: P(A|B) = P(A ∩ B)/P(B), we
get

P(t < T ≤ t + h|T > t) =
P(t < T ≤ t + h)

P(T > t)
≈ f (t)h

S(t)
=

f (t)

S(t)
h ≡ α(t)h

where we define the hazard function (also called hazard rate or failure
rate) of T at time t by:

α(t) =
f (t)

S(t)
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HAZARD FUNCTION OF T

Formal definition of hazard function is

α(t) = lim
h→0

P(t < T ≤ t + h|T > t)

h
=

f (t)

S(t)

Example: For the exponential distribution we have
f (t) = λe−λt and S(t) = e−λt , so

α(t) =
f (t)

S(t)
= λ (not depending on time!).
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MORE ON THE HAZARD FUNCTION

Recall that α(t) = limh→0
P(t<T≤t+h|T>t)

h .

Thus

α(t)h ≈ P(t < T ≤ t + h|T > t) = P(fail in (t, t + h)| alive at t)

Suppose a typical value of T is large compared to time unit.

Then for h = 1:

α(t) ≈ P(t < T ≤ t + 1|T > t) = P(fail in next time unit |alive at t)
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BATHTUB CURVE RELIABILITY ANALYSIS)
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EXERCISE

Let T be the lifetime of a Norwegian measured in years.

Let αM(t) be the hazard function for a male person as a function of the
age t, while αF (t) is the corresponding function for a female.

Look at the Mortality tables of the next slides and estimate αM(21) and
αF (21). Compare them and comment.

Do the same at age 72 years.

(Hint: Explain why αM(t) and αF (t) can be interepreted as the
probability of dying within one year for a male and female, respectively,
who has reached the age of t years).
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MORTALITY TABLE - DEATH HAZARD BY AGE
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MORTALITY TABLE - DEATH HAZARD BY AGE
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USEFUL RELATIONS BETWEEN FUNCTIONS DESCRIBING T

Since F (t) = 1− S(t) we get, f (t) = F ′(t) = −R
′
(t), and hence

α(t) =
f (t)

S(t)
= −S

′
(t)

S(t)

Thus we can write,
d

dt

(
ln S(t)

)
= −α(t)

⇒ ln S(t) = −
∫ t

0
α(u)du + c

⇒ S(t) = e−
∫ t
0 α(u)du+c

Since S(0) = 1, we have c = 0, so

S(t) = e−
∫ t
0 α(u)du ≡ e−A(t)

where A(t) =
∫ t
0 α(u)du is called the cumulative hazard function.
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USEFUL RELATIONS (CONT.)

Recall from last slide:

I A(t) =
∫ t
0 α(u)du

I α(t) = A′(t)

I S(t) = e−A(t)

Since f (t) = F ′(t) = −S ′(t), it follows that

f (t) = α(t)e−
∫ t
0 α(u)du = α(t)e−A(t) (1)

For exponential distribution:

A(t) =

∫ t

0
λdu = λt

so (1) gives (the well known formula)

f (t) = λe−λt
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OVERVIEW OF FUNCTIONS DESCRIBING

DISTRIBUTION OF LIFETIME T

Function Formula Exponential distr

Density (pdf) f (t) = λe−λt

Cum. distr. (cdf) F (t) = 1− e−λt

Rel/surv function S(t) = 1− F (t) = e−λt

Hazard function α(t) = f (t)/S(t) = λ

Cum hazard function A(t) =
∫ t
0 α(u)du = λt

S(t) = e−A(t) = e−λt

f (t) = α(t)e−A(t) = λe−λt
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EXERCISES

1. Suppose the reliability function of T is S(t) = e−t
1.7
.

Find the functions F (t), f (t), α(t),A(t).

2. Show that if you get to know only one of the functions
S(t),F (t), f (t), α(t),A(t), then you can still compute all the other!
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EXPECTED VALUE AND VARIANCE OF LIFETIMES

For a lifetime T we have

E (T ) =

∫ ∞
0

tf (t)dt =

∫ ∞
0

S(t)dt

(The last equality can be proven by partial integration, noting that
R ′(t) = −f (t). Try to do it! You will need that limt→∞ t R(t) = 0 which
holds if E (T ) <∞. )

Var(T ) =

∫ ∞
0

(t − E (T ))2f (t)dt

=

∫ ∞
0

t2f (t)dt − (E (T ))2

= E (T 2)− (E (T ))2

SD(T ) = (Var(T ))1/2
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EXAMPLE: EXPONENTIAL DISTRIBUTION

Let T be exponentially distributed with density f (t) = λe−λt . Then you
may check the following computations:

E (T ) =

∫ ∞
0

tλe−λtdt =

∫ ∞
0

e−λtdt =
1

λ

Var(T ) = E (T 2)− (E (T ))2 =
2

λ2
− 1

λ2
=

1

λ2

SD(T ) =
1

λ

Thus: For an exponentially distributed lifetime,

E (T ) = 1/failure rate
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WEIBULL DISTRIBUTION

The lifetime T is Weibull-distributed with shape parameter k > 0 and
scale parameter θ > 0, written T ∼Weib(k, θ), if

S(t) = e−(
t
θ
)k

From this we can derive:

A(t) =
( t

θ

)k
α(t) =

k

θ

( t

θ

)k−1
f (t) = α(t)e−A(t) =

k

θ

( t

θ

)k−1
e−(

t
θ
)k

k = 1 corresponds to the exponential distribution;
k < 1 gives a decreasing failure rate (DFR);
k > 1 gives an increasing failure rate (IFR).
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WEIBULL DISTRIBUTION (CONT.)

E (T ) =

∫ ∞
0

S(t)dt =

∫ ∞
0

e−(
t
θ
)k dt = · · · = θ · Γ

(
1

k
+ 1

)
where Γ(·) is the gamma-function defined by Γ(a) =

∫∞
0 ua−1e−udu.

Var(T ) = θ2
(

Γ

(
2

k
+ 1

)
− Γ2

(
1

k
+ 1

))
SD(T ) = θ

(
Γ

(
2

k
+ 1

)
− Γ2

(
1

k
+ 1

))1/2
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WEIBULL DISTRIBUTION (CONT.)
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RECALL BALL BEARING FAILURE DATA

17,88 28,92 33,00 41,52 42,12 45,60 48,40 51,84
51,96 54,12 55,56 67,80 68,64 68,64 68,88 84,12
93,12 98,64 105,12 105,84 127,92 128,04 173,40

Question: How can we fit a parametric lifetime model to these data?
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BB-DATA: EXPONENTIAL DISTRIBUTION (MINITAB)
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BB-DATA: WEIBULL DISTRIBUTION (MINITAB)
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BB-DATA: LOGNORMAL DISTRIBUTION (MINITAB)

Bo Lindqvist Slides 2: Basic concepts ()STK4080/9080 2021 24 / 28



EXAMPLE OF ESTIMATED S(t)
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EXAMPLE OF ESTIMATED α(t) and S(t)
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STATISTICAL MODELING IN SURVIVAL ANALYSIS

Models based on the hazard rate have proven particularly useful:

Cox’ regression model.

It is assumed that the hazard rate of an individual with covariates
x1, . . . , xp takes the form

α(t|x1, . . . , xp) = α0(t) exp{β1x1 + +βpxp}

Aalen’s additive regression model.

Here it is assumed that

α(t|x1, . . . , xp) = β0(t) + β1(t)x1 + · · ·+ βp(t)xp
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UNOBSERVABLE HETEROGENEITY (ABG 1.5.3 and Ch. 7)

Sometimes one may want to model unobservable heterogeneity between
individuals.

This may be modeled by assuming that each individual has a frailty Z ,
which varies from individual to individual by some probability distribution
(say, with mean value 1).

Then, conditional on the frailty, the hazard rate of an individual is
assumed to take the form

α(t|Z ) = Z · α(t)

For derivation of likelihood functions, one will have to unconditon
with respect to Z by integration.

Unobservable heterogeneity can also be combined with observed covariates,

α(t|x1, . . . , xp,Z ) = Z · α0(t) exp{β1x1 + +βpxp}
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