Hazard rate, cumulative hazard and survival function in the

absolutely continuous case

Let T be a lifetime with an absolutely continuous distribution. Then
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Hazard rate and cumulative hazard in the general case
A general definition of hazard and cumulative hazard were given in
Slides 8, starting from a general S(t) = P(T > t) only assuming

» 5(t) is continuous from the right
» S(t) is non-increasing

» 0<5(0)<1
Then it was shown that
dS(t
dA(t) =P(t< T <t+dt|T >t)= _S(t(—))
leading to the general expression
tdS(u)
A(t) = —
W= sw)

As a check, for the absolutely continuous case we would then have

L £ dS(u) B t—S'(u)du B Y f(u)du B ta Ndu
a0=- [ 5= s =) s =, @
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The discrete hazard and cumulative hazard from scratch

1 1 1 1 | 1 ..
r T T T
u=0 u, u, u, u,, u, t

Let ug = 0, u1, up, ... be the values of T.

Reconsider dA(t) = P(t < T < t+ dt|T > t). Looking at the above axis
it is clear that this is 0 unless t is one of the u;.

For t = uj, we get on the other hand,
dA(t) = P(t < T <t+dt[T > t) = P(T = 4| T > uj) = a
which we called the discrete hazard rate.

Thus A(t) = fot dA(u) is a function which jumps by a,, when t = uj, so
we get the natural result that

Alt) = oy

Ujgt
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The discrete survival function and the product-integral

u;:() 111 :;2 IIJ} I u,, u, t=uy,
For um < t < Um41 we now have
S(t) = P(T>t)=P(T > um)
= HP(T>UJ‘T>UJ 1 :H —Uj|T>Uj,1))
Jj=1 Jj=1
= J[@-ay) =] -dAy)) = Q- dA(w)) ()
Jj=1 Jj=1 ui<t

This is a special case of the so called product-integral

s =T],.,.,(1 — 9AW)

When A(t) makes jumps at discrete time points uj, this is exactly given as

in (*).
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The general product-integral
Recall the general expressions

_ dS(u) L £ dS(u)
sy MO=7 ) s

dA(u) =

Solving S(t) from these equations in the general case, leads to the
so-called product-integral ,

5(0) = [1,.., (1 — 9A))
which can be defined as a limit as follows:

Let t > 0 befixed, andlet 0 = ug < 1 < up < ... < Uy, =t define a
partition of [0, t]. Let m — oo in a way such that the spacings u; — uj_1
tend to 0. Then

S(t) = H0<u<t(1 — dA(U)) =qer nJiL"OOH[l — (A(u)) — A(uj-1))]
<u< B
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A quick check for the continuous case

Suppose A(t) = [, a(u)du so that A'(t) = a(t).

Then for a given partition with large m and fixed t = up,,

110 = (A(y) = Al = [ [ (@ = au)(yy — uj-1))
j=1 j=1

~ [[e@un) = o= Ehaln)-u-)
~ e holwdu = S(t)

Thus, the product-integral gives the correct result for continuous
distribution, as we saw that it did for the discrete case.
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The Kaplan-Meier estimator

Let's go back to the discrete survival function,

S() = [T —ay) = TT(1 - dA(w))

uJ~§t UJ‘Sf

An estimator of S(t) can hence be obtained by putting an estimate for
the function A(t) in the above. This may be done by the Nelson-Aalen
estimator and turns out to lead to the Kaplan-Meier estimator.

Recall the NA-estimator A(t) = ot d\’,v((ss)). This is a discrete function with

jumps dq(ss)), i.e., it jumps at the failure times T;. Thus we can write

S(t)= [ (t-dAw) = ]I <l_d»//v((5))>:H (1_ 1 )

o<u<t o<u<t T; <t Y( T’)
—H_= —Y = —
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