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Parametric modeling (ABG Ch.5, ASAUR Ch. 10)
A model for a lifetime T is called parametric if it is given on the form
f (t;θ) , F (t;θ), etc., for functions which are “fixed” except for a
parameter value θ which is allowed to vary in some prespecified interval or
area.

Examples:

I f (t; b) = 1
be−t/b, F (t; b) = 1− e−t/b; defined for all θ > 0

– Exponential distribution with hazard (scale) b.
Here, θ = b is one-dimensional.

I f (t; a, b) = a
b

(
t
b

)a−1
e−(t/b)a , F (t; a, b) = 1− e−(t/b)a

– Weibull-distribution with shape=a and scale=b.
Here, θ = (a, b) is a vector.

Aim: To estimate or test hypotheses about the true value of θ in a sample
of observations of T (possibly censored).

Typical method: Maximum likelihood estimation.
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Recall: Main censoring types

Lifetime data typically include censored data, meaning that:

I some lifetimes are known to have occurred only within certain
intervals.

I The remaining lifetimes are known exactly.

Categories of censoring:

I right censoring (type I, type II,...)

I left censoring

I interval censoring
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Special case: Fixed censoring times
(see also 5.1.2 in ABG for the right censoring case)

Assume we have data for n units with potential lifetimes
T1,T2, · · · ,Tn ∼ f (t;θ).

Noncensored lifetime: Record the failure time Ti (ideal case)

Censored lifetime: Exact lifetime Ti is not recorded; all we know is that
Ti ∈ [a, b] for an interval of times.

Here

I a is the observed time, and b =∞ for right censorings

I a = 0, while b is the observed time for left censorings

I 0 < a < b <∞ for an interval censoring between the observed
interval limits a and b
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Representation of censored data with fixed censoring times

Data for censored data may typically be represented as follows:

Unit no start variable end variable Frequency (optional)

1 a1 b1 f1

2 a2 b2 f2

3 a3 b3 f3
...

...
...

...

An uncensored observation may then be entered by letting both ai and bi

equal the observed lifetime.

I Interval censored data can be analysed in R both nonparametrically
and parametrically by the package icenReg and probably several
other packages (will not be considered in the course).

I The above setup is standard in the package MINITAB.
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Likelihood construction for fixed censoring times

Under the simplifying assumption that the lifetimes are independent and
the censoring times are non-random, we obtain the likelihood function

L(θ) = Probability of gettting the observed data under parameter θ

= Pθ(T1 ∈ [a1, b1] ∩ · · · ∩ Tn ∈ [an, bn])

= Pθ(T1 ∈ [a1, b1]) · · ·Pθ(Tn ∈ [an, bn])

= (F (b1;θ)− F (a1;θ)) · · · (F (bn;θ)− F (an;θ))

=
n∏

i=1

(F (bi ;θ)− F (ai ;θ))
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Contributions to likelihood

Recall L(θ) =
∏n

i=1(F (bi ;θ)− F (ai ;θ)).

I Right censoring: Here bi =∞, so the contribution to likelihood
function is

F (∞;θ)− F (ai ;θ) = 1− F (ai ;θ) = S(ai ,θ)

I Left censoring: Here ai = 0, so contribution to likelihood is

F (bi ;θ)− F (0;θ) = F (bi ,θ)

I Interval censoring: Contribution is F (bi ;θ)− F (ai ;θ)

I Exact observed lifetime: Then ai = bi . Write instead bi = ai + ∆, so
contribution is F (ai + ∆;θ)− F (ai ;θ) ≈ f (ai ;θ)∆. Let contribution
be just f (ai ;θ) (since ∆ does not contain information about θ).
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Likelihood construction: Illustrative example with n = 4
observed units

Obs. type Lower bound Upper bound Likelihood contribution
ai bi

Exact lifetime 1.7 1.7 f (1.7;θ)

Right cens. 2.0 ∞ S(2.0;θ)

Left cens. 0 0.5 F (0.5;θ)

Interval cens. 1.0 1.5 F (1.5;θ)− F (1.0;θ)
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Likelihood for illustrative example data
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Special case:

Right censored data (T̃i ,Di ) with fixed censoring times
It follows from the presented setup that for right censored data we have

L(θ) =
∏

i :Di=1

f (T̃i ;θ) ·
∏

i :Di=0

S(T̃i ;θ)

=
n∏

i=1

f (T̃i ;θ)Di S(T̃i ;θ)1−Di

Recall

f (t;θ) = α(t;θ) exp{−
∫ t

0 α(u;θ)du}; S(t;θ) = exp{−
∫ t

0 α(u;θ)du}.

Thus

L(θ) =
n∏

i=1

α(T̃i ;θ)Di exp

{∫ T̃i

0
α(t;θ)dt

}
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Log-location-scale models
(= Accelerated Failure Time models, AFT)

A lifetime T has a log-location-scale family of distributions if
log T has a location-scale family i.e.

log T = µ+ σU

where U has a “standardized” distribution centered around 0, with values
in (−∞,+∞).

I if U ∼ N(0, 1), then T ∼ lognormal(µ, σ)

I if U ∼ logistic(0, 1), then T ∼ log-logistic(µ, σ)

I if U ∼ Gumbel(0, 1), then T ∼Weibull(a, b) with

log b = µ, 1/a = σ
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Log-location scale models: Distributions for U

Recall, log T = µ+ σU.

P(U ≤ u) and corresponding density given by:

Normal: Φ(u) =
∫ u
−∞ φ(x)dx , φ(u) = 1√

2π
e−

1
2
u2 ⇒ T ∼

lognormal(µ, σ)

Logistic: H(u) = eu

1+eu , h(u) = eu

(1+eu)2 ⇒ T ∼ log-logistic(µ, σ)

Gumbel: G (u) = 1− e−e
u
, g(u) = eu−e

u ⇒ T ∼Weibull(a, b),
with log b = µ, 1/a = σ.
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General distribution of T with logT = µ + σU

Let Ψ(u) = P(U ≤ u), ψ(u) = Ψ′(u). Then

FT (t) = P(T ≤ t) = P(log T ≤ log t)

= P(µ+ σU ≤ log t) = P
(
U ≤ log t − µ

σ

)
= Ψ

( log t − µ
σ

)
Thus

ST (t) = 1−Ψ
( log t − µ

σ

)
fT (t) = ψ

( log t − µ
σ

)
· 1

σt

αT (t) =
ψ
( log t−µ

σ

)
· 1
σt

1−Ψ
( log t−µ

σ

)
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Likelihood function for right-censored data

Likelihood for data from a general log-location-scale family:

L(µ, σ) =
∏

i :δi=1

ψ
( log yi − µ

σ

)
· 1

σyi
·
∏

i :δi=0

(
1−Ψ

( log yi − µ
σ

))
and log-likelihood is

`(µ, σ) =
∑
i :δi=1

(
logψ

( log yi − µ
σ

)
−log σ−log yi

)
+
∑
i :δi=0

log
(
1−Ψ

( log yi − µ
σ

))
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Fractiles ξp for log-location scale families

Recall definition:
P(T ≤ ξp) = p

p = P(T ≤ ξp) = P(log T ≤ log ξp) = Ψ
( log ξp − µ

σ

)
From this,

Ψ−1(p) =
log ξp − µ

σ

log ξp = µ+ σΨ−1(p)

ξp = eµ+σΨ−1(p)

where Ψ−1(p) has to be calculated for each model.
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Accelerated Failure Time modeling in survival regression
Model:

log T =

µ︷ ︸︸ ︷
β0 + β1x1 + · · ·+ βkxp +σU

= β0 + βTx + σU

where β =


β1

β2
...
βp

 ; x =


x1

x2
...

xp


With data from n units:

(T̃i ,Di , xi ) for i = 1, 2, . . . , n. Underlying lifetimes are represented as:

log Ti = β0 + βTxi + σUi

where U1,U2, . . . ,Un are i.i.d ∼ Ψ. We can extend the parametric
likelihoods to this situation.
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Weibull regression

Special case of AFT models.

Recall : If T ∼Weibull(a, b), then

S(t) = e−( t
b

)a

α(t) =
ata−1

ba
= ab−ata−1

log T = µ+ σW ≡ log b +
1

a
W ,

where W ∼ Gumbel(0, 1)

Weibull regression model for a lifetime T and covariate vector x:

log T = β0 + βTx︸ ︷︷ ︸
log b

+
1

a
W

Thus b = eβ0+βT
x
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Weibull regression has the proportional hazards property
(From previous page) Weibull regression model can be written:

T ∼Weibull(a, eβ0+βT
x)

Hence the hazard rate function is

α(t|x) = a(eβ0+βT
x)−ata−1

= ae−aβ0ta−1︸ ︷︷ ︸
α0(t)

·e−aβ
T
x

= α0(t) e
˜β
′
x, where β̃ = −aβ

I This is of the form of Cox’ proportional hazard, but here the model is
completely parametric.

I The coefficients in β from Weibull regression will always have the
opposite sign of those of Cox regression (which are ≈ β̃).

I The Weibull model is the only AFT model (log-location-scale model)
that has the proportional hazards proprty.
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Accelerated Failure Time modeling in R: survreg
Typical use:

survreg(Surv(time, censor == 1) ∼ x1 + x2, dist="weibull")

Alternative distributions, e.g., ”exponential”, ”lognormal” and
”loglogistic”

NOTE: There are multiple ways to parameterize a Weibull distribution.
The survreg function embeds it in the general log-location-scale family,
which is a different parameterization than the one used by the rweibull

function, which often leads to confusion:

I survreg’s scale = σ = 1/a = 1/(rweibull shape)

I survreg’s Intercept = µ = log b = log(rweibull scale),

Try the example:

y <- rweibull(1000, shape=2, scale=5)

survreg(Surv(y)∼1, dist="weibull")
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coxph versus survreg in R (ASAUR p. 149-150)

Bo Lindqvist Slides 14: Parametric models ()STK4080/9080 2021 20 / 35



Parametric counting process models (ABG Chapter 5)

Consider counting processes

Ni (t); i = 1, 2, . . . , n

that count the occurrences of an event of interest for n individuals.

Let the intensity process involve a parameter θ:

λi (t;θ); i = 1, 2, . . . , n

Recall that
λi (t;θ)dt = P(dNi (t) = 1|Ft−)
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General likelihood for parametric counting processes

Note that in general, the processes Ni (t) are not independent due to
various censoring mechanisms (e.g., type II censoring ...) Earlier we
derived a likelihood for censored data assuming fixed censoring times. Now
we will consider the general case.

Introduce the aggregated processes

N•(t) =
n∑

i=1

Ni (t) and λ•(t;θ) =
n∑

i=1

λi (t;θ)

and note that
P(dN•(t) = 1|Ft−) = λ•(t;θ)dt

(It should be noted that the λi -functions are in general stochastic, being
functions of the history Ft−).
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General likelihood...

Divide the study time interval [0, τ ] into small intervals
0 = t0 < t1 < · · · < tK = τ , each of length dt. Using the multiplicative
probability rule we can then write P(data) =

=
K−1∏
k=0

P(data in [tk , tk + dt)|Ftk−)

=
K−1∏
k=0

{P(events of interest in [tk , tk + dt)|Ftk−)

× P(other data in [tk , tk + dt)|events of interest in [tk , tk + dt),Ftk−)}

∝
K−1∏
k=0

P(events of interest in [tk , tk + dt)|Ftk−)
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General likelihood
We will consider the partial likelihood

Partlik =
K−1∏
k=0

P(events of interest in [tk , tk + dt)|Ftk−)

Conditional on the past, Ft−, the occurrence of the events of interest in
[t, t + dt) can be considered as a single multinomial trial with n + 1
possible outcomes: {dNi (t) = 1}, i = 1, 2, . . . , n; and {dN• = 0}. The
conditional probability of the outcome is therefore

P(events of interest in [t, t + dt)|Ft−)

=

{
n∏

i=1

P(dNi (t) = 1|Ft−)dNi (t)

}
P(dN•(t) = 0|Ft−)1−dN•(t)

=

{
n∏

i=1

(λi (t;θ)dt)dNi (t)

}
{1− λ•(t;θ)dt}1−dN•(t)

The partial likelihood now becomes a product-integral of these factors.
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General likelihood

Partlik =
∏

0<t≤τ

{
n∏

i=1

(λi (t;θ)dt)dNi (t)

}
{1− λ•(t;θ)dt}1−dN•(t)

I The first part is just a product over the jump times of the counting
processes.

I The exponent 1− dN•(t) equals 1 for all but a finite number of time
points t and can be replaced by 1.

I The dt will cancel on forming likelihood ratios and can be deleted.

Thus the partial likelihood may be given as

L(θ) =

 ∏
0<t≤τ

n∏
i=1

λi (t;θ)∆Ni (t)

 ∏
0<t≤τ

(1− λ•(t;θ)dt)

=


n∏

i=1

∏
0<t≤τ

λi (t;θ)∆Ni (t)

 exp

{∫ τ

0
λ•(t;θ)dt

}
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Likelihood for right censored lifetimes
Recall L(θ) =

{∏n
i=1

∏
0<t≤τ λi (t;θ)∆Ni (t)

}
· exp

{
−
∫ τ

0 λ•(t;θ)dt
}

Suppose for the ith individual we have λi (t;θ) = Yi (t)α(t;θ). Then (since
with right censored lifetimes there is at most one event for each individual)∏

0<t≤τ
λi (t;θ)∆Ni (t) = α(T̃i ;θ)Di

exp{−
∫ τ

0
λ•(t;θ)dt} = exp{−

n∑
i=1

∫ τ

0
Yi (t)α(t;θ)dt}

= exp{−
n∑

i=1

∫ T̃i

0
α(t;θ)dt}

Thus L(θ) equals the likelihood that we have found before:

n∏
i=1

{
α(T̃i ;θ)Di exp{−

∫ T̃i

0
α(t;θ)dt}

}
=
∏

i :Di=1

f (T̃i ;θ) ·
∏

i :Di=0

S(T̃i ;θ)
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Likelihood for a non-homogeneous Poisson process
Recall L(θ) =

{∏n
i=1

∏
0<t≤τ λi (t;θ)∆Ni (t)

}
· exp

{
−
∫ τ

0 λ•(t;θ)dt
}

Suppose that n processes with the same intensity α(t;θ) are observed,
where the ith process, Ni (t), is observed on the time interval [0, τi ], with
events at times Ti1, . . . ,TiNi (τi ). For the ith process we have
λi (t;θ) = I (t ≤ τi )α(t;θ), so with τ = max{τi},

∏
0<t≤τ

λi (t;θ)∆Ni (t) =

Ni (τi )∏
k=1

α(Tik ;θ)

exp{−
∫ τ

0
λ•(t;θ)dt} = exp{−

n∑
i=1

∫ τi

0
α(t;θ)dt}

Thus L(θ) equals

n∏
i=1


Ni (τi )∏

k=1

α(Tik ;θ)

 exp

{
−
∫ τi

0
α(t;θ)dt

}
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Statistical inference
Recall L(θ) =

{∏n
i=1

∏
0<t≤τ λi (t;θ)∆Ni (t)

}
· exp

{
−
∫ τ

0 λ•(t;θ)dt
}

Log-likelihood:

`(θ) = log L(θ) =
n∑

i=1

∫ τ

0
log λi (t;θ)dNi (t)−

∫ τ

0
λ•(t;θ)dt

Score functions:

Uj(θ) =
∂

∂θj
`(θ) =

n∑
i=1

∫ τ

0

∂

∂θj
log λi (t;θ)dNi (t)−

∫ τ

0

∂

∂θj
λ•(t;θ)dt

It may be shown that the score functions Uj(θ) are stochastic integrals
w.r.t. martingales when evaluated at the true value of the parameter.

This is key to prove that the MLE θ̂ = (θ̂1, . . . , θ̂q) enjoys “the usual”
large sample properties.

The MLE may be found by maximizing the log-likelihood or by solving the
likelihood equations Uj(θ) = 0; j = 1, 2, . . . , q.
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Statistical inference

As indicated, θ̂ = (θ̂1, . . . , θ̂q) is asymptotically normally distributed
around its true value with a covariance matrix that may be estimated by

I(θ̂)−1

where I(θ̂) is the observed information matrix with elements

ihj(θ) = − ∂

∂θh
Uj(θ) = − ∂2

∂θh∂θj
`(θ)

Alternatively we may use the expected information matrix (see ABG
Section 5.3 for details – not in curriculum).

The likelihood ratio, score and Wald tests apply as usual.
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Recall Poisson regression in GLM
Assume Yi are count data such that

Yi ∼ Poisson(mi exp(ψ + βTxi )), for i = 1, . . . , n

The mi are here typically numbers of initial counts having the same
covariate vector xi . (More generally they are weights of some kind).

This means that
log E (Yi ) = log mi + ψ + βTxi

The parameters ψ and β can be estimated in R by:

I Generalized linear model: glm

I with Poisson-family: family=poisson

I Need ”offset” for log mi

R-command might be:

glm(Y ∼ offset(log(m))+ x, family=poisson)
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Poisson regression trick
Consider now a model with fixed covariates and proportional hazards:

λi (t;θ,β) = Yi (t)α0(t;θ) exp(βTxi )

and piecewise constant baseline hazard α0(t;θ):

α0(t;θ) = θk for tk−1 < t ≤ tk

Introduce:

Oik = Ni (tk)− Ni (tk−1)

Rik =

∫ tk

tk−1

Yi (u)du
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Likelihood

L(θ) =


n∏

i=1

∏
0<t≤τ

λi (t;θ)∆Ni (t)

 · exp

{
−
∫ τ

0

λ•(t;θ)dt

}

=


n∏

i=1

K∏
k=1

∏
tk−1<t≤tk

(θkeβ
T
xi Yi (t))∆Ni (t)

 exp

{
−

n∑
i=1

K∑
k=1

∫ tk

tk−1

θkeβ
T
xi Yi (t)dt

}

=
n∏

i=1

K∏
k=1

{(
θkeβ

T
xi
)Oik

· exp
(
−θkeβ

T
xi Rik

)}

∝
n∏

i=1

K∏
k=1

{(
θkeβ

T
xi Rik

)Oik

· exp
(
−θkeβ

T
xi Rik

)}
The likelihood is proportional to the likelihood of “independent Poisson

variables” Oik with “parameters”

θkeβ
T
xi Rik
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Estimation procedure

Recall expression:
∏n

i=1

∏K
k=1

{(
θkeβ

T
xi Rik

)Oik

· exp
(
−θkeβ

T
xi Rik

)}
,

where Oik = Ni (tk)− Ni (tk−1), Rik =
∫ tk
tk−1

Yi (u)du.

I Fit model by GLM-software treating the Oik as “independent Poisson
variables” with “parameters”

θkeβ
T
xi Rik = exp

{
ψk + βTxi + log Rik

}
with ψk = log θk .

I Use logarithmic link (default) and log Rik as offset.
I Time interval number, k , must now be treated as a covariate,

represented as a factor (see tutorial)
I The ith individual contributes one record to the data file for each

time interval, k , when at risk: (Oik ,Rik , xi ), k = 1, . . . ,K
I This method is an alternative to Cox regression, which is the limit

when the partition of time axis is becoming finer and finer.
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Special case: Poisson regression with categorical covariates
Assume xi can attain only L distinct values: x(1), . . . , x(L).
Then the likelihood simplifies:

L(β,θ) =
K∏

k=1

L∏
`=1

{(
θkeβ

T
x(`)
)O(`)

k

· exp
(
−θkeβ

T
x(`)

R
(`)
k

)}

∝
K∏

k=1

L∏
`=1

{(
θkeβ

T
x(`)

R
(`)
k

)O(`)
k

· exp
(
−θkeβ

T
x(`)

R
(`)
k

)}
where

O
(`)
k =

∑
i :xi=x(`)

Oik =
∑

i :xi=x(`)

(Ni (tk)− Ni (tk−1))

R
(`)
k =

∑
i :xi=x(`)

Rik =
∑

i :xi=x(`)

∫ tk

tk−1

Yi (u)du

We can then use Poisson regression routines with the simplified data:

O
(`)
k ∼ Poisson

(
e log(θk )+βT

x(`)+log(R
(`)
k )
)
, k = 1, . . . ,K ; ` = 1, . . . , L
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Example (see Tutorial on Weibull and Poisson regression)

Consider a right-censored sample (T̃i ,Di , xi ), i = 1, . . . , 23, of survival
times T̃i in the interval from 0 to 60, and where x is 0 or 1 (e.g.,
comparing two groups). Let the time axis be divided into the 6 intervals,

(0, 10], (10, 20], . . . , (50, 60]

Let the model be given by hazard α0(t;θ)eβx , where α0(t;θ) is constant
on each of the above intervals, with respective values given by the vector
θ = (θ1, . . . , θ6).

The data needed for using Poisson regression are:
O(1) = (4, 1, 2, 1, 1, 1) = counts of events in the 6 intervals when xi = 0,
O(2) = (1, 2, 1, 1, 2) = counts in the 6 intervals when xi = 1.
R(1) = (106, 68, 50, 23, 13) = total exposure times in intervals when xi = 0
R(2) = (109, 84, 61, 41, 27, 9) = total exposure times when xi = 1.

The model parameters θ1, . . . , θ6, β are estimated from these (see tutorial).
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