
Hazard rate, cumulative hazard and survival function in the
absolutely continuous case

Let T be a lifetime with an absolutely continuous distribution. Then

α(t) =
f (t)

S(t)
= −S ′(t)

S(t)

A(t) =

∫ t

0
α(s)ds

S(t) = e−A(t)
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Hazard rate and cumulative hazard in the general case
A general definition of hazard and cumulative hazard were given in
Slides 8, starting from a general S(t) = P(T > t) only assuming

I S(t) is continuous from the right
I S(t) is non-increasing
I 0 < S(0) ≤ 1

Then it was shown that

dA(t) = P(t ≤ T < t + dt|T ≥ t) = − dS(t)

S(t−)

leading to the general expression

A(t) = −
∫ t

0

dS(u)

S(u−)

As a check, for the absolutely continuous case we would then have

A(t) = −
∫ t

0

dS(u)

S(u−)
=

∫ t

0

−S ′(u)du

S(u)
=

∫ t

0

f (u)du

S(u)
=

∫ t

0
α(u)du
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The discrete hazard and cumulative hazard from scratch

Let u0 = 0, u1, u2, . . . be the values of T .

Reconsider dA(t) = P(t ≤ T ≤ t + dt|T ≥ t). Looking at the above axis
it is clear that this is 0 unless t is one of the uj .

For t = uj , we get on the other hand,

dA(t) = P(t ≤ T < t + dt|T ≥ t) = P(T = uj |T ≥ uj) ≡ αuj

which we called the discrete hazard rate.

Thus A(t) =
∫ t
0 dA(u) is a function which jumps by αuj when t = uj , so

we get the natural result that

A(t) =
∑
uj≤t

αuj

Bo Lindqvist Slides 8: Kaplan-Meier ()STK4080/9080 2021 3 / 7



The discrete survival function and the product-integral

For um ≤ t < um+1 we now have

S(t) = P(T > t) = P(T > um)

=
m∏
j=1

P(T > uj |T > uj−1) =
m∏
j=1

(1− P(T = uj |T > uj−1))

=
m∏
j=1

(1− αuj ) =
m∏
j=1

(1− dA(uj)) =
∏
uj≤t

(1− dA(uj)) (∗)

This is a special case of the so called product-integral

S(t) =
∏

0≤u≤t
(1− dA(u))

When A(t) makes jumps at discrete time points uj , this is exactly given as
in (∗).
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The general product-integral
Recall the general expressions

dA(u) = − dS(u)

S(u−)
, A(t) = −

∫ t

0

dS(u)

S(u−)

Solving S(t) from these equations in the general case, leads to the
so-called product-integral ,

S(t) =
∏

0≤u≤t
(1− dA(u))

which can be defined as a limit as follows:

Let t > 0 be fixed, and let 0 = u0 < u1 < u2 < . . . < um ≡ t define a
partition of [0, t]. Let m→∞ in a way such that the spacings uj − uj−1
tend to 0. Then

S(t) =
∏

0≤u≤t
(1− dA(u)) =def lim

m→∞

m∏
j=1

[1− (A(uj)− A(uj−1))]
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A quick check for the continuous case

Suppose A(t) =
∫ t
0 α(u)du so that A′(t) = α(t).

Then for a given partition with large m and fixed t = um,

m∏
j=1

[1− (A(uj)− A(uj−1))] ≈
m∏
j=1

(1− α(uj)(uj − uj−1))

≈
m∏
j=1

e−α(uj )(uj−uj−1) = e−
∑m

j=1 α(uj )(uj−uj−1)

≈ e−
∫ t
0 α(u)du ≡ S(t)

Thus, the product-integral gives the correct result for continuous
distribution, as we saw that it did for the discrete case.
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The Kaplan-Meier estimator

Let’s go back to the discrete survival function,

S(t) =
∏
uj≤t

(1− αuj ) =
∏
uj≤t

(1− dA(uj))

An estimator of S(t) can hence be obtained by putting an estimate for
the function A(t) in the above. This may be done by the Nelson-Aalen
estimator and turns out to lead to the Kaplan-Meier estimator.

Recall the NA-estimator Â(t) =
∫ t
0

dN(s)
Y (s) . This is a discrete function with

jumps dN(s)
Y (s) , i.e., it jumps at the failure times Ti . Thus we can write

Ŝ(t) =
∏

0≤u≤t
(1− dÂ(u)) =

∏
0≤u≤t

(
1− dN(u)

Y (u)

)
=
∏
Ti≤t

(
1− 1

Y (Ti )

)
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