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Multivariate survival data (Chapter 7 in ABG)

Two major types of data:

I Clustered survival data

I Recurrent (repeated) events data

Three major analysis types:

I Frailty models (main interest in the course)

I Marginal models (will be briefly mentioned)

I Dynamic models (will not be covered in the course)
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Example of clustered survival data

Duration of amalgam fillings in teeth (Aalen, Bjertness and Sønju,
Statistics in Medicine, 1995)

I Clusters correspond to each of m patients

I ith patient has ni fillings, that may fail, i = 1, . . . ,m

I Tij = time to failure of jth filling of ith patient, i = 1, . . . ,m,
j = 1, . . . , ni

I Some patients may have a larger risk of failure than others, possibly
due to varying dental hygiene or other factors. Thus:
Observations within each cluster, (Ti1, . . . ,Tini ) are dependent

I Observations are possibly right-censored
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Clustered data from recurrent events: Small bowel motility
(Aalen and Husebye, Statistics in Medicine 1991)

no. completely observed periods censored

1 112 145 39 52 21 34 33 51 54
2 206 147 30
3 284 59 186 4
4 94 98 84 87
5 67 131
6 124 34 87 75 43 38 58 142 75 23
7 116 71 83 68 125 111
8 111 59 47 95 110
...

...
...

17 162 141 107 69 39
18 106 56 158 41 41 168 13
19 147 134 78 66 100 4

Each person forms a cluster. Observations within each cluster:
duration of MMC periods (last is censored)
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Modeling of clustered survival data:
Shared frailty model

I Consider m independent individuals (clusters)

I Observations for ith individual (cluster): (T̃ij ,Dij), j = 1, . . . , ni ,
where Dij , j = 1, . . . , ni are censoring statuses (1 for failure, 0 for
censoring)

I Each individual (cluster) has a separate frailty variable Zi , such that
conditonal on Zi , the observations in the ith cluster are independent
with hazard rate Ziα(t)

I Here α(t) is a basic hazard rate common to all individuals (assume,
for now, no covariates)

I The Zi are i.i.d. realizations of a random variable Z > 0, usually with
expected value 1
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Likelihood function for shared frailty model
History of ith cluster: Hi = (T̃ij ,Dij , j = 1, . . . , ni ).

For given value of the frailty Zi , the contribution P(Hi ) to likelihood from
ith cluster is (use formula for right censored data):

P(Hi | Zi ) =

ni∏
j=1

[
(Ziα(T̃ij))Dij exp(−ZiA(T̃ij))

]
. (1)

where A(t) =
∫ t
o α(s)ds.

Since Zi is unobserved, we need the unconditional value obtained by
taking the expectation with respect to Zi :

P(Hi ) =


ni∏
j=1

α(T̃ij)
Dij

EZi

{
ZDi•
i exp(−ViZi )

}
. (2)

where Di• =
∑ni

j=1Dij is the number of uncensored observations for

cluster i , and Vi =
∑ni

j=1 A(T̃ij).
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Likelihood function for shared frailty model

Recall Laplace transform of Z :

L(c) = E{exp(−cZ )}
L(r)(c) = (−1)rE{Z r exp(−cZ )}

Then

P(Hi ) =


ni∏
j=1

α(T̃ij)
Dij

 (−1)Di• L(Di•)(Vi )

is the likelihood contribution of cluster i . The total likelihood of m
independent clusters is the product of these, and by taking log:

log L =
m∑
i=1

 ni∑
j=1

Dij log(α(T̃ij)) + log{(−1)Di• L(Di•)(Vi )}

 (3)

Can maximize this over a set of parameters to derive estimates.
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Exercise 1
Simplify the expression for the log likelihood in the case where

I α(t) = λ is constant

I the frailties Zi are Gamma(1/δ, 1/δ) (i.e. gamma-distributed with
expected value 1 and variance δ).

What is the sufficient data for this analysis?

Hint:

From subsection 7.2.4 on page 258 in book we have

L(c) = {1 + δc}−1/δ.

L(s)(c) = δs(−1)s{1 + δc}−1/δ−s
s∏

q=1

(
1

δ
+ q − 1).
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Maximum likelihood estimation for small bowel motility
data (ABG Example. 7.1, p. 280)

I Weibull-model: α(t) = btk−1 for k > 0

I Frailty Z is gamma-distributed with E (Z ) = 1, Var(Z ) = δ

I L(c) = (1 + δc)−1/δ

Maximum likelihood estimates (standard errors using standard asymptotic
theory):

log(b̂) = −10.0 (1.0)

k̂ = 2.28 (0.22)

δ̂ = 0.146 (0.12)

Thus the Zi can be expected to vary in 1± 2
√
δ̂ (why?) i.e.

approximately 1± 0.75.

Or - is there a significant frailty effect?
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Likelihood ratio test for frailty effect of small bowel data
(see ABG p. 282

Will test
H0 : δ = 0 vs H1 : δ > 0

2× (difference in log-likelihood of full model minus log likelihood of model
with δ = 0) = 2.58.

Approximate p-value (χ2-distribution with 1 degree of freedom) is 0.108.

Because test is one-sided (δ = 0 vs δ > 0) is p-value 5.4%.

Thus: Close to a significant frailty effect.
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Empirical Bayes estimate of individual frailties
Recall for Gamma(η, ν): Density ∝ zη−1e−νz , expected value η/ν,
variance η/ν2. Assume frailty Zi is Gamma(1/δ, 1/δ).

Want to find conditional distribution of Zi given data Hi from ith cluster:

Bayes’ formula: f (zi |Hi ) ∝

P(Hi |Zi = zi )fZi
(zi ) ∝ zDi•

i e−Vizi z
(1/δ)−1
i e−zi/δ = z

Di•+(1/δ)−1
i e−(Vi+(1/δ))zi

since from earlier, P(Hi | Zi ) =


ni∏
j=1

(Ziα(T̃ij))Dij

 exp(−ZiVi ),

where Vi =
∑ni

j=1 A(T̃ij).

Thus Zi |Hi is Gamma(Di• + (1/δ),Vi + (1/δ)), so

E (Zi |Hi ) =
Di• + (1/δ)

Vi + (1/δ)

These can be used to estimate the (unobserved) Zi by using δ̂ and
inserting estimated parameters in Vi .
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Small bowel motility: Empirical Bayes estimates for frailties
Individual Empirical Bayes estimate Estimated inter-event time

Ẑ = E(Z | history) estimate of E(T | history)∗

(and SD(Z | history)) (and SD(T | history))

1 1.46 (0.38) 89 (43)
2 0.72 (0.24) 123 (61)
3 0.55 (0.18) 137 (68)
4 1.08 (0.34) 103 (51)
5 0.93 (0.33) 111 (55)
6 1.40 (0.35) 90 (43)
7 1.07 (0.31) 102 (50)
8 1.13 (0.34) 100 (49)
9 0.91 (0.28) 110 (54)

10 0.85 (0.29) 114 (57)
11 1.27 (0.37) 95 (46)
12 1.11 (0.34) 101 (49)
...

...
...

∗ See formula (7.10) in book.
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Maximum likelihood estimation for duration of amalgam
fillings (ABG Example. 7.2 p. 283)

I Weibull-model: α(t) = btk−1 for k > 0
I Frailty Z is gamma-distributed with E (Z ) = 1, Var(Z ) = δ

Maximum likelihood estimates (Standard errors):

log(b̂) = −4.21 (0.25)

k̂ = 0.43 (0.10)

δ̂ = 0.85 (0.31)

Thus the Zi have estimated standard deviation
√

0.85 = 0.92 which is
quite high.

P-value for frailty effect (testing of δ = 0) is 0.35% (one-sided).

Next page:

Plots of Kaplan-Meier curves for selected separate clusters, with estimated

Weibull survival function exp(−Ẑi b̂t
k̂/k̂)
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Shared frailty with covariates

Assume

I ith cluster has frailty Zi (as before)
I Lifetime Tij for jth observation in ith cluster has

I covariate vector Xij

I hazard conditional on Zi ,

Ziα(t)eβ
TXij = Ziα(t) exp(β1X1ij + . . .+ βpXpij)

I α(t) is baseline hazard

I β1, . . . , βp are (usually) the interesting parameters

I Assume, e.g., α(t) = btk−1 to get a purely parametric model

I Or, assume a nonparametric α(t) to get a Cox-model with shared
frailties (the option of R)
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Example of clustered data with covariates
The Diabetic Retinopathy Study, DRS (See ASAUR Example 9.2 p. 114)

I 197 patients with diabetic retinopathy

I Treatment: Laser photocoagulation randomly assigned to one eye of
each patient

I Observe time to severe visual loss (”blindness”) for each eye (time
may be censored)

I There are 197 clusters with 2 observations per cluster

Data
Ti1 = time to blindness of the untreated eye of the ith person

Ti2 = time to blindness of the treated eye of the ith person

(Ti1,Ti2) are observations in the ith cluster (patient) - these are clearly
dependent (and may be censored)

Note: ni = 2 for all clusters.
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DRS data (one line of data for each eye)
> diabetes=read.table("https://folk.ntnu.no/bo/STK4080/

diabetes.txt",header=T)

> head(diabetes)
id time status trteye treat adult agedx
5 46.24967 0 2 1 2 28
5 46.27553 0 2 0 2 28

14 42.50684 0 1 1 1 12
14 31.34145 1 1 0 1 12
16 42.30098 0 1 1 1 9
16 42.27406 0 1 0 1 9
I id: patient code

I time: survival time: time (in months) to blindness or censoring

I status: status for eye (0=censored; 1=blindness)

I trteye: random eye selected for treatment (1=right; 2=left)

I treat: treatment of eye (0=untreated eye; 1=treated eye)

I adult: type of diabetes (1= juvenile, 2= adult)

I agedx: age at diagnosis of diabetes

Note: If one eye gets blind, the other is still at risk (see id=14).
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Exercise 2

Consider the DRS data. Assume that treatment (treat) is the only
covariate “X”, with value 0 for untreated eye and 1 for treated eye.

Let Hi = {(Ti1,Di1), (Ti2,Di2)} be the history of the ith patient.

Find simple expressions for P(Hi |Zi ), P(Hi ) and the log likelihood for all
the data.

Hint:

I The hazard for an untreated eye (Ti1) is Ziα(t)

I the hazard for a treated eye (Ti2) is Ziα(t)eβ

Modify the earlier expressions for the case without covariates.
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R-output for RDS data with frailty (see ASAUR p. 120)
library(survival)

diabetes.frail = coxph(Surv(time, status) ∼ treat +

as.factor(adult) + treat:as.factor(adult) + frailty(id),

data=diabetes)
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A variant of frailty models: Cox regression models with
mixed effects (ASAUR section 9.1.4, p. 120)

I Lifetime Tij for jth observation in ith cluster has
I covariate vector Xij

I hazard, conditional on the value of a mixed effect Ui ,

α(t)eβ
T

Xij+Ui = α(t) exp(β1X1ij + . . .+ βpXpij + Ui )

I α(t) is baseline hazard
I β1, . . . , βp are (usually) the interesting parameters
I The Ui are mixed effects defined for each cluster i , assumed to be

i.i.d. and, for example, N(0, σ2)
I Note that Zi = eUi can then be interpreted as a frailty variable

The above setup is used in the R-package coxme. For the RDS data, the
appropriate commands are:

library(coxme)

diabetes.me = coxme(Surv(time, status) ∼ treat +

as.factor(adult) + treat:as.factor(adult) + (1 | id),
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R-output for DRS-data with mixed effects

library(coxme)

diabetes.me = coxme(Surv(time, status) treat + as.factor(adult)

+ treat:as.factor(adult) + (1 | id), data=diabetes)
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Marginal modeling by rate functions (ABG Chapter 8)
I Recall shared frailty model: Hazard rate conditional on frailty are

αij(t|Zi ) = Ziα(t)eβ
TXij = Ziα(t) exp(β1X1ij + . . .+ βpXpij)

I Marginal model: The idea is to model directly the population hazard, i.e.,
the hazard of a randomly drawn Tij . This function is called the rate function
and is assumed to be of the ordinary Cox-form

rij(t) = α(t)eβ
TXij = α(t) exp(β1X1ij + . . .+ βpXpij)

I This avoids specific modelling of dependence

I Technically: We assume independence among observations, so called
“working independence” (as in GEE)

I The lifetimes are, in general, not independent. HOWEVER, treating them as
independent still leads to estimators that are consistent for the
β−parameters.

I The method is computationally efficient since one uses the ordinary score
equation from Cox’ partial likelihood equations.

I Variance estimates for the β from Cox regression are, however, not valid.
Instead are used so called “sandwich” estimates, which are valid under
general dependence (robust estimates).
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Exercise 3

Go back to Exercise 2. Modify the P(Hi ) and derive the likelihood
function to be used in a marginal modelling appraoch for the DRS data.

Specialize to the case where α(t) = λ. Derive the resulting estimates for λ
and β.

Hint: The Zi can now be set equal to 1.
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R-output for RDS data with marginal model
diabetes.marg = coxph(Surv(time, status) ∼ treat +

as.factor(adult) + treat:as.factor(adult) + cluster(id),

data=diabetes)
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Recurrent events data: Nelson’s valve data
Valve replacements of 41 diesel engines (Nelson, 1995)
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Basic recurrent event models
Important distinction between recurrent event models is the choice of
basic time scale

I Time measured from an initial event (e.g. birth, onset of disease)
I Models: Poisson processes and their generalizations
I Example: Valve data

I Time measured between events
I Models: Renewal processes and their generalizations
I Example: Aalen-Husebye data

EXAMPLE: The bladder cancer study:

I 86 patients with superficial bladder tumors

I Tumors were removed, and the patients randomized to placebo or
treatment by thiotepa

I Patients were followed up, and the recurrence of tumors were
registered (in the data used here, patients are censored after four
recurrences)
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Bladder cancer data

id patient number
trt treatment (1=placebo; 2=thiotepa)
fu total time of follow-up
no initial number of tumors (8 denotes 8+)
size initial size of largest tumor (in cm)
intno number of the time interval
start start of the time interval
stop: end of the time interval
rec recurrence at end of the time interval (0=no; 1=yes)
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Recurrent events: Frailty model with covariates

I ith individual (patient) has frailty Zi

I ith individual has
I covariate vector Xi

I intensity conditional on Zi ,

Ziα(t)eβ
TXi = Ziα(t) exp(β1X1i + . . .+ βpXpi )

I α(t) is baseline intensity, either parametric or nonparametric

I R estimates a “Cox-model”, i.e. assumes a nonparametric α(t).
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R-output for bladder data with frailty
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Recurrent events: Marginal model with covariates
I ith individual has (external) covariate vector Xi (t) and rate function

ri (t) = α(t)eβ
TXi (t) = α(t) exp(β1X1i (t) + . . .+ βpXpi (t))

I α(t) is baseline intensity, either parametric or nonparametric

I R estimates a “marginal Cox-model”, i.e. assuming a nonparametric
α(t).

Remarks:

I Regression coefficients are estimated by maximizing the ordinary
partial likelihood, ignoring dependencies due to frailties etc.

I The case is similar to the marginal models we considered for clustered
data earlier. Thus we get consistent estimates for the β, but variance
estimates from ordinary Cox estimations are not vallid.

I “Sandwich” type estimates are used for standard errors in R (called
’robust se’ in output – next page).
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R-output for bladder data with marginal model
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Solution to Exercise 1
Simplify the expression for the log likelihood in the case where

I α(t) = λ is constant

I the frailties Zi are Gamma(1/δ, 1/δ) (i.e. gamma-distributed with
expected value 1 and variance δ).

Solution: Observe first that under this model, A(t) = λt so
Vi = λ

∑ni
i=1 T̃ij . Now putting α(t) = λ it follows from p. 7/35 that

P(Hi ) = λDi•(−1)Di• L(Di•)(λ

ni∑
i=1

T̃ij).

Here one might insert the expression for the derivatives of the Laplace
transform in the gamma case. (We omit this).

It is already seen from the above that it suffices to know, for each cluster i ,

I Di• = # events in ith cluster

I
∑ni

i=1 T̃ij = total time observed ith cluster
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Solution Exercise 2

History of ith cluster: Hi = (T̃ij ,Dij , xij , j = 1, . . . , ni ).

For given value of the frailty Zi , the contribution P(Hi ) to likelihood from
ith cluster is

P(Hi | Zi ) =

ni∏
j=1

[
(Ziα(T̃ij)e

βxij )Dij exp(−ZiA(T̃ij)e
βxij )

]
. (4)

Then take the expectation with respect to Zi :

P(Hi ) =


ni∏
j=1

(
α(T̃ij)e

βxij
)Dij

EZi

{
ZDi•
i exp(−ViZi )

}
. (5)

where Di• =
∑ni

j=1Dij is the number of uncensored observations for cluster

i , and Vi =
∑ni

j=1 A(T̃ij)e
βxij .
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Solution Exercise 2 (cont.)

Thus

P(Hi ) =


ni∏
j=1

(
α(T̃ij)e

βxij
)Dij

 (−1)Di• L(Di•)(Vi ).

is the likelihood contribution of cluster i . The total likelihood of m
independent clusters is the product of these, and by taking log:

log L =
m∑
i=1

 ni∑
j=1

Dij log(α(T̃ij)) +

ni∑
j=1

Dijβxij + log
{

(−1)Di• L(Di•)(Vi )
}

For the RDS data we have xi1 = 0, xi2 = 1, so

Vi = A(T̃i1) + A(T̃i2)eβ

Also, the term
∑ni

j=1Dijβxij in log L can be replaced by just Di2β.
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Solution Exercise 3

Now we put Zi ≡ 1, so

P(Hi ) =


ni∏
j=1

(
α(T̃ij)e

βxij
)Dij

 exp{−Vi}.

is the likelihood contribution of cluster i . The total likelihood of m
independent clusters is the product of these, and by taking log:

log L =
m∑
i=1

 ni∑
j=1

Dij log(α(T̃ij)) +

ni∑
j=1

Dijβxij − Vi


For the RDS data we have xi1 = 0, xi2 = 1, so

Vi = A(T̃i1) + A(T̃i2)eβ

Also, the term
∑ni

j=1Dijβxij in log L can be replaced by just Di2β.
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Solution Exercise 3 (cont.)
Thus for the RDS data we get

log L =
m∑
i=1

 2∑
j=1

Dij log(α(T̃ij)) + Di2β − A(T̃i1)− A(T̃i2)eβ


If we specialize to α(t) = λ, we get

log L =
m∑
i=1

[
Di• log λ+ Di2β − λT̃i1 − λT̃i2e

β
]

= D•• log λ+ D•2β − λR1 − λR2e
β where Rj =

∑n
i=1 T̃ij .

By taking derivatives, equating to 0 and solving the equations, one gets
the maximum likelihood estimates

λ̂ =
D•1
R1

, exp(β̂) =
R1D•2
R2D•1
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