
Heterogeneity in survival analysis
In Chapter 3 of ABG we assumed that individuals in a population share
the same survival distribution (hazard etc.) Or, we considered two or more
such populations and compared their hazard functions.

In Chapter 4 we introduced survival regression, where differences
between individuals in a populations were modeled in terms of hazard
functions that are functions of observable covariates.

There may, however, be other differences between individuals which we do
not measure or which we may not know about:

I Such unobserved differences may be due to:
I Environment
I Life style
I Genes

I The unobserved differences are often disregarded when analyzing
survival data.

I As explained in the “frailty” theory, we should take these
unobserved differences into account in our analyses.
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A simple example
Suppose we have a batch of electronic components where

I Half have a lifetime which is exponential with expected value 100
I Half have a lifetime which is exponential with expected value 10

You draw randomly a number of components from the batch and estimate
the hazard function for this sample. What do you see?

You are estimating the hazard function for a randomly drawn component:

α(t) =
f (t)

S(t)
=

(1/2)(1/100) exp(−t/100) + (1/2)(1/10) exp(−t/10)

(1/2) exp(−t/100) + (1/2) exp(−t/10)

Bo Lindqvist Slides 15: Heterogeneity ()STK4080/9080 2021 2 / 12



The proportional frailty model

Instead of assuming that the population has just two kinds of individuals
(high risk and low risk, e.g.), we now assume that the heterogeneity
between individuals may be described by a frailty variable Z .

Z is a non-negative random variable. Each individual has its “own” Z ,
where large values of Z corresponding to ”frail” individuals.

The assumption is that an individual with frailty Z has a hazard function

α(t|Z ) = Z · α(t),

where α(t) is a baseline hazard (corresponding to Z = 1).

It is commonly assumed that E (Z ) = 1.

Note that the frailty Z is not observable.
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Gamma distributed frailties
The most common choice of distribution for the frailty Z is the gamma
distribution with density

f (z) =
νη

Γ(η)
zη−1e−νz ; z > 0

The expected value is η/ν and the variance η/ν2.

Assuming E (Z ) = 1, we have η = ν, and the variance then becomes

Var(Z ) =
η

ν2
=

1

ν
≡ δ

δ is hence a convenient parameter to be used for a gamma frailty
distribution (and is then the only parameter). The density of Z becomes

f (z) =
1

δ1/δΓ(1/δ)
z(1/δ)−1e−z/δ
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Gamma densities with expectation 1 and variance δ

f (z) =
1

δ1/δΓ(1/δ)
z(1/δ)−1e−z/δ
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Laplace transform

The Laplace transform is a convenient tool to study the proportional
frailty model.

For a positive random variable Z the Laplace transform is given by

L(c) = E (e−cZ )

The Laplace transform is closely related to the moment generating function

M(s) = E (esZ )
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Gamma distribution
For the gamma distribution with density

f (z) =
νη

Γ(η)
zη−1e−νz ; z > 0

it is well known that the moment-generating function is

M(s) =

(
1

1− s/ν

)η
so the Laplace transform becomes

L(c) =M(−c) =

(
1

1 + c/ν

)η
In particular for the gamma distribution with mean 1 (i.e. η = ν) and
variance δ = 1/ν, the Laplace transform takes the form

L(c) = (1 + c/ν)−ν = (1 + δc)−1/δ
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Population survival function

Consider a population where the heterogeneity is described by the
proportional frailty model, i.e., an individual with frailty Z has the hazard

α(t|Z ) = Zα(t)

and hence the survival function

S(t|Z ) = e−
∫ t
0 α(u|Z)du = e−Z

∫ t
0 α(u)du = e−ZA(t)

where A(t) =
∫ t
0 α(u)du.

Let now T be the survival time of a randomly selected individual from the
population. Then

S(t) = P(T > t) = E (P(T > t|Z ))

= E (e−ZA(t)) = L(A(t))
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Gamma distributed frailties
If the frailty Z is gamma distributed with mean 1 and variance δ, the
population survival function becomes

S(t) = L(A(t)) = {1 + δA(t)}−1/δ

Example: Let α(t) = t2, so A(t) = (1/3)t3:

Bo Lindqvist Slides 15: Heterogeneity ()STK4080/9080 2021 9 / 12



Population hazard

The population hazard becomes

µ(t) =
−S ′(t)

S(t)
=
−(d/dt)L(A(t))

L(A(t))
= α(t)

−L′(A(t))

L(A(t))

If frailty Z is gamma distributed with mean 1 and variance δ, then
L(c) = (1 + δc)−1/δ, so L′(c) = −(1 + δc)(−1/δ)−1. Hence we get

µ(t) = α(t)
(1 + δA(t))−

1
δ
−1

(1 + δA(t))−
1
δ

=
α(t)

1 + δA(t)

Note: When δ = 0 there is no frailty and µ(t) = α(t). As δ increases, the
denominator becomes larger, and it also increases with time, yielding the
typical frailty shape of a hazard function that is “dragged down”.
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Population hazard with gamma distributed frailties with
α(t) = t2
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Estimating frailty

I For survival data where only a single event is available for each
individual, the frailty effect is not identifiable unless we assume a
specific form of the individual baseline hazard rate α(t).
[If we take a sample from the population, we can estimate the
population distribution only, since the Z are unobserved.]

I Frailty models for survival data may be speculative, but they are
useful for understanding why the population hazard may have
different shapes.

I Estimation of frailty is more relevant for clustered survival data and
recurrent event data (repeated events). (See Slides 16).
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