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Cox model and partial likelihood
The Cox model is given by the hazard specification

α(t|x) = α0(t)r(β, x(t)) = α0(t) exp{βTx(t)}

Partial likelihood: Let event times be T1 < T2 < · · · ,

L(β) =
∏
j

r(β, xij (Tj))∑
`∈Rj

r(β, x`(Tj))
=
∏
j

exp{βTxij (Tj)}∑
`∈Rj

exp{βTx`(Tj)}

Here ij is the index of the individual who experiences the event at Tj ,
while Rj = {` | Y`(Tj) = 1} is the risk set at Tj .

The maximum partial likelihood estimator β̂ is the maximizer of L(β), or
the solution of the equation U(β) = 0, where

U(β) =
∂ log L(β)

∂β
= 0
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Cox regression with left truncation and right censoring
Recall from earlier that left truncation can be included in the models by
letting the ’at risk’ function be

Yi (t) = I (Li < t ≤ T̃i )

where Li is the time of entry of the ith individual.

Try the following example in R:

library(survival)

library(KMsurv)

data(psych)

attach(psych)

psych

my.surv.object <- Surv(age, age+time, death)

my.surv.object

fit.left = coxph(Surv(age, age+time, death)∼ sex)

summary(fit.left)

detach(psych)

Here Li = age, T̃i = age + time, Di = death
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R-output
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Time dependent covariates in R
R only allows for time dependent covariates that are constant on intervals,
i.e. step functions.

Suppose for simplicity that p = 1, so there is a single covariate.

Assume for individual i that xi (t) = x` on the interval (Li`,Ui`] for
` = 1, 2, . . . , Ji .

One then represents this individual Ji times in the data file as left
truncated data with

I Li` as left truncation time

I Ui` as right censoring time

I Di` = Di · I (event for individual i in interval (Li`,Ui`])

I x` as covariate value

For an example, see ASAUR Chapter 8.1:
Stanford Heart Transplant Data
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Stratified Cox-regression
Assume that the individuals are divided into k strata, so that for an
individual in stratum s with covariate xi (t) we have the hazard

α(t|xi , stratum s) = αs0(t) exp{βTxi (t)}

Note that the effects of the covariates are here assumed to be the same
accross strata, while the baseline hazard may vary between strata.

We now estimate β by maximizing the partial likelihood

k∏
s=1

∏
Tsj

exp{βTxij (Tsj)}∑
`∈Rsj

exp{βTx`(Tsj)}

where Ts1 < Ts2 < · · · are the observed event times in stratum s and Rsj

is the risk set in this stratum at time Tsj .

The maximum partial likelihood estimator has similar properties as for the
situation without stratification and statistical tests may be performed as
before.
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Why stratified Cox-regression?

Recall that
α(t|xi , stratum s) = αs0(t) exp{βTxi (t)}

I The stratified Cox model is useful when the proportional model does
not hold for a categorical variable.

I Stratify on this variable and keep the regression model for other
covariates
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Stratified Cox regression: Melanoma data

Consider the melanoma data where we stratify on the variable ’grouped
tumor thickness’ (grthick).
path="http://www.uio.no/studier/emner/matnat/math/STK4080/h14/

melanoma.txt"

melanoma=read.table(path,header=T)

# Use ’grthick’ as a stratum variable:

coxph(Surv(lifetime,status==1)∼ulcer+sex+age+strata(grthick),
data=melanoma)

#

# Use ’grthick’ as a factor variable:

coxph(Surv(lifetime,status==1)∼
ulcer+sex+age+factor(grthick),data=melanoma)

# Use ’grthick’ as a stratum variable and plot the three baseline

hazards:

cox.strat =

coxph(Surv(lifetime,status==1)∼ulcer+sex+age+strata(grthick),
data=melanoma)

plot(survfit(cox.strat),fun="cumhaz")
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R-output

The results are only marginally different (also standard errors).
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The estimated baseline hazard curves
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Stratification is most efficient when these baseline hazards are not
proportional.

Bo Lindqvist Slides 12: Cox regression ()STK4080/9080 2021 10 / 40



How can the Cox-model fail?

Recall model: α(t|x) = α0(t) exp{βTx(t)}

The Cox-model is flexible w.r.t the baseline α0(t), but otherwise strict
with respect to how the hazard depends on covariates:

I We may have specified a covariate x in a wrong way, where the
correct alternative may be, e.g., log x , x1/2, etc.

I We may not have a proportional model, so that the effect of a
covariate may vary with time, e.g.,

α(t|x) = α0(t) exp(β(t)Tx(t))

where β(t) depends on t.
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Model diagnostic tools

I Martingale residuals.
I See ABG Section 4.1.3 for definition. (But we will not cover the

treatment after equation (4.21) on p. 144.)
I See instead ASAUR Section 7.1.1.

I Checking the proportional hazards assumption.
I Log cumulative hazard plots. ASAUR 7.2.1
I Schoenfeld residuals. ASAUR 7.2.2
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Martingale residuals

I Martingale residuals are in some sense similar to the residuals we use
in linear regression.

I They are, however, not as useful as the linear regression residuals,
because there is no natural distribution to compare them to.

I One of their main applications is to estimate appropriate modifications
to the proportional hazards model by way of covariate transformation

Bo Lindqvist Slides 12: Cox regression ()STK4080/9080 2021 13 / 40



Martingale residuals: definition

We start with the counting process martingale for Cox regression:

Mi (t) = Ni (t)−
∫ t

0
Yi (s) exp{βTxi (s)}dA0(s)

which can be interpreted as “observed minus expected” for the ith
individual.

It becomes the martingale residual by plugging in estimators and
considering the maximum time τ :

M̂i = Ni (τ)−
∫ τ

0
Yi (s) exp{β̂T

xi (s)}dÂ0(s)

For time-constant covariates we have

M̂i = Di − exp{β̂T
xi}Â0(T̃i )
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Example: Martingale residuals for the melanoma data
It has been considered that log(thickn) is a “better” covariate than
thickn itself. We will check if this can be discovered from martingale
residuals.
# Martingale residual plot against ’thickn’:

coxfit<-coxph(Surv(lifetime,status==1)∼sex+ulcer+thickn,
data=melanoma)

martres = coxfit$residuals

plot(melanoma$thickn,martres)

lines(lowess(melanoma$thickn,martres))
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Martingale residuals for melanoma data
To the left is the plot from the previous page using the covariate thickn.
Tp the right is instead used log(thickn)

Note the lowess smooth of the martingale residuals which has been added
to the plots (see R-code previous page).
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Using martingale residuals for estimating covariate
transforms

Consider one component, z , of a covariate vector (x, z). The question is
whether, instead of a hazard ratio of eβz , it might be better to use ef (z)

for some suitable function f (z), e.g., β log(z), β
√

z , etc.

Consider then the model

α(t|x) = α0(t) exp{βTx + f (z)}

Martingale residuals from the estimated model

α(t|x) = α0(t) exp{βTx}

i.e., without including the covariate z can then be used to infer the
form of f (z). (see ASAUR 7.1.1)
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Should one use log(thickn) instead of thickn?
Below are martingale residual plots for the model without z(= thickn).
(R-code is given on the next page.) The smoothed plot estimates the
underlying f (z) up to a linear transformation.
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Note that a linear plot would correspond to using z itself. The
flattening/decreasing tendency around 5 mm, and the fact that few
observations have thick > 10 might favor of a log-transform.
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R-code for estimating f (z) (previous page)

# To estimate f(z):

coxfit.fz = coxph(Surv(lifetime,status==1)∼sex+ulcer,
data=melanoma)

martres.fz = coxfit.fz$residuals

plot(lowess(melanoma$thickn,martres.fz))

plot(melanoma$thickn,martres.fz)

lines(lowess(melanoma$thickn,martres.fz))

See also Section 7.1.1 in ASAUR for an interesting example.
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Including smooth estimates of continuous covariates
See Section 6.5 in ASAUR, where splines are used to estimate f (z). This
method is based on maximizing a penalized log-partial likelihood, i.e.
log(partial likelihood)− λ

∫
(f ′′(z))2dz .

coxfit.spl = coxph(Surv(lifetime,status==1)∼sex+ulcer +

pspline(thickn,df=4),data=melanoma)

termplot(coxfit.spl,se=T,terms=3)
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Checking for non-proportional hazards:
Log cumulative hazard plots
The classical way of checking departure from proportionality is based on
the following:

With fixed covariates we have the cumulative hazard

A(t|x) = A0(t) exp{βTx}

Thus
log(A(t|x)) = βTx + log(A0(t))

i.e. t 7→ log(A(t|x)), for different choices of x, are parallel curves.

I Thus if x is a single categorical covariate, we may plot log of
Nelson-Aalen estimates for A(t|x) for every level of x .

I Approximately parallel curves then support the use of a proportional
hazards model.

I For non-categorical covariates we may group the values of the
covariate into a finite number of categories.
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Example: tumor-thickness and ulceration in melanoma
data

Plot of log(Â(t|x)) against t for ulcer = 1,2 and grthick = 1,2,3.
(Parallelism seems to be OK?)
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Check of proportionality for multivariate covariate vectors

If we have included the covariates x1, x2, . . . , xp in our model, and want to
check if the categorical covariate xp+1 satisfies the proportionality
requirement, we may

I Fit a stratified Cox-model with the levels s of xp+1 as strata and
x = (x1, x2, . . . , xp) as covariates.

I Plot log(Âs(t|x)) against t for different levels s of xp+1.

I Check if lines are (approximately) parallel.
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Checking for non-proportional hazards:
Schoenfeld residuals

Consider the Cox-model with time-fixed covariates:

α(t|x) = α0(t) exp{βTx}

As we have seen, the effect of increasing, say, covariate number 1 by one
unit, is to multiply the hazard rate by eβ1 , independently of time t.

In practice one might imagine, however, that β1 could depend on t as a
function β1(t).

The Schoenfeld residual compares, for each event time Tj , the values of
the covariates of the unit that fails, with what would be expected if the
Cox-model with constant β is correct.
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Schoenfeld residuals
“...compares, for each event time Tj , the values of the covariates of the
unit that fails, with what would be expected if the Cox-model with
constant β is correct.”

Let the covariate vector for unit i be xi = (xi1, xi2, . . . , xip).

For each failure time Tj , with individual ij failing, and with risk set Rj , we
compute for each coordinate k = 1, . . . , p,

sjk = xijk −
∑
`∈Rj

x`k P̂(unit ` fails at Tj)

= xijk −
∑
`∈Rj

x`k
exp{β̂T

x`}∑
v∈Rj

exp{β̂T
xv}

= xij −
∑

`∈Rj
x`k exp{β̂T

x`}∑
`∈Rj

exp{β̂T
x`}

≡ xijk − x̄k(Tj)

If the model is correct, then the sjk are supposed to vary around 0.
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Schoenfeld residuals with R: the melanoma data

fit.logtu=coxph(Surv(lifetime,status==1)∼sex+age+factor(ulcer)+
log(thickn), data=melanoma)

resid.schoen.melanoma = residuals(fit.logtu,type="schoenfeld")

head(resid.schoen.melanoma)

sex age factor(ulcer)2 log(thickn)
0.5068493 0.4339136 −6.327544 −0.2035499 1.1225127
0.5589041 0.4421115 −30.447089 −0.2073955 0.2290838
0.5753425 0.4459645 18.287558 −0.2092030 0.2951022
0.6356164 0.4531361 −9.418362 −0.2125672 1.2145868
0.7643836 −0.5418191 9.405579 −0.2183473 0.6846807
0.8082192 −0.5487693 −5.473772 −0.2211481 0.1233337

The first column is here the failure times Tj . The original idea of Schoenfeld

(Biometrika 1982) was to plot the sjk versus Tj . Departures from the proportional

hazards model would then be revealed by trends away from 0 in the plot.
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Scaling the Schoenfeld residuals
Grambsch and Therneau (Biometrika, 1994) suggested to scale the
Schoenfeld residuals at each Tj by the inverse of the covariance matrix
corresponding to the distribution of x in the risk set Rj , thereby obtaining
scaled residuals s∗jk .

Then, assuming that the true model is of the form

α(t|x) = α0(t) exp{β(t)Tx},

they showed that β(t) can be estimated at each Tj by the components

β̂k(Tj) = s∗jk + β̂k ; k = 1, 2, . . . , p

where β̂k is the estimate from an ordinary Cox-regression.

Plots of β̂k(Tj) versus Tj will then show the form of β[t] and will indicate
possible deviations from the proportional hazards model.

Note: The equation for E (r∗i ) on p. 98 in ASAUR should in accordance
with the above be corrected to E (r∗i ) + beta ≈ β(t).
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Scaled and smoothed Schoenfeld residuals for estimation
of β(t) for the melanoma data
par(mfrow=c(2,2))

plot(cox.zph(fit.logtu))
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Compare to β̂ = (0.36, 0.01,−0.94, 0.55)
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Proportionality testing by R

The formal test for proportionality of the covariates (Therneau and
Grambsch, 1994) is based on defining

βk(t) = βk + θkg(t)

for a given function g(t), e.g. log(t), and testing (by score tests) the
hypotheses θk = 0 for each covariate xk .

Here is R-code for the melanoma data:

fit.logtu=coxph(Surv(lifetime,status==1)∼sex+age+factor(ulcer)+
log(thickn), data=melanoma)

cox.zph(fit.logtu,transform="log")

The output is on the next page. Note that the function cox.zph is the same as

was used in the plotting of scaled Schoenfeld residuals.
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Proportionality testing by R

cox.zph(fit.logtu,transform="log")

chisq df p
sex 1.13 1 0.2887
age 1.71 1 0.1904
factor(ulcer) 4.17 1 0.0410
log(thickn) 6.76 1 0.0093
GLOBAL 10.86 4 0.0282

There is hence an indication for coefficients for ulcer and (log)thickness to
depend on time. Compare to the previous plots!
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Some strategies when proportional hazard fails

I Stratified Cox-regression

I Separate analyses on disjoint time intervals

I Time-dependent covariates
I Alternative regression models

I Accelerated failure time models
I Additive models

Bo Lindqvist Slides 12: Cox regression ()STK4080/9080 2021 31 / 40



Large sample distribution of the maximum partial
likelihood estimator

For simplicity, we restrict attention to Cox regression with a single
covariate (p = 1).:

α(t|xi ) = α0(t) exp{βxi (t)}

β̂ is the maximizer of the partial likelihood

L(β) =
∏
j

exp{βxij (Tj)}∑
`∈Rj

exp{βx`(Tj)}
=
∏
j

exp{βxij (Tj)}∑n
`=1 Y`(Tj) exp{βx`(Tj)}

We will show (only main steps) that β̂ is approximately normally
distributed around the true value β0 of β with a variance that can be
estimated by the inverse information.
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The log partial likelihood

The logarithm of the partial likelihood can be written

`(β) = log L(β)

=
∑
j

{
βxij (Tj)− log

(
n∑
`=1

Y`(Tj) exp{βx`(Tj)}

)}

=
n∑

i=1

∫ τ

0

{
βxi (u)− log S (0)(β, u)

}
dNi (u)

where

S (0)(β, u) =
n∑

i=1

Yi (u) exp{βxi (u)}
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Score function
Recall log likelihood:

`(β) =
n∑

i=1

∫ τ

0

{
βxi (u)− log S (0)(β, u)

}
dNi (u)

where

S (0)(β, u) =
n∑

i=1

Yi (u) exp{βxi (u)}

The score function is then

U(β) = `′(β) =
n∑

i=1

∫ τ

0

{
xi (u)− S (1)(β, u)

S (0)(β, u)

}
dNi (u)

where

S (1)(β, u) =
n∑

i=1

Yi (u)xi (u) exp{βxi (u)}

Then β̂ solves U(β) = 0.
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Observed information

The observed information may be written

I (β) = −`′′(β) = −U ′(β) =

∫ τ

0
V (β, u)dN•(u)

where

V (β, u) =
S (2)(β, u)

S (0)(β, u)
−

(
S (1)(β, u)

S (0)(β, u)

)2

and

S (2)(β, u) =
n∑

i=1

Yi (u)xi (u)2 exp{βxi (u)}
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Property of score function

We will now look at the score function U(β) when evaluated at the true
value β0 of β.

Note that

dNi (t) = λi (t)dt + dMi (t)

= Yi (t) exp{β0xi (t)}α0(t)dt + dMi (t)

Inserting this in the expression for the score we obtain

U(β0) =
n∑

i=1

∫ τ

0

{
xi (u)− S (1)(β0, u)

S (0)(β0, u)

}
dMi (u)

(see next page ....)

It follows that the score evaluated at β0 is a mean zero martingale, and in
particular E{U(β0)} = 0.
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....

.... the last equation follows since ...

n∑
i=1

∫ τ

0

{
xi (u)− S (1)(β0, u)

S (0)(β0, u)

}
Yi (u) exp{β0xi (u)}α0(u)du

=

∫ τ

0

[
n∑

i=1

{
xi (u)− S (1)(β0, u)

S (0)(β0, u)

}
Yi (u) exp{β0xi (u)}

]
α0(u)du

=

∫ τ

0

[
S (1)(β0, u)− S (1)(β0, u)

S (0)(β0, u)
S (0)(β0, u)

]
α0(u)du

= 0
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Predictable variation of the score function
The predictable variation of the score function may be written

〈U(β0)〉 (τ) =
n∑

i=1

∫ τ

0

{
xi (u)− S (1)(β0, u)

S (0)(β0, u)

}2

λi (u)du

=
n∑

i=1

∫ τ

0

{
xi (u)2 − 2xi (u)

S (1)(β0, u)

S (0)(β0, u)
+

(
S (1)(β0, u)

S (0)(β0, u)

)2
}

× Yi (u) exp{β0xi (u)}α0(u)du

=
n∑

i=1

∫ τ

0

{
S (2)(β0, u)− 2S (1)(β0, u)

S (1)(β0, u)

S (0)(β0, u)
+

(
S (1)(β0, u)

S (0)(β0, u)

)2

S (0)(β0, u)

}
× α0(u)du

=
n∑

i=1

∫ τ

0

{
S (2)(β0, u)

S (0)(β0, u)
−
(

S (1)(β0, u)

S (0)(β0, u)

)2
}

S (0)(β0, u)α0(u)du

=

∫ τ

0

V (β0, u)S (0)(β0, u)α0(u)du
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Use of martingale central limit theorem
Recall that U(β0) is a mean zero martingale (in τ). Then if we assume
that

1

n

∫ τ

0
V (β0, u)S (0)(β0, u)α0(u)du → σ2

we have that
〈
(1/
√

n)U(β0)
〉
→ σ2. It follows by the martingale central

limit theorem that

1√
n

U(β0)→ Z ∼ N(0, σ2) as n→∞

Further using

dN•(u) = S (0)(β0, u)α0(u)du + dM•(u)

we get

1

n
I (β0) =

1

n

∫ τ

0
V (β0, u)dN•(u)

≈ 1

n

∫ τ

0
V (β0, u)S (0)(β0, u)α0(u)du ≈ σ2
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Final result on
√
n(β̂ − β0)

We have that U(β̂) = 0.

By a Taylor expansion this gives

0 = U(β̂) ≈ U(β0) + U ′(β0)(β̂ − β0)

= U(β0)− I (β0)(β̂ − β0)

It follows that

√
n(β̂ − β0) ≈

(
1

n
I (β0)

)−1 1√
n

U(β0)

≈ 1

σ2
1√
n

U(β0)→ 1

σ2
Z ∼ N(0, 1/σ2)

Recall that (1/n)I (β0) ≈ σ2 and estimate I (β0) by I (β̂). It follows that
1/σ2 can be estimated by nI (β̂)−1 and hence that Var(β̂) can be
estimated by I (β̂)−1.
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