
Right-censored data

Ni (t) = I (T̃i ≤ t,Di = 1) = counting process

Yi (t) = I (T̃i ≥ t) = ’at risk’ indicator

λi (t) = αi (t)Yi (t) = intensity function
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The aggregated counting process for right-censored sample
with hazard α(t): Aalen’s multiplicative model

N(t) =
n∑

i=1

Ni (t)

Y (t) =
n∑

i=1

Yi (t)

λ(t) =
n∑

i=1

λi (t) =
n∑

i=1

α(t)Yi (t)

= α(t)Y (t)
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Independent censoring

Let Ft be the history of all individuals, their censorings and failures, i.e.,
Ft contains {(Ni (s),Yi (s)), s ≤ t, i = 1, . . . , n}

Independent censoring means by definition (p. 30-31 in book):

P(t ≤ T̃i < t + dt,Di = 1|T̃i ≥ t,Ft−) = P(t ≤ Ti < t + dt|Ti ≥ t)

= αi (t)dt

NOTE:
independent censoring ⇐⇒ λi (t) = αi (t)Yi (t)
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Left truncation and right-censoring

Under left-truncation, the observation for the ith individual is

(Vi , T̃i ,Di )

where Vi is the left-truncation time (i.e., the time of entry) for the
individual, and T̃i and Di are as before.
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The counting process martingale is

M(t) = N(t)−
∫ t

0
λ(s)ds

Hence:

N(t) =

∫ t

0
λ(s)ds + M(t)

= predictable increasing process + zero-mean martingale

= the (unique) Doob-Meyer decomposition for N(t)

Notation:

Λ(t) ≡
∫ t
0 λ(s)ds is called the compensator of N(t).
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Summing up key results on counting processes

I N(t) is a counting process with history Ft

I P(dN(t) = 1|Ft−) = λ(t)dt

I Λ(t) =
∫ t
0 λ(s)ds is predictable (compensator)

I M(t) = N(t)− Λ(t) is a mean-zero martingale (Doob-Meyer)
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Variation processes and stochastic integrals of
counting process martingales

Predicitve: 〈M〉 (t) =
∫ t
0 λ(s)ds

Optional: [M] (t) = N(t)

〈∫
HdM

〉
(t) =

∫ t

0
H2(s) λ(s)ds[∫

HdM

]
(t) =

∫ t

0
H2(s) dN(s)
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Multiplicative intensity and the Nelson-Aalen estimator
Multiplicative intensity model : λ(t) = α(t)Y (t)

Thus

N(t)
general

=

∫ t

0
λ(s)ds + M(t)

mult.intens.
=

∫ t

0
α(s)Y (s)ds + M(t)

so
dN(s) = α(s)Y (s) + dM(s)

Dividing through by Y (t) we get

1

Y (s)
dN(s) = α(s)ds +

1

Y (s)
dM(s)

and integrating we get∫ t

0

1

Y (s)
dN(s) = A(t) +

∫ t

0

1

Y (s)
dM(s)

The Nelson-Aalen estimator is then

Â(t) =

∫ t

0

1

Y (s)
dN(s) =

∑
Tj≤t

1

Y (Tj)
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Properties of the Nelson-Aalen estimator

We have

Â(t)− A(t) =

∫ t

0

1

Y (s)
dM(s)

and hence Â(t) is an unbiased estimator (if Y (t) > 0 for all t). Further,
by formulas on previous slides,〈

Â− A
〉

(t) =

∫ t

0

1

Y 2(s)
α(s)Y (s)ds =

∫ t

0

1

Y (s)
α(s)ds

[
Â− A

]
(t) =

∫ t

0

1

Y 2(s)
dN(s) =

∑
Tj≤t

1

Y 2(Tj)
(1)

We also know from our earlier formulas that

Var(Â(t)) = Var(Â(t)− A(t)) = E
([

Â− A
]

(t)
)

so that (1) is an unbiased estimator of Var(Â(t)) (if. Y (t) > 0 for all t)
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Asymptotic distribution of Nelson-Aalen estimator

Suppose that our data were based on observation of a large number n
units. We shall let n tend to infinity in the relation

√
n(Â(t)− A(t)) =

∫ t

0

√
n

1

Y (s)
dM(s)

and hence we need to look at the limiting behaviour of the mean zero
martingale on the right hand side.

This brings us to the need for an asymptotic theory for martingales, see
Slides 6.
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Wiener process

A Wiener process with variance parameter 1 is a stochastic process W (t)
with values in the real numbers satisfying

1. W (0) = 0

2. W (t) has independent increments

3. For s < t, W (t)−W (s) is normally distributed with expected value 0
and variance (t − s)

4. The paths are continuous
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Gaussian martingales

W (t) is itself a

I zero-mean martingale

I with predictable variation process 〈W 〉 (t) = t

Let V (t) be a strictly increasing continuous function with V (0) = 0. Then
the process

U(t) = W (V (t))

is also a

I a zero-mean martingale

I and has predictable variation process 〈U〉 (t) = V (t)

(exercise 2.12 in book).

U is called a Gaussian martingale.

Bo Lindqvist Slides 6: Counting processes ()STK4080/9080 2021 12 / 16



Rebolledo’s martingale convergence theorem

Let M̃(n)(t) be a sequence of mean zero martingales for t ∈ [0, τ ].

What is needed is that as n→∞,

(i)
〈

M̃(n)(t)
〉
→ V (t) in probability for all t ∈ [0, τ ] as n→∞

(ii) The sizes of the jumps of M̃(n)(t) go to zero in a certain
sense

Then (Rebolledo, 1980):

M̃(n)(t)→ U(t)

in distribution, as stochastic processes for t ∈ [0, τ ], where U(t) is a
Gaussian martingale with predictable variation V (t).
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Special case of counting process martingales

Suppose M̃(n)(t) =

∫ t

0
H(n)(s)dM(n)(s)

where M(n)(t) = N(n)(t)−
∫ t

0
λ(n)(s)ds

Then 〈
M̃(n)(t)

〉
(t) =

∫ t

0
(H(n)(s))2λ(n)(s)ds

?→ V (t)

The following are sufficient conditions for convergence in Rebolledo’s
theorem. If

(i) (H(n)(s))2λ(n)(s)→ v(s) > 0 for all s ∈ [0, τ ]

(ii) H(n)(s)→ 0 for all s ∈ [0, τ ]

then M̃(n)(t)→ U(t) with 〈U〉 (t) = V (t) ≡
∫ t
0 v(s)ds.
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Nelson-Aalen example

Recall that
√

n(Â(t)− A(t)) =

∫ t

0

√
n

Y (s)
dM(s)

so that we have

H(n)(t) =

√
n

Y (t)

Assume that there is a deterministic positive function y(t) such that
Y (t)/n→ y(t) > 0 in probability. Then the two sufficient conditions for
Rebolledo’s theorem are satisfied:

(H(n)(s))2λ(n)(s) =
n

Y 2(s)
· α(s)Y (s) =

α(s)

Y (s)/n
→ α(s)

y(s)
≡ v(s)

H(n)(s) =

√
n

Y (s)
=

1/
√

n

Y (s)/n
→ 0
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Nelson-Aalen example (cont.)
Conclusion:

√
n(Â(t)− A(t)) =

∫ t

0

√
n

Y (s)
dM(s)

converges in distribution to the mean zero Gaussian martingale
U(t) = W (V (t)) with predictable variation process

V (t) =

∫ t

0
v(s)ds =

∫ t

0

α(s)

y(s)
ds

Thus, for a fixed t,

√
n(Â(t)− A(t))

d→ N

(
0,

∫ t

0

α(s)

y(s)
ds

)
or, informally, Â(t) is approximately normal with

Var(Â(t)) ≈ 1

n
·
∫ t

0

α(s)

Y (s)/n
ds =

∫ t

0

α(s)

Y (s)
ds ≈

∫ t

0

dN(s)

Y 2(s)
ds =

∑
Tj≤t

1

Y 2(Tj)
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