On the Monotone Class Theorem

Bo Lindqvist

August 26, 2019

The purpose of this note is to prove the Monotone Class Theorem, which is given as Theorem 1.17 in Karr: Probability. The proof is based on old lecture notes in MA8704 by Arvid Næss.
The setting is as in Chapter 1 of Karr, where Ω is the sample space and $\mathcal{F}, \mathcal{D}, \Pi$ etc. are sets of subsets of Ω.

Definition 1σ-algebra \mathcal{F}
S1 $\Omega \in \mathcal{F}$
S2 $A \in \mathcal{F} \Rightarrow A^{c} \in \mathcal{F}$
S3 $A_{i} \in \mathcal{F}, i=1,2, \ldots \Rightarrow \cup_{i=1}^{\infty} A_{i} \in \mathcal{F}$
Definition 2 d-system \mathcal{D}
D1 $\Omega \in \mathcal{D}$
D2 $A, B \in \mathcal{D}, A \subseteq B \Rightarrow B \backslash A \in \mathcal{D}$
D3 $A_{i} \in \mathcal{D}, i=1,2, \ldots ; A_{1} \subseteq A_{2} \subseteq \cdots \Rightarrow \cup_{i=1}^{\infty} A_{i} \in \mathcal{D}$
Definition 3π-system Π
P1 $A_{i} \in \Pi, i=1,2, \ldots, n \Rightarrow \cap_{i=1}^{n} A_{i} \in \Pi$, which is equivalent to
P1, $A, B \in \Pi \Rightarrow A \cap B \in \Pi$

Proposition 1 If \mathcal{B} is both $a \pi$-system and $a d$-system, then \mathcal{B} is a σ-algebra.
Proof: Suppose that \mathcal{B} is both a π-system and a d-system. Then \mathcal{B} satisfies D1, D2, D3, P1, and we need to prove that it also satisfies S1, S2 and S3.
S1: This holds trivially by D1.
S2: It follows by D 2 that if $A \in \mathcal{B}$, we have $\Omega \backslash A=A^{c} \in \mathcal{B}$. Thus S 2 holds.
S3: Let $A_{i} \in \mathcal{B}, i=1,2, \ldots$ and define

$$
B_{k}=\cup_{i=1}^{k} A_{i} \text { for } k=1,2, \ldots
$$

Then $B_{k}^{c}=\cap_{i=1}^{k} A_{i}^{c}$. Here, $A_{i}^{c} \in \mathcal{B}$ by $D 2$, as we saw above, and hence $B_{k}^{c} \in \mathcal{B}$ by P1 and $B_{k} \in \mathcal{B}$ by another use of D2. Since, moreover, $B_{1} \subseteq B_{2} \subseteq \cdots$, it follows from D3 that $\cup_{i=1}^{\infty} B_{i} \in \mathcal{B}$. By the definition of B_{k} it is clear that

$$
\cup_{i=1}^{\infty} B_{i}=\cup_{i=1}^{\infty} A_{i}
$$

and hence also $\cup_{i=1}^{\infty} A_{i} \in \mathcal{B}$, which proves S 3 .
Theorem 1 (Monotone Class Theorem) Let \mathcal{S} be a π-system. Then

$$
\sigma(\mathcal{S})=d(\mathcal{S})
$$

Proof: First, since a σ-algebra is also a d-system, we have

$$
\begin{equation*}
d(\mathcal{S}) \subseteq \sigma(\mathcal{S}) \tag{1}
\end{equation*}
$$

This is because $d(\mathcal{S})$ by definition is the smallest d-system that contains \mathcal{S}. Now suppose that we can prove that $d(\mathcal{S})$ is a π-system. Then $d(\mathcal{S})$ is a σ-algebra by the above Proposition. But then

$$
\begin{equation*}
\sigma(\mathcal{S}) \subseteq d(\mathcal{S}) \tag{2}
\end{equation*}
$$

since $\sigma(\mathcal{S})$ is the smallest σ-algebra that contains \mathcal{S}. Hence, combining (1) and (2) we have $d(\mathcal{S})=\sigma(\mathcal{S})$ and we would be done.

It thus remains to prove that $d(\mathcal{S})$ is a π-system.
Step 1: Let

$$
\mathcal{D}_{1}=\{B \in d(\mathcal{S}): B \cap C \in d(\mathcal{S}) \text { for all } C \in \mathcal{S}\}
$$

Since \mathcal{S} is a π-system, we have

$$
\begin{equation*}
\mathcal{S} \subseteq \mathcal{D}_{1} \tag{3}
\end{equation*}
$$

We now show that \mathcal{D}_{1} is a d-system:
D1: Obviously $\Omega \in \mathcal{D}_{1}$.
D2: If $B_{1}, B_{2} \in \mathcal{D}_{1}$ and $B_{1} \subseteq B_{2}$, then for $C \in \mathcal{S}$,

$$
\left(B_{2} \backslash B_{1}\right) \cap C=\left(B_{2} \cap C\right) \backslash\left(B_{1} \cap C\right)
$$

Here $B_{1} \cap C$ and $B_{2} \cap C$ are in $d(\mathcal{S})$ by assumption, and clearly $B_{1} \cap C \subseteq B_{2} \cap C$. Since $d(\mathcal{S})$ is a d-system, it follows that $\left(B_{2} \cap C\right) \backslash\left(B_{1} \cap C\right)$ and hence $\left(B_{2} \backslash B_{1}\right) \cap C$ are in $d(\mathcal{S})$, using D 2 . But then $B_{2} \backslash B_{1} \in \mathcal{D}_{1}$ by definition of \mathcal{D}_{1}.
D3: If $B_{i} \in \mathcal{D}_{1}, i=1,2, \ldots$, where $B_{1} \subseteq B_{2} \subseteq \cdots$, then for $C \in \mathcal{S}$, we have

$$
B_{1} \cap C \subseteq B_{2} \cap C \subseteq \cdots
$$

Since $B_{i} \cap C \in d(\mathcal{S})$ (since $B_{i} \in \mathcal{D}_{1}$) it follows by D3 that

$$
\left(\cup_{i=1}^{\infty} B_{i}\right) \cap C=\cup_{i=1}^{\infty}\left(B_{i} \cap C\right) \in d(\mathcal{S})
$$

But then $\cup_{i=1}^{\infty} B_{i} \in \mathcal{D}_{1}$ and D3 holds for \mathcal{D}_{1}.
Thus we have shown that \mathcal{D}_{1} is a d-system, which by (3) contains \mathcal{S}. Hence we have that $d(\mathcal{S}) \subseteq \mathcal{D}_{1}$, since $d(\mathcal{S})$ is the smallest d-system that contains \mathcal{S}.

On the other hand, by definition of \mathcal{D}_{1}, we have $\mathcal{D}_{1} \subseteq d(\mathcal{S})$, so we must have $\mathcal{D}_{1}=d(\mathcal{S})$.

Step 2: Let

$$
\mathcal{D}_{2}=\{A \in d(\mathcal{S}): B \cap A \in d(\mathcal{S}) \text { for all } B \in d(\mathcal{S})\}
$$

By Step 1 we have

$$
\begin{equation*}
\mathcal{S} \subseteq \mathcal{D}_{2} \tag{4}
\end{equation*}
$$

To see this, let $C \in \mathcal{S}$. Then if $B \in d(\mathcal{S})=\mathcal{D}_{1}$, we have $B \cap C \in d(\mathcal{S})$ by definition of \mathcal{D}_{1}, so $C \in \mathcal{D}_{2}$.

We now prove that \mathcal{D}_{2} is a d-system. The arguments are similar to the ones used to prove that \mathcal{D}_{1} is a d-system:

D1: Obviously $\Omega \in \mathcal{D}_{2}$.
D2: If $A_{1}, A_{2} \in \mathcal{D}_{2}$ and $A_{1} \subseteq A_{2}$, then for $B \in d(\mathcal{S})$,

$$
\left(A_{2} \backslash A_{1}\right) \cap B=\left(A_{2} \cap B\right) \backslash\left(A_{1} \cap B\right)
$$

Here $A_{1} \cap B$ and $A_{2} \cap B$ are in $d(\mathcal{S})$ by assumption, so $\left(A_{2} \backslash A_{1}\right) \cap B \in d(\mathcal{S})$ by D 2 since $d(\mathcal{S})$ is a d-system. But then $A_{2} \backslash A_{1} \in \mathcal{D}_{2}$ by definition of \mathcal{D}_{2}.
D3: If $A_{i} \in \mathcal{D}_{2}, i=1,2, \ldots$, where $A_{1} \subseteq A_{2} \subseteq \cdots$, then for $B \in d(\mathcal{S})$, we have

$$
A_{1} \cap B \subseteq A_{2} \cap B \subseteq \cdots
$$

Since $A_{i} \cap B \in d(\mathcal{S})$ (since $A_{i} \in \mathcal{D}_{2}$) it follows by D3 that

$$
\left(\cup_{i=1}^{\infty} A_{i}\right) \cap B=\cup_{i=1}^{\infty}\left(A_{i} \cap B\right) \in d(\mathcal{S})
$$

But then $\cup_{i=1}^{\infty} A_{i} \in \mathcal{D}_{2}$ and D3 holds for \mathcal{D}_{2}.
Thus we have shown that \mathcal{D}_{2} is a d-system, which by (4) contains \mathcal{S}. Hence we have that $d(\mathcal{S}) \subseteq \mathcal{D}_{2}$. On the other hand, by definition of \mathcal{D}_{2}, we have $\mathcal{D}_{2} \subseteq d(\mathcal{S})$, so we must have $\mathcal{D}_{2}=d(\mathcal{S})$.
The final step is then to conclude that $d(\mathcal{S})$ is a π-system. This follows in fact directly from the definition of \mathcal{D}_{2} and the fact that $\mathcal{D}_{2}=d(\mathcal{S})$. Indeed, suppose that $A, B \in d(\mathcal{S})$. Then since $A \in \mathcal{D}_{2}$ we must have $A \cap B \in d(\mathcal{S})$. Thus P1' holds and the proof of the theorem is complete.

