DISCRETE TIME PROCESSES

Consider a discrete time process X_1, X_2, \ldots, X_n .

 \mathcal{F}_n = "information contained in X_1, X_2, \ldots, X_n "

or "the history at time *n*" (which may contain also other random variables) We assume $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3 \subset \cdots \subset \mathcal{F}$ where \mathcal{F} = information in all random variables of the application

CONDITIONAL EXPECTATION GIVEN THE HISTORY.

Let $Y \in \mathcal{F}$. Then the following holds:

- $E(Y|\mathcal{F}_n) \in \mathcal{F}_n$
- $\blacktriangleright E[E(Y|\mathcal{F}_n)] = E[Y]$
- If $Z \in \mathcal{F}_n$, then $E(ZY|\mathcal{F}_n) = ZE(Y|\mathcal{F}_n)$
- If Y is *independent* of \mathcal{F}_n , then $E(Y|\mathcal{F}_n) = E(Y)$

Bo Lindqvist Martingale summary

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

MARTINGALES IN DISCRETE TIME

A stochastic process $M = \{M_0, M_1, M_2, \ldots\}$ is called a *martingale* if

$$E(M_n | \mathcal{F}_{n-1}) = M_{n-1}$$
 for $n = 1, 2, ...$ (1)
 $E(M_0) = E(M_1) = \cdots =$ (usually) 0

Define the martingale differences by

$$\Delta M_n = M_n - M_{n-1}$$

Then the definition of martingale, $E(M_n|\mathcal{F}_{n-1}) = M_{n-1}$, is equivalent to

$$E(M_n - M_{n-1}|\mathcal{F}_{n-1}) = 0$$
, i.e. $E(\Delta M_n|\mathcal{F}_{n-1}) = 0$ (2)

Bo Lindqvist Martingale summary

STK4080/9080 2021

2 / 4

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

TRANSFORMATION OF A MARTINGALE

Let $M = \{M_0, M_1, \ldots\}$ be a zero-mean martingale. Then a transformation is given as

$$Z_n = H_1(M_1 - M_0) + H_2(M_2 - M_1) + \ldots + H_n(M_n - M_{n-1})$$

= $H_1 \Delta M_1 + H_2 \Delta M_2 + \ldots + H_n \Delta M_n$

written $Z = H \bullet M$.

If *H* is **predictable**, i.e., $H_n \in \mathcal{F}_{n-1}$ for each *n*, then $Z = H \bullet M$ is a (zero-mean) martingale.

Proof:
$$E(Z_n - Z_{n-1} | \mathcal{F}_{n-1}) = E(H_n(M_n - M_{n-1}) | \mathcal{F}_{n-1})$$

= $H_n E(M_n - M_{n-1} | \mathcal{F}_{n-1})$
= 0

Bo Lindqvist Martingale summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

THE DOOB DECOMPOSITION

Theorem: Let $X = \{X_0, X_1, X_2, ...\}$ be adapted to the history $\{\mathcal{F}_n\}$, where $X_0 = 0$. Then there exist (uniquely given) a zero-mean martingale M and a predictable process X^* starting with $X_0^* = 0$ such that

$$X_n = X_n^* + M_n$$
 for $n = 0, 1, 2, ...$

Proof: Let

$$X_n^* = \sum_{k=1}^n [E(X_k | \mathcal{F}_{k-1}) - X_{k-1}]$$

= sum of *predictions* for next state
$$M_n = \sum_{k=1}^n [X_k - E(X_k | \mathcal{F}_{k-1})] = \text{sum of innovations}$$

The process X_n^* is predictable since each term is in \mathcal{F}_{n-1} (why?). Finally, M_n is a martingale since

$$E(M_n - M_{n-1}|\mathcal{F}_{n-1}) = E[X_n - E(X_n|\mathcal{F}_{n-1})|\mathcal{F}_{n-1}] \\ = E(X_n|\mathcal{F}_{n-1}) - E(X_n|\mathcal{F}_{n-1}) = 0$$

Bo Lindqvist Martingale summary

STK4080/9080 2021