STK4080/9080 SURVIVAL AND EVENT HISTORY ANALYSIS

Slides 14: Parametric survival models

Bo Lindqvist Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim

https://www.ntnu.edu/employees/bo.lindqvist bo.lindqvist@ntnu.no boli@math.uio.no

University of Oslo, Spring 2021

Bo Lindqvist Slides 14: Parametric models

STK4080/9080 2021

イロト 不得下 イヨト イヨト 二日

Parametric modeling (ABG Ch.5, ASAUR Ch. 10)

A model for a lifetime T is called *parametric* if it is given on the form $f(t; \theta)$, $F(t; \theta)$, etc., for functions which are "fixed" except for a parameter value θ which is allowed to vary in some prespecified interval or area.

Examples:

•
$$f(t; b) = \frac{1}{b}e^{-t/b}$$
, $F(t; b) = 1 - e^{-t/b}$; defined for all $\theta > 0$
- Exponential distribution with hazard (scale) b.
Here, $\theta = b$ is one-dimensional.

•
$$f(t; a, b) = \frac{a}{b} \left(\frac{t}{b}\right)^{a-1} e^{-(t/b)^a}$$
, $F(t; a, b) = 1 - e^{-(t/b)^a}$
- Weibull-distribution with shape=a and scale=b.
Here, $\theta = (a, b)$ is a vector.

Aim: To estimate or test hypotheses about the true value of θ in a sample of observations of T (possibly censored).

Bo Lindqvist Slides 14: Parametric models

Recall: Main censoring types

Lifetime data typically include *censored* data, meaning that:

- some lifetimes are known to have occurred only within certain intervals.
- The remaining lifetimes are known exactly.

Categories of censoring:

- right censoring (type I, type II,...)
- left censoring
- interval censoring

イロト 不得 トイヨト イヨト 二日

Special case: **Fixed** censoring times (see also 5.1.2 in ABG for the right censoring case)

Assume we have data for *n* units with *potential lifetimes* $T_1, T_2, \cdots, T_n \sim f(t; \theta)$.

Noncensored lifetime: Record the failure time T_i (*ideal case*)

Censored lifetime: Exact lifetime T_i is not recorded; all we know is that $T_i \in [a, b]$ for an interval of times.

Here

- ▶ *a* is the observed time, and $b = \infty$ for *right censorings*
- a = 0, while b is the observed time for *left censorings*
- ► 0 < a < b < ∞ for an *interval censoring* between the observed interval limits a and b

Representation of censored data with fixed censoring times

Data for censored data may typically be represented as follows:

Unit no	start variable	end variable	Frequency (optional)
1	<i>a</i> ₁	b_1	f_1
2	a ₂	<i>b</i> ₂	f_2
3	<i>a</i> ₃	<i>b</i> ₃	<i>f</i> ₃
:			· · · · · · · · · · · · · · · · · · ·

An **uncensored** observation may then be entered by letting both a_i and b_i equal the observed lifetime.

- Interval censored data can be analysed in R both nonparametrically and parametrically by the package icenReg and probably several other packages (*will not be considered in the course*).
- The above setup is standard in the package MINITAB.

イロト 不得下 イヨト イヨト 二日

Likelihood construction for fixed censoring times

Under the simplifying assumption that the lifetimes are independent and the censoring times are non-random, we obtain the likelihood function

$$\begin{split} L(\theta) &= \text{Probability of gettting the observed data under parameter } \theta \\ &= P_{\theta}(T_1 \in [a_1, b_1] \cap \dots \cap T_n \in [a_n, b_n]) \\ &= P_{\theta}(T_1 \in [a_1, b_1]) \dots P_{\theta}(T_n \in [a_n, b_n]) \\ &= (F(b_1; \theta) - F(a_1; \theta)) \dots (F(b_n; \theta) - F(a_n; \theta)) \\ &= \prod_{i=1}^n (F(b_i; \theta) - F(a_i; \theta)) \end{split}$$

イロト 不得下 イヨト イヨト 二日

Contributions to likelihood

Recall $L(\theta) = \prod_{i=1}^{n} (F(b_i; \theta) - F(a_i; \theta)).$

▶ *Right censoring:* Here $b_i = \infty$, so the contribution to likelihood function is

$$F(\infty; \theta) - F(a_i; \theta) = 1 - F(a_i; \theta) = S(a_i, \theta)$$

• Left censoring: Here $a_i = 0$, so contribution to likelihood is

$$F(b_i; \theta) - F(0; \theta) = F(b_i, \theta)$$

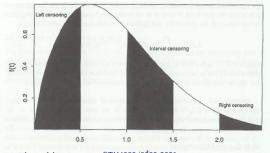
- Interval censoring: Contribution is $F(b_i; \theta) F(a_i; \theta)$
- Exact observed lifetime: Then a_i = b_i. Write instead b_i = a_i + Δ, so contribution is F(a_i + Δ; θ) − F(a_i; θ) ≈ f(a_i; θ)Δ. Let contribution be just f(a_i; θ) (since Δ does not contain information about θ).

Bo Lindqvist Slides 14: Parametric models

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQの

Likelihood construction: Illustrative example with n = 4 observed units

Obs. type	Lower bound	Upper bound	Likelihood contribution
	ai	b _i	
Exact lifetime	1.7	1.7	$f(1.7; \theta)$
Right cens.	2.0	∞	$S(2.0; \theta)$
Left cens.	0	0.5	$F(0.5; \theta)$
Interval cens.	1.0	1.5	$F(1.5; \theta) - F(1.0; \theta)$



Bo Lindqvist Slides 14: Parametric models

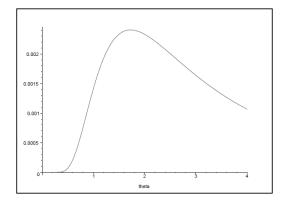
STK4080/9080 2021

< E ト ヨ のへで 8 / 35

Likelihood for illustrative example data

LIKELIHOOD FOR MODEL $f(t; \theta) = (1/\theta)e^{-t/\theta}$

$$L(\theta) = \left(\frac{1}{\theta}e^{-1.7/\theta}\right) \cdot \left(e^{-2.0/\theta}\right) \cdot \left(1 - e^{-0.5/\theta}\right) \cdot \left(e^{-1.0/\theta} - e^{-1.5/\theta}\right)$$



Maximum likelihood estimate: $\hat{\theta} = 1.725$

Bo Lindqvist Slides 14: Parametric models

STK4080/9080 2021

9 / 35

3

イロト イポト イヨト イヨト

Special case:

Right censored data (\tilde{T}_i, D_i) with fixed censoring times It follows from the presented setup that for right censored data we have

$$L(\theta) = \prod_{i:D_i=1} f(\tilde{T}_i; \theta) \cdot \prod_{i:D_i=0} S(\tilde{T}_i; \theta)$$
$$= \prod_{i=1}^n f(\tilde{T}_i; \theta)^{D_i} S(\tilde{T}_i; \theta)^{1-D_i}$$

Recall

$$f(t;\theta) = \alpha(t;\theta) \exp\{-\int_0^t \alpha(u;\theta) du\}; \quad S(t;\theta) = \exp\{-\int_0^t \alpha(u;\theta) du\}.$$

Thus

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{n} \alpha(\tilde{T}_i; \boldsymbol{\theta})^{D_i} \exp\left\{\int_0^{\tilde{T}_i} \alpha(t; \boldsymbol{\theta}) dt\right\}$$

Bo Lindqvist Slides 14: Parametric models

STK4080/9080 2021

10 / 35

< ロ > < 同 > < 回 > < 回 > < 回 > <

Log-location-scale models (= Accelerated Failure Time models, AFT)

A lifetime T has a *log-location-scale* family of distributions if log T has a *location-scale* family i.e.

$$\log T = \mu + \sigma U$$

where U has a "standardized" distribution centered around 0, with values in $(-\infty, +\infty)$.

- if $U \sim N(0, 1)$, then $T \sim \text{lognormal}(\mu, \sigma)$
- if $U \sim logistic(0,1)$, then $T \sim log-logistic(\mu,\sigma)$
- if $U \sim Gumbel(0,1)$, then $T \sim Weibull(a,b)$ with

$$\log b = \mu, \ 1/a = \sigma$$

Bo Lindqvist Slides 14: Parametric models

STK4080/9080 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Log-location scale models: Distributions for U

Recall, log $T = \mu + \sigma U$.

 $P(U \le u)$ and corresponding density given by:

Normal:
$$\Phi(u) = \int_{-\infty}^{u} \phi(x) dx$$
, $\phi(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2} \Rightarrow T \sim \lognormal(\mu, \sigma)$
Logistic: $H(u) = \frac{e^u}{1+e^u}$, $h(u) = \frac{e^u}{(1+e^u)^2} \Rightarrow T \sim \log-\logistic(\mu, \sigma)$
Gumbel: $G(u) = 1 - e^{-e^u}$, $g(u) = e^{u-e^u} \Rightarrow T \sim Weibull(a, b)$,
with $\log b = \mu$, $1/a = \sigma$.

STK4080/9080 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

General distribution of T with log $T = \mu + \sigma U$ Let $\Psi(u) = P(U \le u), \ \psi(u) = \Psi'(u)$. Then

$$F_{T}(t) = P(T \le t) = P(\log T \le \log t)$$

= $P(\mu + \sigma U \le \log t) = P(U \le \frac{\log t - \mu}{\sigma})$
= $\Psi(\frac{\log t - \mu}{\sigma})$

Thus

$$S_{T}(t) = 1 - \Psi\left(\frac{\log t - \mu}{\sigma}\right)$$

$$f_{T}(t) = \psi\left(\frac{\log t - \mu}{\sigma}\right) \cdot \frac{1}{\sigma t}$$

$$\alpha_{T}(t) = \frac{\psi\left(\frac{\log t - \mu}{\sigma}\right) \cdot \frac{1}{\sigma t}}{1 - \Psi\left(\frac{\log t - \mu}{\sigma}\right)}$$

Bo Lindqvist Slides 14: Parametric models

STK4080/9080 2021

13 / 35

Likelihood function for right-censored data

Likelihood for data from a general log-location-scale family:

$$L(\mu,\sigma) = \prod_{i:\delta_i=1} \psi(\frac{\log y_i - \mu}{\sigma}) \cdot \frac{1}{\sigma y_i} \cdot \prod_{i:\delta_i=0} \left(1 - \Psi(\frac{\log y_i - \mu}{\sigma})\right)$$

and log-likelihood is

$$\ell(\mu, \sigma) = \sum_{i:\delta_i=1} \left(\log \psi\left(\frac{\log y_i - \mu}{\sigma}\right) - \log \sigma - \log y_i\right) + \sum_{i:\delta_i=0} \log \left(1 - \Psi\left(\frac{\log y_i - \mu}{\sigma}\right)\right)$$

Bo Lindqvist Slides 14: Parametric models

STK4080/9080 2021

14 / 35

Fractiles ξ_p for log-location scale families

Recall definition:

$$P(T \leq \xi_p) = p$$

$$p = P(T \le \xi_p) = P(\log T \le \log \xi_p) = \Psi(\frac{\log \xi_p - \mu}{\sigma})$$

From this,

$$\Psi^{-1}(p) = \frac{\log \xi_p - \mu}{\sigma}$$
$$\log \xi_p = \mu + \sigma \Psi^{-1}(p)$$
$$\xi_p = e^{\mu + \sigma \Psi^{-1}(p)}$$

where $\Psi^{-1}(p)$ has to be calculated for each model.

Bo Lindqvist Slides 14: Parametric models

STK4080/9080 2021

15 / 35

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

Accelerated Failure Time modeling in survival regression **Model**:

$$\log T = \overbrace{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_p}^{\mu} + \sigma U$$
$$= \beta_0 + \beta^T \mathbf{x} + \sigma U$$
where $\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{pmatrix}; \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}$

With data from *n* units:

 $(\tilde{T}_i, D_i, \mathbf{x}_i)$ for i = 1, 2, ..., n. Underlying lifetimes are represented as:

$$\log T_i = \beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i + \sigma U_i$$

where U_1, U_2, \ldots, U_n are i.i.d $\sim \Psi$. We can extend the parametric likelihoods to this situation.

Bo Lindqvist Slides 14: Parametric models

Weibull regression

Special case of AFT models.

Recall: If $T \sim \text{Weibull}(a, b)$, then

$$S(t) = e^{-\left(\frac{t}{b}\right)^{a}}$$

$$\alpha(t) = \frac{at^{a-1}}{b^{a}} = ab^{-a}t^{a-1}$$

$$\log T = \mu + \sigma W \equiv \log b + \frac{1}{a}W,$$

where $W \sim \text{Gumbel}(0, 1)$

Weibull regression model for a lifetime T and covariate vector x:

$$\log T = \underbrace{\beta_0 + \beta^T \mathbf{x}}_{\log b} + \frac{1}{a} W$$

Thus
$$b = e^{\beta_0 + \beta^T \mathbf{x}}$$

Bo Lindqvist Slides 14: Parametric models

STK4080/9080 2021

17 / 35

Weibull regression has the proportional hazards property (*From previous page*) Weibull regression model can be written:

$$T \sim \mathsf{Weibull}(a, e^{eta_0 + oldsymbol{eta}^{ au} \mathbf{x}})$$

Hence the hazard rate function is

$$\begin{aligned} \alpha(t|\mathbf{x}) &= a(e^{\beta_0 + \boldsymbol{\beta}^T \mathbf{x}})^{-a} t^{a-1} \\ &= \underbrace{ae^{-a\beta_0} t^{a-1}}_{\alpha_0(t)} \cdot e^{-a\boldsymbol{\beta}^T \mathbf{x}} \\ &= \alpha_0(t) \ e^{\boldsymbol{\tilde{\beta}}' \mathbf{x}}, \qquad \text{where } \boldsymbol{\tilde{\beta}} = -a\boldsymbol{\beta} \end{aligned}$$

- This is of the form of Cox' proportional hazard, but here the model is completely parametric.
- The coefficients in β from Weibull regression will always have the opposite sign of those of Cox regression (which are ≈ β̃).
- The Weibull model is the only AFT model (log-location-scale model) that has the proportional hazards proprty.

Bo Lindqvist Slides 14: Parametric models

Accelerated Failure Time modeling in R: survreg Typical use:

survreg(Surv(time, censor == 1) \sim x1 + x2, dist="weibull")

Alternative distributions, e.g., "exponential", "lognormal" and "loglogistic"

NOTE: There are multiple ways to parameterize a Weibull distribution. The survreg function embeds it in the general *log-location-scale family*, which is a different parameterization than the one used by the rweibull function, which often leads to confusion:

• survreg's scale =
$$\sigma = 1/a = 1/(rweibull shape)$$

• survreg's Intercept = $\mu = \log b = \log(\text{rweibull scale})$,

Try the example:

Bo Lindqvist Slides 14: Parametric models

STK4080/9080 2021

coxph versus survreg in R (ASAUR p. 149-150)

> modelAll2.coxph <- coxph(Surv(ttr, relapse) ~ grp + age +</pre>

- employment) +
- > summary(modelAll2.coxph)

```
n= 125, number of events= 89
                    coef exp(coef) se(coef) z Pr(>|z|)
 grppatchOnly 0.60788 1.83654 0.21837 2.784 0.00537 **
 age
               -0.03529 0.96533 0.01075 -3.282 0.00103 **
 employmentother 0.70348 2.02077 0.26929 2.612 0.00899 **
 employmentpt 0.65369 1.92262 0.32732 1.997 0.04581 *
 > model.pharm.weib <- survreg(Surv(ttr, relapse) ~ grp + age +</pre>
     employment, dist="weibull")
 > summary(model.pharm.weib)
                   Value Std. Error z
                                               p
  (Intercept) 2.4024 0.9653 2.49 1.28e-02
 grppatchOnly -1.1902 0.4133 -2.88 3.98e-03
          0.0697 0.0203 3.43 6.02e-04
 age
 employmentother -1.3890 0.5029 -2.76 5.74e-03
 employmentpt -1.3143 0.6132 -2.14 3.21e-02
 Log(scale) 0.6313 0.0900 7.02 2.26e-12
 Scale= 1.88
 Weibull distribution
 Loglik(model) = -454.1 Loglik(intercept only) = -466.1
         Chisq= 23.96 on 4 degrees of freedom, p= 8.2e-05 (臺) ≥ ∽<↔
Bo Lindqvist Slides 14: Parametric models
                              STK4080/9080 2021
```

20 / 35

Parametric counting process models (ABG Chapter 5)

Consider counting processes

$$N_i(t); i = 1, 2, \ldots, n$$

that count the occurrences of an event of interest for n individuals.

Let the *intensity* process involve a parameter θ :

$$\lambda_i(t; \boldsymbol{\theta}); i = 1, 2, \ldots, n$$

Recall that

$$\lambda_i(t; \boldsymbol{\theta}) dt = P(dN_i(t) = 1 | \mathcal{F}_{t-})$$

Bo Lindqvist Slides 14: Parametric models

STK4080/9080 2021

21 / 35

イロト 不得下 イヨト イヨト 二日

General likelihood for parametric counting processes

Note that in general, the processes $N_i(t)$ are not independent due to various censoring mechanisms (e.g., type II censoring ...) Earlier we derived a likelihood for censored data assuming fixed censoring times. Now we will consider the general case.

Introduce the aggregated processes

$$N_{\bullet}(t) = \sum_{i=1}^{n} N_i(t)$$
 and $\lambda_{\bullet}(t; \theta) = \sum_{i=1}^{n} \lambda_i(t; \theta)$

and note that

$$P(dN_{\bullet}(t) = 1 | \mathcal{F}_{t-}) = \lambda_{\bullet}(t; \theta) dt$$

(It should be noted that the λ_i -functions are in general *stochastic*, being functions of the history \mathcal{F}_{t-}).

Bo Lindqvist Slides 14: Parametric models

STK4080/9080 2021

22 / 35

General likelihood... t t+dt0 T Divide the study time interval $[0, \tau]$ into small intervals $0 = t_0 < t_1 < \cdots < t_K = \tau$, each of length dt. Using the multiplicative P(data) =probability rule we can then write K - 1 $= \prod P(\text{data in } [t_k, t_k + dt) | \mathcal{F}_{t_k-})$ k=0K - 1= $\left[\{ P(\text{events of interest in } [t_k, t_k + dt) | \mathcal{F}_{t_k-}) \right]$ k=0

- × $P(\text{other data in } [t_k, t_k + dt)|\text{events of interest in } [t_k, t_k + dt), \mathcal{F}_{t_k-})\}$
- $\propto \prod_{k=0} P(\text{events of interest in } [t_k, t_k + dt) | \mathcal{F}_{t_k-})$

イロト 不得下 イヨト イヨト 二日

General likelihood

We will consider the partial likelihood

Partlik =
$$\prod_{k=0}^{K-1} P(\text{events of interest in } [t_k, t_k + dt) | \mathcal{F}_{t_k-})$$

Conditional on the past, \mathcal{F}_{t-} , the occurrence of the events of interest in [t, t + dt) can be considered as a single multinomial trial with n + 1 possible outcomes: $\{dN_i(t) = 1\}, i = 1, 2, ..., n$; and $\{dN_{\bullet} = 0\}$. The conditional probability of the outcome is therefore

$$P(\text{events of interest in } [t, t + dt) | \mathcal{F}_{t-})$$

$$= \left\{ \prod_{i=1}^{n} P(dN_i(t) = 1 | \mathcal{F}_{t-})^{dN_i(t)} \right\} P(dN_{\bullet}(t) = 0 | \mathcal{F}_{t-})^{1 - dN_{\bullet}(t)}$$

$$= \left\{ \prod_{i=1}^{n} (\lambda_i(t; \theta) dt)^{dN_i(t)} \right\} \{1 - \lambda_{\bullet}(t; \theta) dt\}^{1 - dN_{\bullet}(t)}$$

The partial likelihood now becomes a product-integral of these factors.Bo Lindqvist Slides 14: Parametric modelsSTK4080/9080 202124 / 35

General likelihood

$$\mathsf{Partlik} = \prod_{0 < t \le \tau} \left\{ \prod_{i=1}^{n} (\lambda_i(t; \theta) dt)^{dN_i(t)} \right\} \{ 1 - \lambda_{\bullet}(t; \theta) dt \}^{1 - dN_{\bullet}(t)}$$

- The first part is just a product over the jump times of the counting processes.
- ► The exponent 1 dN_•(t) equals 1 for all but a finite number of time points t and can be replaced by 1.
- ▶ The *dt* will cancel on forming likelihood ratios and can be deleted.

Thus the partial likelihood may be given as

$$L(\theta) = \left\{ \prod_{0 < t \le \tau} \prod_{i=1}^{n} \lambda_i(t; \theta)^{\Delta N_i(t)} \right\} \prod_{0 < t \le \tau} (1 - \lambda_{\bullet}(t; \theta) dt)$$
$$= \left\{ \prod_{i=1}^{n} \prod_{0 < t \le \tau} \lambda_i(t; \theta)^{\Delta N_i(t)} \right\} \exp\left\{ \int_0^{\tau} \lambda_{\bullet}(t; \theta) dt \right\}$$

Bo Lindqvist Slides 14: Parametric models

Likelihood for **right censored lifetimes** Recall $L(\theta) = \left\{ \prod_{i=1}^{n} \prod_{0 < t \le \tau} \lambda_i(t; \theta)^{\Delta N_i(t)} \right\} \cdot \exp\left\{ -\int_0^{\tau} \lambda_{\bullet}(t; \theta) dt \right\}$

Suppose for the *i*th individual we have $\lambda_i(t; \theta) = Y_i(t)\alpha(t; \theta)$. Then (since with right censored lifetimes there is at most one event for each individual)

$$\begin{split} \prod_{0 < t \le \tau} \lambda_i(t; \theta)^{\Delta N_i(t)} &= \alpha(\tilde{T}_i; \theta)^{D_i} \\ \exp\{-\int_0^\tau \lambda_{\bullet}(t; \theta) dt\} &= \exp\{-\sum_{i=1}^n \int_0^\tau Y_i(t) \alpha(t; \theta) dt\} \\ &= \exp\{-\sum_{i=1}^n \int_0^{\tilde{T}_i} \alpha(t; \theta) dt\} \end{split}$$

Thus $L(\theta)$ equals the likelihood that we have found before:

$$\prod_{i=1}^{n} \left\{ \alpha(\tilde{T}_{i}; \theta)^{D_{i}} \exp\{-\int_{0}^{\tilde{T}_{i}} \alpha(t; \theta) dt\} \right\} = \prod_{i:D_{i}=1} f(\tilde{T}_{i}; \theta) \cdot \prod_{i:D_{i}=0} S(\tilde{T}_{i}; \theta)$$

Bo Lindqvist Slides 14: Parametric models

Likelihood for a **non-homogeneous Poisson process** Recall $L(\theta) = \left\{ \prod_{i=1}^{n} \prod_{0 < t \le \tau} \lambda_i(t; \theta)^{\Delta N_i(t)} \right\} \cdot \exp\left\{ - \int_0^{\tau} \lambda_{\bullet}(t; \theta) dt \right\}$

Suppose that *n* processes with the same intensity $\alpha(t; \theta)$ are observed, where the *i*th process, $N_i(t)$, is observed on the time interval $[0, \tau_i]$, with events at times $T_{i1}, \ldots, T_{iN_i(\tau_i)}$. For the *i*th process we have $\lambda_i(t; \theta) = I(t \leq \tau_i)\alpha(t; \theta)$, so with $\tau = \max{\{\tau_i\}}$,

$$\prod_{0 < t \le \tau} \lambda_i(t; \theta)^{\Delta N_i(t)} = \prod_{k=1}^{N_i(\tau_i)} \alpha(T_{ik}; \theta)$$
$$\exp\{-\int_0^\tau \lambda_{\bullet}(t; \theta) dt\} = \exp\{-\sum_{i=1}^n \int_0^{\tau_i} \alpha(t; \theta) dt\}$$

Thus $L(\theta)$ equals

$$\prod_{i=1}^{n} \left\{ \left(\prod_{k=1}^{N_{i}(\tau_{i})} \alpha(T_{ik}; \theta) \right) \exp \left\{ -\int_{0}^{\tau_{i}} \alpha(t; \theta) dt \right\} \right\}$$

Bo Lindqvist Slides 14: Parametric models

Statistical inference Recall $L(\theta) = \left\{ \prod_{i=1}^{n} \prod_{0 < t \le \tau} \lambda_i(t; \theta)^{\Delta N_i(t)} \right\} \cdot \exp\left\{ -\int_0^{\tau} \lambda_{\bullet}(t; \theta) dt \right\}$

Log-likelihood:

$$\ell(\boldsymbol{\theta}) = \log L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \int_{0}^{\tau} \log \lambda_{i}(t; \boldsymbol{\theta}) dN_{i}(t) - \int_{0}^{\tau} \lambda_{\bullet}(t; \boldsymbol{\theta}) dt$$

Score functions:

$$U_{j}(\boldsymbol{\theta}) = \frac{\partial}{\partial \theta_{j}} \ell(\boldsymbol{\theta}) = \sum_{i=1}^{n} \int_{0}^{\tau} \frac{\partial}{\partial \theta_{j}} \log \lambda_{i}(t; \boldsymbol{\theta}) dN_{i}(t) - \int_{0}^{\tau} \frac{\partial}{\partial \theta_{j}} \lambda_{\bullet}(t; \boldsymbol{\theta}) dt$$

It may be shown that the score functions $U_j(\theta)$ are stochastic integrals w.r.t. martingales when evaluated at the true value of the parameter.

This is key to prove that the MLE $\hat{\theta} = (\hat{\theta}_1, \dots, \hat{\theta}_q)$ enjoys "the usual" large sample properties.

The MLE may be found by maximizing the log-likelihood or by solving the likelihood equations $U_j(\theta) = 0$; $j = 1, 2, ..., q_{i_{\text{class}}}$

Statistical inference

As indicated, $\hat{\theta} = (\hat{\theta}_1, \dots, \hat{\theta}_q)$ is asymptotically normally distributed around its true value with a covariance matrix that may be estimated by

$$\mathsf{I}(\hat{ heta})^{-1}$$

where $\mathbf{I}(\hat{\mathbf{ heta}})$ is the observed information matrix with elements

$$i_{hj}(\boldsymbol{ heta}) = -rac{\partial}{\partial heta_h} U_j(\boldsymbol{ heta}) = -rac{\partial^2}{\partial heta_h \partial heta_j} \ell(\boldsymbol{ heta})$$

Alternatively we may use the expected information matrix (see ABG Section 5.3 for details – *not in curriculum*).

The likelihood ratio, score and Wald tests apply as usual.

Bo Lindqvist Slides 14: Parametric models

STK4080/9080 2021

Recall Poisson regression in GLM

Assume Y_i are count data such that

$$Y_i \sim Poisson(m_i \exp(\psi + \beta^T \mathbf{x}_i)), \text{ for } i = 1, \dots, n$$

The m_i are here typically numbers of initial counts having the same covariate vector \mathbf{x}_i . (More generally they are weights of some kind). This means that

$$\log E(Y_i) = \log m_i + \psi + \beta^T \mathbf{x}_i$$

The parameters ψ and β can be estimated in R by:

- Generalized linear model: glm
- with Poisson-family: family=poisson
- Need "offset" for log m_i

R-command might be:

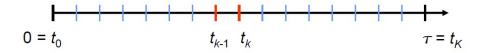
Bo Lindqvist Slides 14: Parametric models

Poisson regression trick

Consider now a model with fixed covariates and proportional hazards:

$$\lambda_i(t;\boldsymbol{\theta},\boldsymbol{\beta}) = Y_i(t)\alpha_0(t;\boldsymbol{\theta})\exp(\boldsymbol{\beta}^{\mathsf{T}}\mathbf{x}_i)$$

and piecewise constant baseline hazard $\alpha_0(t; \theta)$:



$$\alpha_0(t; \boldsymbol{\theta}) = \theta_k$$
 for $t_{k-1} < t \leq t_k$

Introduce:

$$O_{ik} = N_i(t_k) - N_i(t_{k-1})$$
$$R_{ik} = \int_{t_{k-1}}^{t_k} Y_i(u) du$$

Bo Lindqvist Slides 14: Parametric models

STK4080/9080 2021

31 / 35

3

イロト 不得下 イヨト イヨト

Likelihood

$$L(\theta) = \left\{ \prod_{i=1}^{n} \prod_{0 < t \le \tau} \lambda_{i}(t; \theta)^{\Delta N_{i}(t)} \right\} \cdot \exp\left\{ -\int_{0}^{\tau} \lambda_{\bullet}(t; \theta) dt \right\}$$
$$= \left\{ \prod_{i=1}^{n} \prod_{k=1}^{K} \prod_{t_{k-1} < t \le t_{k}} (\theta_{k} e^{\beta^{T} \mathbf{x}_{i}} Y_{i}(t))^{\Delta N_{i}(t)} \right\} \exp\left\{ -\sum_{i=1}^{n} \sum_{k=1}^{K} \int_{t_{k-1}}^{t_{k}} \theta_{k} e^{\beta^{T} \mathbf{x}_{i}} Y_{i}(t) dt \right\}$$
$$= \prod_{i=1}^{n} \prod_{k=1}^{K} \left\{ \left(\theta_{k} e^{\beta^{T} \mathbf{x}_{i}} \right)^{O_{ik}} \cdot \exp\left(-\theta_{k} e^{\beta^{T} \mathbf{x}_{i}} R_{ik} \right) \right\}$$
$$\propto \prod_{i=1}^{n} \prod_{k=1}^{K} \left\{ \left(\theta_{k} e^{\beta^{T} \mathbf{x}_{i}} R_{ik} \right)^{O_{ik}} \cdot \exp\left(-\theta_{k} e^{\beta^{T} \mathbf{x}_{i}} R_{ik} \right) \right\}$$

The likelihood is proportional to the likelihood of "independent Poisson variables" O_{ik} with "parameters"

$$\theta_k e^{\boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_i} R_{ik}$$

Bo Lindqvist Slides 14: Parametric models

STK4080/9080 2021

32 / 35

3

イロン イ理 とくほと くほとう

Estimation procedure

Recall expression:
$$\prod_{i=1}^{n} \prod_{k=1}^{K} \left\{ \left(\theta_{k} e^{\beta^{T} \mathbf{x}_{i}} R_{ik} \right)^{O_{ik}} \cdot \exp \left(-\theta_{k} e^{\beta^{T} \mathbf{x}_{i}} R_{ik} \right) \right\},$$

where

$$O_{ik} = N_i(t_k) - N_i(t_{k-1}), \ R_{ik} = \int_{t_{k-1}}^{t_k} Y_i(u) du.$$

Fit model by GLM-software treating the O_{ik} as "independent Poisson variables" with "parameters"

$$heta_k e^{oldsymbol{eta}^{\mathsf{T}} \mathbf{x}_i} R_{ik} = \exp\left\{\psi_k + oldsymbol{eta}^{\mathsf{T}} \mathbf{x}_i + \log R_{ik}
ight\}$$

with $\psi_k = \log \theta_k$.

- ▶ Use logarithmic link (default) and log *R*_{ik} as offset.
- Time interval number, k, must now be treated as a covariate, represented as a factor (see tutorial)
- ► The *i*th individual contributes one record to the data file for each time interval, *k*, when at risk: (*O_{ik}*, *R_{ik}*, **x**_i), *k* = 1,..., *K*
- This method is an alternative to Cox regression, which is the limit when the partition of time axis is becoming finer and finer.

Bo Lindqvist Slides 14: Parametric models

Special case: Poisson regression with categorical covariates

Assume \mathbf{x}_i can attain only L distinct values: $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(L)}$. Then the likelihood simplifies:

$$L(\boldsymbol{\beta}, \boldsymbol{\theta}) = \prod_{k=1}^{K} \prod_{\ell=1}^{L} \left\{ \left(\theta_{k} e^{\boldsymbol{\beta}^{T} \mathbf{x}^{(\ell)}} \right)^{O_{k}^{(\ell)}} \cdot \exp\left(-\theta_{k} e^{\boldsymbol{\beta}^{T} \mathbf{x}^{(\ell)}} R_{k}^{(\ell)} \right) \right\}$$
$$\propto \prod_{k=1}^{K} \prod_{\ell=1}^{L} \left\{ \left(\theta_{k} e^{\boldsymbol{\beta}^{T} \mathbf{x}^{(\ell)}} R_{k}^{(\ell)} \right)^{O_{k}^{(\ell)}} \cdot \exp\left(-\theta_{k} e^{\boldsymbol{\beta}^{T} \mathbf{x}^{(\ell)}} R_{k}^{(\ell)} \right) \right\}$$

where

$$O_{k}^{(\ell)} = \sum_{i:\mathbf{x}_{i}=\mathbf{x}^{(\ell)}} O_{ik} = \sum_{i:\mathbf{x}_{i}=\mathbf{x}^{(\ell)}} (N_{i}(t_{k}) - N_{i}(t_{k-1}))$$
$$R_{k}^{(\ell)} = \sum_{i:\mathbf{x}_{i}=\mathbf{x}^{(\ell)}} R_{ik} = \sum_{i:\mathbf{x}_{i}=\mathbf{x}^{(\ell)}} \int_{t_{k-1}}^{t_{k}} Y_{i}(u) du$$

We can then use Poisson regression routines with the simplified data:

$$O_k^{(\ell)} \sim \text{Poisson}\left(e^{\log(\theta_k) + \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}^{(\ell)} + \log(R_k^{(\ell)})}\right), \quad k = 1, \dots, K; \ \ell = 1, \dots, L$$

Bo Lindqvist Slides 14: Parametric models

STK4080/9080 2021

34 / 35

Example (see Tutorial on Weibull and Poisson regression)

Consider a right-censored sample (\tilde{T}_i, D_i, x_i), i = 1, ..., 23, of survival times \tilde{T}_i in the interval from 0 to 60, and where x is 0 or 1 (e.g., comparing two groups). Let the time axis be divided into the 6 intervals,

 $(0, 10], (10, 20], \dots, (50, 60]$

Let the model be given by hazard $\alpha_0(t; \theta)e^{\beta x}$, where $\alpha_0(t; \theta)$ is constant on each of the above intervals, with respective values given by the vector $\theta = (\theta_1, \dots, \theta_6)$.

The data needed for using Poisson regression are: $\mathbf{O}^{(1)} = (4, 1, 2, 1, 1, 1) = \text{counts of events in the 6 intervals when } x_i = 0,$ $\mathbf{O}^{(2)} = (1, 2, 1, 1, 2) = \text{counts in the 6 intervals when } x_i = 1.$ $\mathbf{R}^{(1)} = (106, 68, 50, 23, 13) = \text{total exposure times in intervals when } x_i = 0$ $\mathbf{R}^{(2)} = (109, 84, 61, 41, 27, 9) = \text{total exposure times when } x_i = 1.$

The model parameters $\theta_1, \ldots, \theta_6, \beta$ are estimated from these (see tutorial).