DISCRETE TIME PROCESSES

Consider a discrete time process $X_{1}, X_{2}, \ldots, X_{n}$.

$$
\mathcal{F}_{n}=" \text { information contained in } X_{1}, X_{2}, \ldots, X_{n} "
$$

or "the history at time n " (which may contain also other random variables)
We assume $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \mathcal{F}_{3} \subset \cdots \subset \mathcal{F}$ where $\mathcal{F}=$ information in all random variables of the application

CONDITIONAL EXPECTATION GIVEN THE HISTORY.

Let $Y \in \mathcal{F}$. Then the following holds:

- $E\left(Y \mid \mathcal{F}_{n}\right) \in \mathcal{F}_{n}$
- $E\left[E\left(Y \mid \mathcal{F}_{n}\right)\right]=E[Y]$
- If $Z \in \mathcal{F}_{n}$, then $E\left(Z Y \mid \mathcal{F}_{n}\right)=Z E\left(Y \mid \mathcal{F}_{n}\right)$
- If Y is independent of \mathcal{F}_{n}, then $E\left(Y \mid \mathcal{F}_{n}\right)=E(Y)$

MARTINGALES IN DISCRETE TIME

A stochastic process $M=\left\{M_{0}, M_{1}, M_{2}, \ldots\right\}$ is called a martingale if

$$
\begin{align*}
& E\left(M_{n} \mid \mathcal{F}_{n-1}\right)=M_{n-1} \text { for } n=1,2, \ldots \tag{1}\\
& E\left(M_{0}\right)=E\left(M_{1}\right)=\cdots=\text { (usually) } 0
\end{align*}
$$

Define the martingale differences by

$$
\Delta M_{n}=M_{n}-M_{n-1}
$$

Then the definition of martingale, $E\left(M_{n} \mid \mathcal{F}_{n-1}\right)=M_{n-1}$, is equivalent to

$$
\begin{equation*}
E\left(M_{n}-M_{n-1} \mid \mathcal{F}_{n-1}\right)=0, \text { i.e. } E\left(\Delta M_{n} \mid \mathcal{F}_{n-1}\right)=0 \tag{2}
\end{equation*}
$$

TRANSFORMATION OF A MARTINGALE

Let $M=\left\{M_{0}, M_{1}, \ldots\right\}$ be a zero-mean martingale. Then a transformation is given as

$$
\begin{aligned}
Z_{n} & =H_{1}\left(M_{1}-M_{0}\right)+H_{2}\left(M_{2}-M_{1}\right)+\ldots+H_{n}\left(M_{n}-M_{n-1}\right) \\
& \equiv H_{1} \Delta M_{1}+H_{2} \Delta M_{2}+\ldots+H_{n} \Delta M_{n}
\end{aligned}
$$

written $Z=H \bullet M$.
If H is predictable, i.e., $H_{n} \in \mathcal{F}_{n-1}$ for each n, then $Z=H \bullet M$ is a (zero-mean) martingale.

$$
\text { Proof: } \quad \begin{aligned}
E\left(Z_{n}-Z_{n-1} \mid \mathcal{F}_{n-1}\right) & =E\left(H_{n}\left(M_{n}-M_{n-1}\right) \mid \mathcal{F}_{n-1}\right) \\
& =H_{n} E\left(M_{n}-M_{n-1} \mid \mathcal{F}_{n-1}\right) \\
& =0
\end{aligned}
$$

THE DOOB DECOMPOSITION

Theorem: Let $X=\left\{X_{0}, X_{1}, X_{2}, \ldots\right\}$ be adapted to the history $\left\{\mathcal{F}_{n}\right\}$, where $X_{0}=0$. Then there exist (uniquely given) a zero-mean martingale M and a predictable process X^{*} starting with $X_{0}^{*}=0$ such that

$$
X_{n}=X_{n}^{*}+M_{n} \text { for } n=0,1,2, \ldots
$$

Proof: Let

$$
\begin{aligned}
X_{n}^{*} & =\sum_{k=1}^{n}\left[E\left(X_{k} \mid \mathcal{F}_{k-1}\right)-X_{k-1}\right] \\
& =\text { sum of predictions for next state } \\
M_{n} & =\sum_{k=1}^{n}\left[X_{k}-E\left(X_{k} \mid \mathcal{F}_{k-1}\right)\right]=\text { sum of innovations }
\end{aligned}
$$

The process X_{n}^{*} is predictable since each term is in \mathcal{F}_{n-1} (why?).
Finally, M_{n} is a martingale since

$$
\begin{aligned}
E\left(M_{n}-M_{n-1} \mid \mathcal{F}_{n-1}\right) & =E\left[X_{n}-E\left(X_{n} \mid \mathcal{F}_{n-1}\right) \mid \mathcal{F}_{n-1}\right] \\
& =E\left(X_{n} \mid \mathcal{F}_{n-1}\right)-E\left(X_{n} \mid \mathcal{F}_{n-1}\right)=0
\end{aligned}
$$

