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Parametric modeling (ABG Ch.5, ASAUR Ch. 10)

A model for a lifetime T is called parametric if it is given on the form
f(t;0), F(t;0), etc., for functions which are “fixed" except for a
parameter value @ which is allowed to vary in some prespecified interval or
area.

Examples:

> f(t;b) = Le /P, F(t;b) = 1 — e~t/; defined for all § > 0
— Exponential distribution with hazard (scale) b.
Here, @ = b is one-dimensional.

» f(t;a,b) =3 (%)3—1 et/ F(t;a,b)=1— e (t/b)
— Weibull-distribution with shape=a and scale=b.
Here, @ = (a, b) is a vector.

Aim: To estimate or test hypotheses about the true value of 8 in a sample
of observations of T (possibly censored).

Typical method: Maximum likelihood estimation.
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Recall: Main censoring types

Lifetime data typically include censored data, meaning that:

» some lifetimes are known to have occurred only within certain
intervals.

» The remaining lifetimes are known exactly.

Categories of censoring:

» right censoring (type I, type Il,...)
» left censoring

> interval censoring
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Special case: Fixed censoring times
(see also 5.1.2 in ABG for the right censoring case)

Assume we have data for n units with potential lifetimes

T17 T27 Ty Tn ~ f(t' 0)

Noncensored lifetime: Record the failure time T; (ideal case)

Censored lifetime: Exact lifetime T; is not recorded; all we know is that
Ti € [a, b] for an interval of times.

Here

> ais the observed time, and b = oo for right censorings

» a =0, while b is the observed time for left censorings

» 0 < a < b < o for an interval censoring between the observed
interval limits a and b

Bo Lindquist Slides 14: Parametric models STK4080,/9080 2021 4 /35



Representation of censored data with fixed censoring times

Data for censored data may typically be represented as follows:

Unit no | start variable | end variable | Frequency (optional)
1 al b1 fl
2 a2 ba f2
3 a3 b3 f3

An uncensored observation may then be entered by letting both a; and b;
equal the observed lifetime.

» Interval censored data can be analysed in R both nonparametrically
and parametrically by the package icenReg and probably several

other packages (will not be considered in the course).
» The above setup is standard in the package MINITAB.

Bo Lindqvist Slides 14: Parametric models

STK4080,/9080 2021

5/ 35



Likelihood construction for fixed censoring times

Under the simplifying assumption that the lifetimes are independent and
the censoring times are non-random, we obtain the likelihood function

L(0) = Probability of gettting the observed data under parameter 6
= Pg(T1 € [a1, 1] N -+~ N T, € [an, by))
= Pg(T1 € [a1, b1]) - -~ Pg(Th € [an, by])
= (F(b1;0) — F(a1;0))---(F(bn; 0) — F(an; 09))

= [1(F(b::6) — F(a0))
i=1
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Contributions to likelihood

Recall L(0) = [["_,(F(b;; 0) — F(a;; 0)).

> Right censoring: Here b; = oo, so the contribution to likelihood
function is

F(00:0) — F(a5;0) = 1 — F(a;;0) = S(a;,0)

> Left censoring: Here a; = 0, so contribution to likelihood is

F(bi; ) — F(0;6) = F(b;,0)
» Interval censoring: Contribution is F(b;; @) — F(a;; 6)
» Exact observed lifetime: Then a; = b;. Write instead b; = a; + A, so
contribution is F(a; + A; 0) — F(a;;0) ~ f(a;; 0)A. Let contribution
be just f(a;; @) (since A does not contain information about 6).
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Likelihood construction: lllustrative example with n = 4

observed units

Obs. type Lower bound | Upper bound | Likelihood contribution
aj bi

Exact lifetime 1.7 1.7 f(1.7;0)

Right cens. 2.0 00 5(2.0;0)

Left cens. 0 0.5 F(0.5;0)

Interval cens. 1.0 15 F(1.5;0) — F(1.0;0)

1(t)
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Likelihood for illustrative example data

LIKELIHOOD FOR MODEL f(t;0) = (1/0)e—t/?

L(G) — (%6—1.7/9) . (6—2.0/9) . (1 o 6—0.5/9) . (6_1'0/9 o 8—1.5/9)

0.002 /

0.0015 /

0.001 /

0.0005

Maximum likelihood estimate: 8 = 1.725
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Special case:
Right censored data (T;, D;) with fixed censoring times

It follows from the presented setup that for right censored data we have

ey = [ f(Ts0) - I s(7i0)
D;

i:Dj=1 i:D;=0
= f[f S(T:;0)tP
i=1
Recall
f(t;0) = a(t; 0) exp{— [y a(u; 0)du};  S(t;0) = exp{— [y a(u; 8)du}.
Thus

—na~-' Di ex Tia'
- ITa(T0) p{/o (t,e)dt}
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Log-location-scale models
(= Accelerated Failure Time models, AFT)

A lifetime T has a log-location-scale family of distributions if
log T has a location-scale family i.e.

log T =p+oU

where U has a “standardized” distribution centered around 0, with values
in (—o0, 4+00).

» if U~ N(0,1), then T ~ lognormal(u, o)
» if U ~ logistic(0, 1), then T ~ log-logistic(t, o)
» if U~ Gumbel(0,1), then T ~ Weibull(a, b) with

logb=1p, 1/Ja=0
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Log-location scale models: Distributions for U

Recall, log T = pu+oU.

P(U < u) and corresponding density given by:

Normal: ®(u) = [*  ¢(x)dx, ¢(u) = \/%e*%‘ﬂ T

iy
lognormal(y, o)

%"eu, h(u) = ﬁ = T ~ log-logistic(u, o)

Gumbel: G(u)=1—e"¢", g(u) = e = T ~ Weibull(a, b),
with logb = pu, 1/a=o.

Logistic: H(u) =
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General distribution of T with log T = u+ocU

Let W(u) = P(U < u), ¥(u) = V(u). Then

Fr(t) = P(T<t)=P(logT < logt)
= P(M—i—UUSlogt):P(USlogtf_M)
B logt — 1
= Ve
Thus
_ 1 y(leeton
Sr(t) = 1-V(=—)
_ (et L
fri) = w(=,—) —
v(EF) &
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Likelihood function for right-censored data

Likelihood for data from a general log-location-scale family:

L(p, o) = H w(logy%). H <1_\|;(W))

gy g
io=1 Yii 1520

and log-likelihood is

| i | P —
Upo)= > (IOg@Z’(w)—'OgU—'OgYi)+ > log (1—\11(%’
i:0;=1 i:0;=0
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Fractiles &, for log-location scale families

Recall definition:
P( T < fp) =p

p=P(T <&)=Pllog T <log&,) =V

g

From this,
_ log&p — 1
W (p) = =2

log &, = pu+ oW (p)

&p = ehtaV1(p)

where W~1(p) has to be calculated for each model.
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Accelerated Failure Time modeling in survival regression
Model:

I
log T = Bo+ fix1 + -+ Bkxp +oU
=Bo+B"x+0oU
B1 X1
B2 X2
where 8= N X =
Bp Xp

With data from n units:
('NI',-7 D;,x;) for i =1,2,...,n. Underlying lifetimes are represented as:
log Tj = Bo+ BTx; + ol

where Uy, Us, ..., U, are i.i.d ~ W. We can extend the parametric
likelihoods to this situation.
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Weibull regression
Special case of AFT models.

Recall: If T ~ Weibull(a, b), then

S(t) = e &)
ta—l
a(t) = aba = ab ot
1
logT = pu+oW = Iogb+5W,

where W ~ Gumbel(0, 1)

Weibull regression model for a lifetime T and covariate vector x:

1
log T =B+ B x+-W
~—— a
log b

Thus b = efotB'x
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Weibull regression has the proportional hazards property
(From previous page) Weibull regression model can be written:

;
T ~ Weibull(a, e®+8 x)
Hence the hazard rate function is
.
a(t|x) = a(e5°+'6 Xymaga—l
— ae—aﬁg ta—l _e—aﬁTx
——
ao(t)

= ap(t) e X, where 3 = —af3

» This is of the form of Cox’ proportional hazard, but here the model is
completely parametric.

» The coefficients in 3 from Weibull regression will always have the
opposite sign of those of Cox regression (which are ~ ,B)

» The Weibull model is the only AFT model (log-location-scale model)
that has the proportional hazards proprty.
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Accelerated Failure Time modeling in R: survreg
Typical use:

survreg(Surv(time, censor == 1) ~ x1 + x2, dist="weibull")
Alternative distributions, e.g., "exponential”, "lognormal” and
" loglogistic”

NOTE: There are multiple ways to parameterize a Weibull distribution.
The survreg function embeds it in the general log-location-scale family,
which is a different parameterization than the one used by the rweibull
function, which often leads to confusion:

> survreg's scale = 0 = 1/a = 1/(rweibull shape)

» survreg's Intercept = u = log b = log(rweibull scale),

Try the example:

y <- rweibull(1000, shape=2, scale=b)
survreg(Surv(y)~1, dist="weibull")
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coxph versus survreg in R (ASAUR p. 149-150)

> modelAll2.coxph <- coxph (Surv(ttr,

+ employment)

> summary (modelAll2.coxph)

n= 125, number of events= 89

coef
grppatchOnly 0.60788
age -0.03529
employmentother 0.70348
employmentpt 0.65369

exp (coef) se(coef)
.21837
-01075
.26929
TNE (24 (L4

1.83654
0.96533
2.02077
1.92262

0

0
0
0

> model.pharm.weib <- survreg (Surv(ttr,
+ employment, dist="weibull")
> summary (model .pharm.weib)

Value Std. Error

(Intercept) 2.4024
grppatchOnly -1.1902
age 0.0697
employmentother -1.3890
employmentpt -1.3143
Log (scale) 0.6313

Scale= 1.88
Weibull distribution
Loglik (model)= -454.1
Chisg= 23.96 on
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.4133
.0203
5029
.6132
.0900
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2
-2
3
=2
-2

P

.49
.88
.43
<6
.14
02

relapse)

N WUl oYy W

relapse) ~ grp + age +

z Pr(>|z])
2.784 0.00537
-3.282 0.00103
2.612 0.00899
1.997 0.04581

.28e-02
.98e-03
.02e-04
.74e-03
.21le-02
.26e-12

Loglik (intercept only)= -466.1
4 degrees of freedom, p= 8.2e-05
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Parametric counting process models (ABG Chapter 5)

Consider counting processes

that count the occurrences of an event of interest for n individuals.
Let the intensity process involve a parameter 6:
Ai(t;0);i=1,2,...,n

Recall that
Ai(t; 8)dt = P(dN;(t) = 1|F¢-)
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General likelihood for parametric counting processes

Note that in general, the processes N;(t) are not independent due to
various censoring mechanisms (e.g., type Il censoring ...) Earlier we
derived a likelihood for censored data assuming fixed censoring times. Now
we will consider the general case.

Introduce the aggregated processes

n

/v.(t)zzn:/v,-(t) and  A(t;0) =Y \i(t;6)
i=1

i=1

and note that
P(dNe(t) = 1|F:—) = Ae(t; 0)dt

(It should be noted that the \;-functions are in general stochastic, being
functions of the history F;_).
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General likelihood...

! 1+dt

0 T

Divide the study time interval [0, 7] into small intervals

0=ty <ty <--- <tk =r, each of length dt. Using the multiplicative
probability rule we can then write P(data) =

K-1
= H P(data in [tg, tx + dt)|F¢,—)

,_.

= H {P(events of interest in [ty, tyx + dt)|F¢ )

X (other data in [ty, tx + dt)|events of interest in [ty, tx + dt), Fr,—)}
K-1

x H P(events of interest in [t, tx + dt)|Fe, )
k=0
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General likelihood
We will consider the partial likelihood
K-1
Partlik = H P(events of interest in [tk, tx + dt)|Fe, )
k=0

Conditional on the past, F;_, the occurrence of the events of interest in
[t,t + dt) can be considered as a single multinomial trial with n+ 1
possible outcomes: {dN;(t) =1},i=1,2,...,n; and {dN, = 0}. The
conditional probability of the outcome is therefore

P(events of interest in [t, t + dt)|F¢_)

— {ﬁ P(dN;(t) = 1|].“t)dNi(t)} P(dN,(t) = 0|]:t7)1—dN.(t)
i=1

- {ﬁ()‘i(t; g)dt)dN’(t)} {1 — Ao(t; 0)dt}1—dNe()

i=1

The partial likelihood now becomes a product-integral of these factors.
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General likelihood

n
Partlik = ] {H()\;(t; 0)dt)dN’(t)} {1 — Ao(t; 0)dt}r—dNe (1)
o<t<r \i=1

» The first part is just a product over the jump times of the counting
processes.

» The exponent 1 — dN,(t) equals 1 for all but a finite number of time
points t and can be replaced by 1.

» The dt will cancel on forming likelihood ratios and can be deleted.

Thus the partial likelihood may be given as

O<t§7’ =1 0<t§T
— - (02N L i e
’_1;[10<1:[§T/\:(f,9) e p{/o A (t,B)dt}
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Likelihood for right censored lifetimes
Recall L(8) = {H7:1 H0<t§_’.)\,—(t;9)AN(t} exp {— [T Au(t: 0)dt)

Suppose for the ith individual we have X\;(t; @) = Yi(t)a(t; 8). Then (since
with right censored lifetimes there is at most one event for each individual)

I »i(t:0)2N0 = o(T;;0)>

o<t<r

exp{— /OT)\.(t;H)dt} = exp{— Z/ t)a(t; 0)dt}

= exp{—iz;/0 alt; 9)dt}

Thus L(0) equals the likelihood that we have found before:

n

:i—i = ~
H{a(ﬁ;H)D"exp{—/o a(t;a)dt}}z II (7o) - 1] s(Ti0)

i=1 i:Dj=1 i:D;=0
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Likelihood for a non-homogeneous Poisson process
Recall L(8) = {H7:1 H0<t§_’.)\,—(t;9)AN(t} exp {— [T Au(t: 0)dt)

Suppose that n processes with the same intensity «(t; @) are observed,
where the ith process, Nj(t), is observed on the time interval [0, 7;], with
events at times Tjy,..., Tin,(r). For the ith process we have

Ai(t;0) = I(t < 171)a(t; 8), so with 7 = max{T;},

N;(7i)
H )\i(t;e)AN,’(t) — H a(Tik;e)
k=1

o<t<r

exp{—/o Ao(t; 0)dt} = exp{—;/o o(t; 0)dt}

Thus L(0) equals

n N;i (i) .
I3 ( II a(Tu:0) exp{—/ a(t;@)dt}
i=1 k=1 0
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Statistical inference
Recall L(6) = {H}’:l [Toce<s Ai(t; 0)AN() } exp {— [y Ae(t; 0)dt}

Log-likelihood:

0(0) = log L(0 Z/ log \i(t; 0)dN;(t /)\ (t;0)d

Score functions:

Uj(6) = Z/ o6 log A\i(t; 8)dN;( / 89)\ o(t; 0)dt

It may be shown that the score functions U;(@) are stochastic integrals
w.r.t. martingales when evaluated at the true value of the parameter.

This is key to prove that the MLE 8 = (él, . .,éq) enjoys “the usual”
large sample properties.

The MLE may be found by maximizing the log-likelihood or by solving the
likelihood equations U;j(0) =0; j=1,2,...,q
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Statistical inference

As indicated, 8 = (01, ..., GAq) is asymptotically normally distributed
around its true value with a covariance matrix that may be estimated by

1(6)~*

where I(@) is the observed information matrix with elements

0 0?

inj(6) = —afghUj(@) = _WE(O)

Alternatively we may use the expected information matrix (see ABG
Section 5.3 for details — not in curriculum).

The likelihood ratio, score and Wald tests apply as usual.

Bo Lindqvist Slides 14: Parametric models STK4080,/9080 2021 29 / 35



Recall Poisson regression in GLM
Assume Y; are count data such that

Y; ~ Poisson(mjexp(1) + 87x;)), fori=1,...,n

The m; are here typically numbers of initial counts having the same
covariate vector x;. (More generally they are weights of some kind).

This means that
log E(Y;) = log m; + ¢ + 8" x;

The parameters ¢ and 3 can be estimated in R by:

> Generalized linear model: glm
» with Poisson-family: family=poisson
> Need "offset” for log m;

R-command might be:

glm(Y ~ offset(log(m))+ x, family=poisson)
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Poisson regression trick
Consider now a model with fixed covariates and proportional hazards:

Ai(t:0,8) = Yi(t)ao(t; 0) exp(B" x;)

and piecewise constant baseline hazard «p(t; 6):

L I [ I |
I 1 —
0= to by b T= 1y
ao(t; 0) =0, for t_1 <t <ty
Introduce:
Ok = Ni(tx) — Ni(tk—1)
ty
R,'k = / Y,(u)du
tk—1
31/35
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Likelihood

n

L@) =< T r(t:0)2M ~exp{/OTA.(t;9)dt}

i=10<t<T

- {Hﬁ [T @B vi(e)2 exp{ n i / ' erﬁTx"Y;(t)dt}

i=1 k=1 tj_1<t<ty i=1 k=1"1
n K

L) en( )

i=1 k=1

o f[ H { <9keﬁTx,- R,-k> O - exp (—OkeﬁT"f Rik) }

i=1 k=1

The likelihood is proportional to the likelihood of “independent Poisson
variables” Oy with “parameters”

.
Ok B Rix
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Estimation procedure
O;
Recall expression: []7_, HkK:1 {(erlngi R,-k) ) - exp (—erBT""Rik> }

where O = Ni(tx) — Ni(tk—1), Rix = [ Yi(u)du.

tk—1

» Fit model by GLM-software treating the O as “independent Poisson
variables” with “parameters”

-
lefB Xi R,'k = exp {@Z)k + ,BTX,' + |og R,‘k}

with 1, = log 0.

» Use logarithmic link (default) and log Rj, as offset.

» Time interval number, k, must now be treated as a covariate,
represented as a factor (see tutorial)

» The ith individual contributes one record to the data file for each
time interval, k, when at risk: (Oj, Rix, %), k=1,...,K

» This method is an alternative to Cox regression, which is the limit
when the partition of time axis is becoming finer and finer.
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Special case: Poisson regression with categorical covariates

Assume x; can attain only L distinct values: x(!), ... x(1).
Then the likelihood simplifies:

K L ©®
L(B,0) = HH{(akeﬂTXu))Ok oxp (—leBTX(z)Rz(f))}
k=1/4=1
K L ﬁTX(Z) %) 0,(%) BTX(Z) 0
& HH <9ke Ry ) - exp (—9ke Ry )
k=14=1
where
Oi‘;) - Z Ok = Z (Ni(tk) — Ni(te—1))
ixj=x(£) iixi=x(8)
Rl(f) = Z le Z /
i:x;=x() fixi=x(¢

We can then use Poisson regression routines with the simplified data:

O,(f) ~ Poisson ( log(01)+3 " x9)+log(RY )) . k=1,... K t=1,...,L

)
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Example (see Tutorial on Weibull and Poisson regression)

Consider a right-censored sample (T, D;, x;), i = 1,...,23, of survival
times T; in the interval from 0 to 60, and where x is 0 or 1 (e.g.,
comparing two groups). Let the time axis be divided into the 6 intervals,

(0,10], (10,20], .. ., (50, 60]

Let the model be given by hazard ag(t; @)e®™, where ag(t; @) is constant
on each of the above intervals, with respective values given by the vector

0= (61,...,06).

The data needed for using Poisson regression are:

0™ = (4,1,2,1,1,1) = counts of events in the 6 intervals when x; = 0,
0@ = (1,2,1,1,2) = counts in the 6 intervals when x; = 1.

R = (106, 68, 50, 23,13) = total exposure times in intervals when x; = 0
R(® = (109,84,61,41,27,9) = total exposure times when x; = 1.

The model parameters 61, ..., 0q, 3 are estimated from these (see tutorial).
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