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Survival regression

Assume that we have a sample of n individuals, and let Ni (t) count the
observed occurrences of an event of interest for individual i as a function
of (study) time t.

We assume that the intensity process of Ni (t) may be given as

λi (t) = Yi (t)α(t|x)

Earlier we have considered relative risk regression models where the hazard
rate for individual i takes the form

α(t|xi ) = α0(t)r(β, xi (t))
Cox regr .

= α0(t) exp{βTxi (t)}

with xi (t) = (xi1(t), xi2(t), . . . , xip(t))T a vector of (possibly)
time-dependent covariates.

Bo Lindqvist Slides 13: Aalen’s additive model ()STK4080/9080 2021 2 / 30



Aalen’s additive regression model
We will now consider the non-parametric additive regression model (or
excess risk regression model) due to Aalen, where the hazard rate for
individual i takes the form

α(t|xi ) = β0(t) + β1(t)xi1(t) + · · ·+ βp(t)xip(t)

= β0(t) +

p∑
q=1

βq(t)xiq(t)

The βq(t) are regression functions.

I The additive regression model is a completely nonparametric model
that allows the effect of covariates to change over time.

I Note that the model does not make assumptions that constrain the
hazard to be non-negative. This is practical, but for small data sets
the estimated hazard may take negative values.

I For estimation, we focus on the cumulative regression functions

Bq(t) =

∫ t

0
βq(s)ds
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Aalen’s additive regression model

Generally, at each time t we have for i = 1, 2, . . . , n,

dNi (t) = λi (t)dt + dMi (t)

= Yi (t)α(t|xi )dt + dMi (t)

= Yi (t)

β0(t) +

p∑
q=1

βq(t)xiq(t)

 dt + dMi (t)

≡ Yi (t)dB0(t) +

p∑
q=1

Yi (t)xiq(t)dBq(t) + dMi (t)

We may then estimate the increments dBq(t) = βq(t)dt by ordinary least
squares at each time t = Tj when an event occurs (next page).

The estimate of Bq(t) is then obtained by adding together the estimated
increments at all event times Tj ≤ t.
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The regression at an event time t∗ = Tj

Recall dNi (t) = Yi (t)dB0(t) +
∑p

q=1 Yi (t)xiq(t)dBq(t) + dMi (t) (#)

Let t∗ be the time of an event, experienced by individual i∗, say. Let

Vi = dNi (t
∗) for i = 1, . . . , n

Then Vi∗ = 1 and Vi = 0 for i 6= i∗. Now(#) can be written on linear
regression form

Vi =

p∑
q=0

uiqδq + εi

where δq = dBq(t∗), uiq = Yi (t
∗)xiq(t∗) (with xi0 = 1) and εi = dMi (t

∗),
or on vector/matrix form

V = Uδ + ε

The least squares solution for dB(t∗) ≡ δ is hence (well-known!)

dB̂(t∗) = δ̂ = (UTU)−1UTV

leading to B̂(t) =
∑

Tj≤t dB̂(Tj).
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Example: Melanoma-data with sex as only covariate
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Melanoma-data with sex, thickn, ulcer

0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

2.
0

Time

In
te

rc
ep

t

0 2 4 6 8

−
0.

1
0.

1
0.

3
0.

5

Time

fa
ct

or
(s

ex
)2

0 2 4 6 8

−
0.

02
0.

02
0.

06
0.

10

Time

th
ic

kn

0 2 4 6 8

−
0.

8
−

0.
4

0.
0

Time

ul
ce

r

Bo Lindqvist Slides 13: Aalen’s additive model ()STK4080/9080 2021 7 / 30



For comparison:
Scaled Schoenfeld residuals via Cox-regression
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R-code for previous plots

# Read data:

path="http://www.uio.no/studier/emner/matnat/math/STK4080/h14/

melanoma.txt"

melanoma=read.table(path,header=T)

# With sex as the only covariate:

fit.s.aal=aareg(Surv(lifetime,status==1)∼sex,data=melanoma)
par(mfrow=c(1,2))

plot(fit.s.aal)

# Model with sex, thickness and ulceration:

fit.stu.aal=aareg(Surv(lifetime,status==1)∼sex
+ thickn+ulcer, data=melanoma)

par(mfrow=c(2,2))

plot(fit.stu.aal)

# Comparison with Schoenfeld residuals

fit.stu.cox =

coxph(Surv(lifetime,status==1) sex+thickn+ulcer,data=melanoma)

plot(cox.zph(fit.stu.cox))
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Simple example for handcalculation
i 1 2 3 4 5 6 7

T̃i 5 10 40 80 120 400 600
xi 12 10 3 5 3 4 1
Di 0 1 0 0 1 1 0

The following plot is from using R – see calculations next pages
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Simple example for hand calculation
i 1 2 3 4 5 6 7

T̃i 5 10 40 80 120 400 600
xi 12 10 3 5 3 4 1
Di 0 1 0 0 1 1 0

At t∗ = 10 : dNi (10) = Yi (10)dB0(10) + Yi (10)xidB1(10) + dMi (10)

Vi = ui1δ0 + ui2δ1 + εi
V = U δ + ε

0
1
0
0
0
0
0


=



0 0
1 10
1 3
1 5
1 3
1 4
1 1


(
δ0
δ1

)
+ ε

Hence incr. at t∗ = 10: dB̂(10) = δ̂ = (UTU)−1UTV =

(
−0.3521

0.1197

)
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Simple example for hand calculation
i 1 2 3 4 5 6 7

T̃i 5 10 40 80 120 400 600
xi 12 10 3 5 3 4 1
Di 0 1 0 0 1 1 0

t∗ = 120 : dNi (120) = Yi (120)dB0(120) + Yi (120)xidB1(120) + dMi (120)

Vi = ui1δ0 + ui2δ1 + εi
V = U δ + ε

0
0
0
0
1
0
0


=



0 0
0 0
0 0
0 0
1 3
1 4
1 1


(
δ0
δ1

)
+ ε

Hence incr. at t∗ = 120: dB̂(120) = δ̂ = (UTU)−1UTV =

(
0.1429
0.0714

)
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Simple example for hand calculation
i 1 2 3 4 5 6 7

T̃i 5 10 40 80 120 400 600
xi 12 10 3 5 3 4 1
Di 0 1 0 0 1 1 0

t∗ = 400 : dNi (400) = Yi (400)dB0(400) + Yi (400)xidB1(400) + dMi (400)

Vi = ui1δ0 + ui2δ1 + εi
V = U δ + ε

0
0
0
0
0
1
0


=



0 0
0 0
0 0
0 0
0 0
1 4
1 1


(
δ0
δ1

)
+ ε

Hence incr. at t∗ = 400: dB̂(400) = δ̂ = (UTU)−1UTV =

(
−0.3333

0.3333

)
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Simple example for hand calculation using R ...

Note that the inclusion of nmin=2 was necessary in the use of aareg. This
is because the default is nmin=3, which requires an ’at risk’ number of at
least 3 times the dimension of x. At t = 400, there are just 2 at risk in
these data.

Bo Lindqvist Slides 13: Aalen’s additive model ()STK4080/9080 2021 14 / 30



Vector-valued counting processes, martingales, and
stochastic integrals (cf. appendix B)
Consider first a univariate counting process martingale

M(t) = N(t)−
∫ t

0
λ(s)ds

The stochastic integral
∫ t
0 H(s)dM(s) is a mean zero martingale with

predictable variation processes:〈∫
HdM

〉
(t) =

∫ t

0
H(s)2λ(s)ds

and optional variation processes:[∫
HdM

]
(t) =

∫ t

0
H(s)2dN(s)

By the martingale central limit theorem, a sequence of stochastic integrals
converge in distribution to a Gaussian martingale (when properly
normalized )
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k-variate counting process

Now consider a k-variate counting process:

N(t) = (N1(t), . . . ,Nk(t))T

There are k univariate counting processes, where we assume that two or
more component processes do not jump at the same time.

The intensity (given history) of the multivariate counting process is the
corresponding collection of the univariate intensity processes:

λ(t) = (λ1(t), . . . , λk(t))T

The vector-valued martingale associated with the multivariate counting
process is

M(t) = N(t)−
∫ t

0
λ(u)du
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Multivariate stochastic integrals
For a p × k matrix H(u) of predictable processes, we define the p-variate
vector-valued stochastic integral∫ t

0
H(u)dM(u)

The hth element of this vector is a sum of stochastic integrals:

k∑
j=1

∫ t

0
Hhj(u)dMj(u)

The predictable variation process of
∫ t
0 H(u)dM(u) is the p × p matrix:〈∫

HdM

〉
(t) =

∫ t

0
H(u)diag{λ(u)du}H(u)T

while the optional variation process is given by:[∫
HdM

]
(t) =

∫ t

0
H(u)diag{dN(u)}H(u)T
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Multivariate martingale central limit theorem

Consider a sequence of counting process martingales indexed by n
(typically the number of individuals):

M(n)(t) = N(n)(t)−
∫ t

0
λ(n)(u)du

and a sequence of stochastic integrals∫ t

0
H(n)(u)dM(n)(u)

where the predictable processes H(n)(t) have dimension p × kn.

Bo Lindqvist Slides 13: Aalen’s additive model ()STK4080/9080 2021 18 / 30



Multivariate martingale central limit theorem

Let V(t) = E{U(t)U(t)T} be the covariance matrix for a p-variate mean
zero Gaussian martingale U(t).

Provided that ∫ t

0
H(n)(u)diag{λ(n)(u)du}H(n)(u)T → V(t)

and the “jumps disappear in the limit”, we have that the p-variate
stochastic process ∫ t

0
H(n)(u)dM(n)(u)

converges in distribution to the stochastic process U(t).

In particular for a given value of t we have that
∫ t
0 H(n)(u)dM(n)(u) is

approximately multivariate normal.
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The additive regression model – theory

We introduce the vectors

N(t) = (N1(t),N2(t), . . . ,Nn(t))T

M(t) = (M1(t),M2(t), . . . ,Mn(t))T

B(t) = (B0(t),B1(t), . . . ,Bp(t))T

and the n × (p + 1) “design matrix”

X(t) =


Y1(t) Y1(t)x11(t) · · · Y1(t)x1p(t)
Y2(t) Y2(t)x21(t) · · · Y2(t)x2p(t)

...
...

. . .
...

Yn(t) Yn(t)xn1(t) · · · Yn(t)xnp(t)


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The additive regression model – theory

The additive regression model may be written on matrix form as

dN(t) = X(t)dB(t) + dM(t)

For each time t, this is a linear regression model on matrix form
(conditional on the past).

Ordinary least squares gives

dB̂(t) = (X(t)TX(t))−1X(t)TdN(t)

provided X(t) has full rank.
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The estimator B̂(t)

Introduce the indicator:

J(t) = I{X(t) has full rank}

and the least squares generalized inverse

X−(t) = (X(t)TX(t))−1X(t)T

Then

B̂(t) =

∫ t

0
J(u)X−(u)dN(u)

=
∑
Tj≤t

J(Tj)X
−(Tj)∆N(Tj)

where T1 < T2 < · · · are the event times.
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Expected value of B̂(t)

To study the statistical properties of the estimator in the additive model
recall that

B̂(t) =

∫ t

0
J(u)X−(u)dN(u)

Here dN(u) = X(u)dB(u) + dM(u), so

B̂(t) =

∫ t

0
J(u)dB(u) +

∫ t

0
J(u)X−(u)dM(u)

≡ B∗(t) +

∫ t

0
J(u)X−(u)dM(u)

Thus

B̂(t)− B∗(t) =

∫ t

0
J(u)X−(u)dM(u)

so
E{B̂(t)− B∗(t)} = 0
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Covariance matrix of B̂(t)

We have

B̂(t)− B∗(t) =

∫ t

0
J(u)X−(u)dM(u)

Thus 〈
B̂− B∗

〉
(t) =

∫ t

0
J(u)X−(u)diag{λ(u)du}X−(u)T

[
B̂− B∗

]
(t) =

∫ t

0
J(u)X−(u)diag{dN(u)}X−(u)T

We may estimate the covariance matrix of B̂(t) either by inserting an
estimate

λ̂(u)du = X(u)dB̂(u)

for λ(u)du in the predictable variation,

... or use the optional variation (the choice in R).
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Estimated covariance matrix and confidence interval

This leads to the following estimators of the covariance matrix of B̂(t):

Σ̂(t) =
∑
Tj≤t

J(Tj)X
−(Tj)diag{∆N(Tj)}X−(Tj)

T

Σ̃(t) =
∑
Tj≤t

J(Tj)X
−(Tj)diag{X(Tj)∆B̂(Tj)}X−(Tj)

T

where the first option is the one used in R

Martingale central limit theorem gives that B̂(t) is approximately
multivariate normally distributed.

Confidence intervals (included in earlier plots)

B̂q(t)± z1−α

√
σ̂qq(t)

where σ̂qq(t) is the qth diagonal element of Σ̂(t).
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Testing in the additive regression model

We want to test the null hypothesis

H0 : βq(t) = 0 for all t ∈ (0, t0]

for a given t0.

We may base a test on the stochastic integral

Zq(t0) =

∫ t0

0
Lq(t)dB̂q(t) =

∑
Tj≤t0

Lq(Tj)∆B̂q(Tj)

where Lq(t) is a predictable non-negative process (weight function).

It can be shown that Zq(t0) is a mean zero martingale under H0.
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Testing in the additive regression model

Predictable variation process

〈Zq〉 (t0) =

∫ t0

0
L2q(t)d

〈
B̂q

〉
(t)

Variance estimator

Vqq(t0) =

∫ t0

0
L2q(t)d σ̂qq(t)

=
∑
Tj≤t0

L2q(Tj)∆σ̂qq(Tj)

σ̂qq(t) is the qth diagonal element in the estimator of the covariance
matrix of B̂(t).
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The test statistic
Using the martingale central limit theorem we may show that

Zq(t0)√
Vqq(t0)

is approximately standard normally distributed under H0.

A possible choice of weight process Lq(t) may be based on the matrix

K(t) =
{

diag
[
(X(t)TX(t))−1

]}−1

If we chose Lq(t) as the qth diagonal element of this matrix we get a
“logrank type” test. (Motivation: in ordinary least squares, the variances
of the estimators are proportional to the diagonal elements of (XTX)−1).

For a model with a single binary covariate, we obtain exactly the logrank
test if we use the estimator Σ̃(t) (see earlier slide) for estimating variances
(Exercise 4.5).
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Example: Testing in melanoma data

Consider the model with sex, cthick (centered thickness) and ulcer:

fit.stu=aareg(Surv(lifetime,status==1)∼sex +cthick

+ulcer, data=melanoma)

print(fit.stu)

The columns z and p give the test statistics and p-values. slope is a kind of

average slope in the plots, while coef is proportional to z.
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Example: Testing in melanoma data (cont.)
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