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a b s t r a c t

In this paper we investigate the use of an alternative to the extended Kalman filter (EKF), the unscented
Kalman filter (UKF). First we give a broad overview of different UKF algorithms, then present an exten-
sion to the ensemble of UKF algorithms, and finally address the issue of how to add constraints using the
UKF approach. The performance of the constrained approach is compared with EKF and a selection of
UKF algorithms on nonlinear process systems with multimodal probability density functions. The con-
clusion is that with an algebraic reformulation of the correction part, the reformulated UKF shows strong
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performance on our selection of nonlinear constrained process systems.
© 2009 Elsevier Ltd. All rights reserved.
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. Introduction

Nonlinear state estimation is a broad field1 which includes many
lgorithms such as Moving Horizon Estimation, the Particle filter,
he Ensemble Kalman filter, the Unscented Kalman filter and the
xtended Kalman filter, just to mention some. The extended Kalman
lter (EKF), which was originally proposed by Stanley Schmidth in
967 (Bellatoni & Dodge, 1967) in order to apply the Kalman filter
o nonlinear spacecraft navigation problems, is probably the most
idely used method in applied nonlinear state estimation. How-

ver, several authors have experienced shortcomings applying the
KF to systems with severe nonlinearity and/or constraints (see e.g.
ulier & Uhlmann, 1994; Julier, Uhlmann, & Durrant-Whyte, 1995;
chei, 1997; Nørgaard, Poulsen, & Ravn, 2000; Rao, 2000; Hasseltine
Rawlings, 2003; Bizup & Brown, 2003; Chen, Lang, Bakshi, Goel,
Ungarla, 2007; Vachhani, Narasimhan, & Rengaswamy, 2006;

andepu, Foss, & Imsland, 2008). The shortcomings are related to
ifficulties in determining the Jacobians, errors introduced by lin-
arization and/or the ability to deal with systems with multimodal
r asymmetric probability density functions (pdf).
State estimation may introduce some challenges in systems
ased on first principles. In e.g. chemical processes one may wish
o estimate concentrations. Mathematically the model may allow
egative concentration, whilst this is not physically possible. A first

∗ Corresponding author at: Department of Engineering Cybernetics, NTNU, N-
491 Trondheim, Norway.

E-mail addresses: steinar.kolas@itk.ntnu.no, steinar.kolas@hydro.com (S. Kolås).
1 For a review of nonlinear state estimation see Daum (1986) and Daum (2005).
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principle model is also often nonlinear, and theory based on Gaus-
sian noise may not be applicable, since Gaussian noise propagated
through a nonlinear model is no longer Gaussian. Further, nonlin-
earities may be severe such that theory based on linearizations are
too inaccurate and provide poor estimation accuracy. At last the
nonlinear system may have a skew or multimodal probability den-
sity function. If x̂k is an estimate of concentrations in a physical
system, we may introduce constraints in order to force the esti-
mates to have physical meaning. Hence the use of constraints may
be important.

If handling of constraints is unavoidable, the EKF has some
limitations in propagating the constraints both through the state
and covariance calculations. To overcome limitations in the EKF,
several approaches and alternatives have been suggested. In this
paper, we focus on the Unscented Kalman filter (UKF). In particu-
lar several variants of the UKF algorithm with constraint handling
are investigated on cases where the EKF has shown bad perfor-
mance. It is, however, outside the scope of the paper to include
an in-depth discussion on MHE and Particle filters beyond the fact
that we use examples on which such algorithms have been evalu-
ated, see Hasseltine and Rawlings (2003) and Rawlings and Bakshi
(2006).

Literature discussing constraint implementation in the UKF
approach is rather limited. In Julier and Uhlmann (1994) the idea
of including constraints in the UKF approach is in fact listed as a

general possibility, but without being further discussed. The main
contributions on constraint handling are Vachhani et al. (2006) and
Kandepu et al. (2008). Further, Li and Leung (2004) use equality
constraints on the corrected estimate, and Julier and Laviola (2007)
discuss two methods for nonlinear equality constraint handling.

http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:steinar.kolas@itk.ntnu.no
mailto:steinar.kolas@hydro.com
dx.doi.org/10.1016/j.compchemeng.2009.01.012
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Table 1
The table explains the meaning of each step used throughout the paper.

Step no. Algorithm step Meaning

1 �k−1 Sigma points (see Chapter 4.3)

2 �x−
k,i

Propagated state sigma points

3 x̂−
k

Predicted state estimate

4 P−
x

k
Predicted covariance

5 �k,i Propagated output sigma points

6 ŷk Predicted output

7 Pykyk
Output covariance

8 Pxkyk
Cross covariance

9 Kk Kalman gain

10 �x
k,i

Corrected sigma points
S. Kolås et al. / Computers and Che

This paper is organized as follows. First we introduce the Kalman
lter-philosophy based on the work by Rudolph Kalman (Kalman,
960), before we introduce the reader to the UKF and present sev-
ral algorithms based on this approach. Subsequently we propose
n extension to the UKF framework by reformulating the correction
tep. This reformulation, combined with different constraint han-
ling techniques, results in good performance on the selected cases.
e also show that the selection of the square root algorithm may

e of importance when it comes to convergence speed of the UKF.
urther, we extend the work of Vachhani et al. (2006) to Nonlin-
ar Programming (NLP) UKF by presenting the full state estimation
lgorithm for alternative formulations of the UKF. Moreover, we
how how this algorithm can be simplified to a Quadratic Program
QP) UKF given some additional system constraints. Various sim-
lation examples (taken from Hasseltine & Rawlings, 2003), are
sed to show how a selection of the algorithms performs before
discussion and conclusions end the paper.

. System description

In this work we address the general discrete time nonlinear sys-
em given by the state space formulation

k = f (xk−1, uk−1, vk−1) x0 – given (1)

k−1 = h(xk−1, wk−1) (2)

here xk denotes the system states, yk the model output (or mea-
urements), uk deterministic control inputs, vk system state noise
nput (stationary or time-varying stochastic), wk output (measure-

ent) noise (stationary or time-varying stochastic), and f (·) and h(·)
re nonlinear functions. Note that f (·) can also be considered as the
ntegration of the continuous-time transition function over a unit
ample-time interval (see e.g. Vachhani et al., 2006). All variables
re vectors with appropriate dimensions. Linear systems are given
y

(xk, uk, vk) = Akxk + Bkuk + Ckvk (3)

(xk, wk) = Dkxk + wk (4)

overing both linear time-varying (LTV) systems and linear time-
nvariant (LTI) systems. Ak, Bk, Ck and Dk are matrices with
ppropriate dimensions describing the linear relationship between
he variables. Estimated values are denoted with a ,̂ typically x̂k, ŷk,
tc. Further, the simulator and the estimator share the same model,
nd hence there is no modelling error, although model errors are
ntroduced through the noise inputs vk and wk.

. The Kalman-approach to state estimation

In 1960 Rudolph Kalman (1960) presented a recursive state esti-
ation method, which has become known as the Kalman filter.

he important contribution was the fact that a recursive algo-
ithm could be used to accurately compute the first and second
rder moments (mean and covariance) of a linear system corrupted
y Gaussian white noise on its system and output models. How-
ver, it may be worth mentioning that Kalman did not restrict
he Kalman filter to linear time invariant systems with Gaussian
istributions, nor did he assume any specific probability distribu-
ion (Julier & Uhlmann, 2004). Kalman’s assumptions were that
he system random variables could be consistently estimated by
equentially updating the first and second order moments (mean

nd covariance), and that the estimator was on the linear form

ˆk = x̂−
k

+ Kk · ek (5)

The Kalman filter consists of two parts; a forward prediction part
nd a correction part. The prediction part computes a predicted (a
11 x̂k Corrected state estimate

12 Px
k

Corrected covariance

prior) estimate of the first and second order moments at time k
given information up until k − 1 denoted by x̂−

k
and P−

x
k
. The correc-

tion part computes the corrected (posterior) estimates x̂k and Px
k

using available data at time k. In (5) the predicted estimate (x̂−
k

) is
updated by a linear gain (Kk) times an error (ek). The error part is
the deviation between an output value(s) (yk) and the prediction of
the said output(s) (ŷk). Hence, (5) can be formulated as

x̂k = x̂−
k

+ Kk(yk − ŷk) (6)

where the linear gain (Kk), or the so-called Kalman gain, which for
the algorithms discussed in this paper, can be shown to yield the
solution

Kk = Pxkyk
P−1

ykyk
(7)

where Px
k

y
k

and Py
k

y
k

are the cross covariance and output covari-
ance, respectively.

All Kalman filters do follow the prediction-correction structure.
As a vehicle to compare alternative algorithms, we have divided
the algorithm into steps as shown in Table 1. In the tables, used
throughout this paper to describe the algorithms, we have chosen
to keep the column labeled ‘Algorithm step’ the same for all algo-
rithms, although all steps do not appear in all algorithms. This is
because we think this will help in comparing the steps involved
in each algorithm. If a step is not applicable to an algorithm, it is
indicated by an ‘–’ in the right most column.

Note that all algorithms must be initialized with first and second
order moment state information. The prediction and correction part
of an algorithm is covered by steps 1–6 and steps 7–12, respectively.

4. Recursive state estimators

The Kalman-filter structure is widely applied for nonlinear state
estimation. The subsequent sections describe the state estimators
studied in this work. First the Kalman filter (KF) and the Extended
Kalman filter (EKF) are introduced to serve as a comparison for the
Jacobian free algorithms to follow. Note that the formulation of both
the KF and the EKF may be unfamiliar, since several algebraic steps
are kept in order to show the 1:1 relationship of the algorithms. This
results in seemingly more computational steps than in the common
formulation of KF/EKF.
4.1. Kalman filter

If one assume the linear time invariant (LTV) system given by
(3) and (4) with the system covariance Qk and output covariance Rk
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Table 2
The KF algorithm.

�k−1 –

�x−
k,i

–

x̂−
k

= Ak−1 x̂k−1 + Bk−1uk−1 + Ck−1vk−1

P−
x

k
= Ak−1Px̂k−1

AT
k−1

+ Ck−1Qk−1CT
k−1

�k,i –

ŷk = Dk−1 x̂k−1 + wk−1

Pykyk
= DkP−

xk
DT

k
+ Rk

Px
k

y
k

= P−
x

k
DT

k

Kk = Px
k

y
k

P−1
y

k
y

k

�x
k,i

–

x̂k = x̂−
k

+ Kk(yk − ŷk)

Px
k

= (I − KkDk)P−
x

k

Table 3
The EKF algorithm.

�k−1 –

�x−
k,i

Calculate Jacobians ∇fx̂k−1
, ∇fvk−1

x̂−
k

= f (x̂k−1, uk−1, vk−1)

P−
x

k
= ∇fx̂k−1

Px
k−1

∇f T
x̂k−1

+ ∇fvk−1
Qk−1∇f T

vk−1

�k,i Calculate Jacobians ∇hx̂−
k

, ∇hwk

ŷk = h(x̂−
k

, wk)

Pykyk
= ∇hx̂−

k
P−

xk
∇hT

x̂−
k

+ ∇hw
k

Rk∇hT
w

k

Px
k

y
k

= P−
x

k
∇hT

xk

Kk = Px
k

y
k

P−1
y

k
y

k

�x –

x

P

a
w
T

(

p
u
∇
(

S

p
u
p
t
p
t

4

(
p

w

T

k,i

ˆk = x̂−
k

+ Kk(yk − ŷk)

x
k

= (I − Kk∇hx̂−
k

)P−
x

k

nd corrupted by Gaussian noise vk = N(v̄, Q ), wk = N(w̄, R), (v̄ =
¯ = 0), the Kalman filter approximates the said system as given in
able 2.

The EKF is based on (cf. Table 3) the nonlinear system given by
1) and (2) with the same noise models as for the KF.

One should notice the slightly different definition of the
redicted output between the KF and the EKF. We have
sed the Jacobians ∇fx̂k−1

= (∂/∂x)f (x, u, v)|x=x̂k−1,u=uk−1,v=vk−1
,

fvk−1 = (∂/∂v)f (x, u, v)|x=x̂k−1,u=uk−1,v=vk−1
, ∇hx̂−

k
=

∂/∂x)h(x, w)|x=x̂−
k

,w=wk−1
and ∇hw

k
= (∂/∂w)h(x, w)|x=x̂−

k
,w=wk−1

.

ince the Jacobian ∇hx̂−
k

and ∇hwk
are calculated around x̂−

k
(the

redicted state estimate) this yields a difference since the KF
ses x̂k−1 (the corrected state estimate). Note also that we have
laced the calculation of the Jacobians in the steps �x−

k,i
and �k,i

o illustrate that the calculation of the Jacobians, with respect to
erformance, can be compared to the sigma points step used in
he UKF algorithms presented later.

.2. The unscented Kalman filter (UKF)
The Unscented Kalman2 filter, proposed by Julier and Uhlmann
1994),3 is based on the intuition that “it is easier to approximate a
robability distribution than a nonlinear function” (Julier, Uhlmann, &

2 In the original work of Julier and Uhlmann (1994) the Unscented Kalman filter
as named ‘The New Filter’.
3 We refer to this document as the first work of UKF, since it was submitted to IEEE

ransactions on Automatic Control in 1994, although not accepted before in 2000.
Engineering 33 (2009) 1386–1401

Durrant-Whyte, 2000; Julier, 2002). By using the Unscented trans-
form to compute the mean and covariance, the Unscented Kalman
filter avoids the need to use Jacobians in the algorithm. The proba-
bility distribution is approximated by a set of deterministic points
which captures the mean and covariance of the distribution. These
points, called sigma points, are then processed through the non-
linear model of the system, producing a set of propagated sigma
points. By choosing appropriate weights, the weighted average
and the weighted outer product of the transformed points pro-
vides an estimate of the mean (for example x̂−

k
) and covariance

(for example P−
x

k
) of the transformed distribution. To elaborate, a

sigma point set, �x
k

is a matrix which contains states or sigma points
�x

k
= [�x

k,1 · · · �x
k,l

], where l typically equals 2n + 1 if xk ∈ Rn.
Passing the vector of sigma points �x

k−1,i
through a nonlinear

function results in the propagated sigma points

�x
k,i

= g(�x
k−1,i

) (8)

and the approximated mean x̂k and the covariance Pxk
can be cal-

culated as

x̂k =
2n∑
i=1

Wx
i · �x

k,i (9)

Px
k

=
2n∑
i=1

Wc
i (�x

k,i − x̂k)(�x
k,i − x̂k)T (10)

Several UKF algorithms have been proposed (for an overview see
van der Merwe, 2004) and they differ mainly in how the noise (sys-
tem noise and output noise) is injected into the system, how the set
of sigma point is selected and how the weights are calculated. There
are also UKF algorithms based on square root formulations (see
van der Merwe, 2004) and UKF algorithms addressing nonlinear
state model and linear output (measurement) model (also known
as Rao–Blackwellized UKF’s) (Briers, Maskell, & Wright, 2003; Hao,
Xiong, Sun, & Wang, 2007). Neither the square root UKF nor the
Rao–Blackwellized UKF algorithms have our attention in this work.

In the next chapters we will present several UKF algorithms, but
before they are presented, some words about the selection of the
sigma points and the weights may be appropriate.

In the original work by Julier and Uhlmann (1994) a symmet-
ric sigma point set was proposed, resulting in 2n + 1 sigma points
where xk ∈ Rn. However, the calculation of the sigma points is
considered the most computational demanding steps in the UKF,
resulting in an effort to reduce the number of sigma points. This
resulted in the ‘Simplex Sigma point set’/‘Minimal skew simplex
sigma point set’ (Julier & Uhlmann, 2002, 2004) , the ‘Spherical sim-
plex sigma point set’ (Julier, 2003) and the ‘Higher order unscented
filter’ (Tenne & Singh, 2003). Throughout this paper we are using
the symmetric sigma point scheme as a basis.

Having the mean and covariance available, the symmetric sigma
point set �k is selected by constructing the matrix

�k =
[

x̂k + �
√

Pxk
x̂k − �

√
Pxk

]
(11)

where � is a scaling factor. Note also that the notation x̂k ± �
√

Px
k

means that the vector x̂k is added/subtracted to each column in
the matrix �

√
Px

k
. In Julier and Uhlmann (1994) they added the

freedom to include in �k any multiples of the mean x̂k, since it would
not affect the mean, only the scaling factor � (Julier & Uhlmann,
1994) leading to the sigma point calculation
�k =
[

x̂k x̂k + �
√

Pxk
x̂k − �

√
Pxk

]
(12)

In the UKF literature, (12) is the most applied method in selecting
the sigma point set. We will later introduce an UKF algorithm based
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Table 4
The UKF algorithm proposed by Simon (2006).

�k−1 =
[

x̂k−1 + �
√

Px
k−1

x̂k−1 − �
√

Px
k−1

]
�x−

k,i
= f (�x

k−1,i
, uk−1)

x̂−
k

=
∑2n

i=1
Wx

i
· �x−

k,i

P−
x

k
=

∑2n

i=1
Wc

i
(�x−

k,i
− x̂−

k
)(�x−

k,i
− x̂−

k
)T + Qk

�k,i = h(�x−
k,i

)

ŷk =
∑2n

i=1
Wx

i
· �k,i

Pykyk
=

∑2n

i=1
Wc

i
(�k,i − ŷk)(�k,i − ŷk)T + Rk

Px
k

y
k

=
∑2n

i=1
Wc

i
(�x−

k,i
− x̂−

k
)(�k,i − ŷk)T

Kk = Px
k

y
k

P−1
y

k
y

k

�x
k,i

–

x̂k = x̂−
k

+ Kk(yk − ŷk)

Px
k

= P−
x

k
− KkPykyk

KT
k

Note the noise is assumed additive.

Table 5
The UKF algorithm with additive noise ((Julier et al., 1995); van der Merwe, 2004).

�
k−1

=
[

x̂k−1 x̂k−1 + �
√

Px
k−1

x̂k−1 − �
√

Px
k−1

]
�x−

k,i
= f (�x

k−1,i
, uk−1)

x̂−
k

=
∑2n

i=0
Wx

i
· �x−

k,i

P−
x

k
=

∑2n

i=0
Wc

i
(�x−

k,i
− x̂−

k
)(�x−

k,i
− x̂−

k
)T + Qk

�k,i = h(�x−
k,i

)

ŷk =
∑2n

i=0
Wx

i
· �k,i

Pykyk
=

∑2n

i=0
Wc

i
(�k,i − ŷk)(�k,i − ŷk)T + Rk

Px
k

y
k

=
∑2n

i=0
Wc

i
(�x−

k,i
− x̂−

k
)(�k,i − ŷk)T

Kk = Px
k

y
k

P−1
y

k
y

k

�x –
S. Kolås et al. / Computers and Che

n the sigma point selection given by (11). Further, in the mentioned
iterature, three different ways of calculating the weights are pro-
osed. We will, however, try to merge these into one set of equations
nd suggest different sets of parameters in order to achieve each of
hem. From this, a general scaling factor � can be formulated as

=
√

n + � (13)

here

= � (14)

s suggested in the original work of Julier and Uhlmann (1994). Julier
nd Uhlmann (1994) and Julier et al. (2000) proposed

= 3 − n (15)

f the system is Gaussian.4 However care should be taken selecting
, since � < 0 may lead to negative definite covariance calculations.

Motivated by making the scales independent of the system size,
he Scaled Unscented Transform was introduced (Julier, 2002), and
urther extended by van der Merwe (2004) suggesting

= ˛2(n + �) − n (16)

The weights Wx
i

and Wc
i

are calculated as

Wx
0 = �/(n + �)

Wc
0 = �/(n + �) + (1 − ˛2 + ˇ)

Wx
i

= Wc
i

= 1/(2(n + �))
(17)

an der Merwe (2004) proposes

˛ ˇ � ] = [ 1 2 0 ] (18)

f the system is Gaussian. Note that with

˛ ˇ ] = [ 1 0 ] (19)

ne achieves the original proposed scaling factor and weights as
roposed in the original work of Julier and Uhlmann (1994). When
sing (11) as the basis for the sigma point selection

˛ ˇ � ] = [ 1 0 0 ] (20)

hould be used according to (Simon, 2006) in applying (17). Calcu-
ating the sigma points involves computing the matrix square root5

f
√

Px
k
, and any matrix square root method can be used (Julier

Uhlmann, 2004). The Cholesky decomposition is the preferred
ethod, producing a lower triangular matrix. However, one should

lso consider using the symmetric square root (producing a sym-
etric matrix), since the choice of matrix square root affects the

rrors in the higher order terms by adjusting the way in which the
rrors between the approximated Taylor series and the true Taylor
eries are distributed among the different states (Julier et al., 2000).
s will be demonstrated in the simulation chapter, this may affect
onvergence performance.

.2.1. UKF with additive noise
Assume the system given by (1) and (2) with the system

ovariance Qk and output covariance Rk and corrupted by additive
aussian noise vk = N(v̄, Q ), wk = N(w̄, R). The UKF for this system

x
s given in Table 4. Note that �k−1 = �
k−1. Note also that the notation

ˆk−1 ± �
√

Px
k−1

means that the vector x̂k−1 is added/subtracted to

ach column in the matrix �
√

Px
k−1

.

4 It can be shown that (n + �) = 3 minimizes the difference between the moments
n the Taylor series of the standard Gaussian and the sigma points up to the fourth
rder (Julier et al., 2000).
5 Matrix square root is a method such that P =

√
P(

√
P)

T
.

k,i

x̂k = x̂−
k

+ Kk(yk − ŷk)

Px
k

= P−
x

k
− KkPykyk

KT
k

The algorithm in Table 4 uses (11) in selecting the sigma point
set �k−1 and an optional step using the updated propagated sigma
points calculated as �x−

k
=
[
x̂−

k
+ �
√

P−
xk

x̂−
k

− �
√

P−
xk

]
before

propagating �x−
k,i

through the output function calculating �k,i.
In Julier et al. (1995), (12) is used when selecting the sigma point

set, thus leading to 2n + 1 sigma points, as opposed to 2n sigma
points used in the algorithm described in Table 4.

Based on the work by Julier et al. (1995) and van der Merwe
(2004) the algorithm with augmented sigma points is as shown in
Table 5.

As in the algorithm by in Table 4, an updated sigma point set
can be calculated before propagating the sigma points through the
output function. van der Merwe (2004) proposes an alternative
method, and claims that using the updated sigma points removes
any third order moments from the original propagated sigma point
set �x−

k,i
. Hence, if this is a problem, one may consider the method

proposed by van der Merwe (2004).
4.2.2. UKF with augmented system noise
The same system as in Section 4.2.1 is considered. In the orig-

inal work of Julier and Uhlmann (1994), the system noise is not
assumed additive, but is augmented into the sigma point set. The
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Table 6
The UKF algorithm with augmented process noise (Julier & Uhlmann, 1994).
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Table 7
The fully augmented UKF algorithm (van der Merwe, 2004).
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ŷk =
∑2n

i=0
Wx

i
· �k,i

Pykyk
=

∑2n

i=0
Wc

i
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may not be the case in the other algorithms, since Wc
0 may be neg-

ative. Further, Px
k

may not be positive semi-definite if the standard

calculation Px
k

= P−
x

k
− KkPykyk

KT
k

is used due to round off errors.
Therefore the reformulated correction steps may be preferred in

Table 8
The fully augmented UKF algorithm with reformulated correction steps.
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eason is that by augmenting the assumed system noise into the
igma point set, the noise is also accounted for in the mean value
Julier & Uhlmann, 1994). The augmentation is done by merging the
ystem noise covariance matrix Qk and the covariance matrix Px

k

uch that

a =
[

Px
k−1

0
0 Qk−1

]
(21)

his produces more sigma points, and Zandt (2001) demonstrates
hat increasing the number of sigma points may increase the accu-
acy of the UKF algorithm, however at the expense of increased
omputational cost. The UKF with augmented system noise that
pproximates the said system is given in Table 6. Note that the

igma points �k−1 = [�
T x
k−1�

T v
k−1]

T
and the augmented state vector

ˆa
k−1

= [x̂T
k−10]

T
. Note also that the notation x̂a

k−1 ± �
√

Pa means that

he vector x̂a
k−1 is added/subtracted to each column of �

√
Pa.

.2.3. Fully augmented UKF
As in the previous sections, we consider the nonlinear system

iven by (1) and (2) corrupted by Gaussian noise vk = N(v̄, Q ), wk =
(w̄, R). In the work of van der Merwe (2004), both the system noise
nd the output noise is augmented into the sigma point set. This is
one by merging the system noise covariance matrix Qk and the
utput noise covariance matrix Rk with the covariance matrix Px

k

uch that

a =
[

Px
k−1

0 0
0 Qk−1 0
0 0 Rk−1

]
(22)

The UKF is shown in Table 7. Note that �k−1 =
�

T x
k−1 �

T v
k−1 �

T w
k−1]

T
and the augmented state vector

ˆa
k−1

= [x̂T
k−10 0]

T
.

.2.4. The reformulated UKF
Motivated by improved numerical behavior and flexible con-

traint handling, we propose an alternative UKF-formulation for

he nonlinear system with noise inputs (assuming noise corrupted
y Gaussian noise). By focusing on the sigma points and defining

x
k,i = �x−

k,i
+ Kk(yk − h(�x−

k,i
, �w

k,i)) (23)
k,i
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it can be shown that
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x
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k (25)

A proof is provided in Appendix A. The augmented (based on
(22)) reformulated UKF is given in Table 8.

Although we have used the fully augmented UKF approach in
this algorithm, it can be applied to all the other algorithms previ-
ously mentioned by proper adoption of the steps �x

k,i
, x̂k and Px

k
as

defined in Table 8. Note that if the reformulated correction steps
are applied to the algorithm given in Table 4, Px

k
is guaranteed to

be positive semi-definite with ˛, ˇ, � as in (20), since Wc
i

> 0. This
�
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The constraint candidates.

�k−1 CC1

�x−
k,i

CC2

x̂−
k

CC3

P−
x

k
–

�k,i CC4,5

ŷk CC6

Pykyk
–

Px
k

y
k

–

Kk –

�x
k,i

CC7

sigma points before they are propagated through the output func-
tion. This is indicated by constraint candidate CC4.

The proposed UKF-formulation of the correction steps as given
Fig. 1. An illustration of a multimodal probability density function (pdf).

ny of the UKF algorithms due to better numerical behavior, but at
he expense of computational load.

. Constrained state estimation

State estimation is challenging in nonlinear systems based on
rst principles. In chemical processes for instance one may wish
o estimate concentrations. An estimator may however give rise
o negative concentration estimates even though this is physi-
ally impossible. Another issue is the fact that algorithms based on
aussian noise may not be applicable to nonlinear systems since
aussian noise propagated through a nonlinear model is distorted.
urther, severe nonlinearities may prevent the use of theory based
n linearization due to poor estimation accuracy. Finally the non-
inear system may have a skew or multimodal probability density
unction (pdf).

One way to interpret the Kalman filter (Simon, 2006) is that it
olves the maximum probabilities problem

ˆk = argmaxxk
pdf (xk|(yT

1 · · ·yT
k )) (26)

iven x0, wk and vk Gaussian, i.e. x̂k is the value of xk that maximizes
df (xk|(yT

1 · · ·yT
k
)). Then one may ask what happens if one uses the

alman filter on a system with a multimodal pdf? A multimodal
df is illustrated in Fig. 1. Intuitively, applying any Kalman filter on
system illustrated in Fig. 1, given (26) is true, there may exist two

olutions, one for x̂k < 0 and one for x̂k > 0.
The estimate (x̂k) of e.g. concentrations in a physical system may

e constrained in order to force the estimates to have a physical
eaning. Hence, constraint handling may be an important part of

ny estimation algorithm for nonlinear systems.
As mentioned earlier, the literature addressing constraints in the

KF approach is rather limited. In Julier and Uhlmann (1994) the
dea of constraining the sigma points is in fact listed as a general
ossibility, but is however not further discussed. In the following
hapters we will turn our focus to constraint implementation.

.1. Heuristic constraint handling

.1.1. Constraint methods

A common method for implementing constraints in the KF and

KF algorithms is known as clipping, where the corrected state esti-
ate x̂k is set equal to some predefined bounds dk if outside these

imits (Hasseltine & Rawlings, 2003; Simon, 2006; Kandepu et al.,
007).
x̂k CC8

Px
k

–

In Simon and Simon (2005, 2006) and in Simon (2006) projec-
tion methods for Kalman filtering are studied. The unconstrained
state estimate x̂k is projected onto some constrained set x̃k by solv-
ing the following convex QP problem

min
x̃k

(x̃k − x̂k)T Wk(x̃k − x̂k) s.t. Dkx̃k ≤ dk (27)

(27) can be rewritten as the QP problem

min
x̃k

(x̃T
k Wkx̃k − 2x̂T

k Wx̃k) s.t Dkx̃k ≤ dk (28)

By choosing Wk = I we obtain a least squares method, and
by choosing Wk = (Px

k
)−1 we get a maximum likelihood estimate

(Simon & Simon, 2005). What is worth mentioning is that if Wk = I
and Dk = I, which correspond to a constraint on each x̂k, the solu-
tion of (27) is x̃T

k
= dk in the case when x̂k violates the constraints

dk (see also Simon, 2006). In this case solving (28) gives the same
solution as clipping, and we may conclude that clipping is optimal
in such cases.6

Other literature discussing constraint implementation in the
UKF approach, apart from Vachhani et al. (2006) and Kandepu et
al. (2008) is found in Li and Leung (2004) where they used equal-
ity constraints on the corrected estimate, and Julier and Laviola
(2007) where two methods for nonlinear equality constraints are
proposed.

5.1.2. Constraint candidates
Based on the algorithm steps we are able to identify constraint

candidates as given in Table 9.
By constraint candidates (CC) we think of steps in the algorithm

which may be suitable for some constraint handling, e.g. constrain-
ing CC1 means that �k−1 is constrained according to some set.
Kandepu et al. (2008) proposed the constraint candidates CC1, CC2,
CC3, CC5, CC6 and CC8 using the UKF algorithm as given in Table 7.
Further they showed the effect of using the constraint candidate
CC1 on a CSTR case.

By using the algorithm as in Table 4 we have the opportunity to
extend the list of constraint candidates, by constraining the updated
in Table 8 provides the possibility to further extend the list of con-

6 Considering implementation aspects this may have some implications, since the
clipping may produce lower computationally load than solving a QP-problem.
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Table 10
The fully augmented NLP/QP UKF algorithm.
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traint candidates by constraining each �x
k,i

before the corrected
stimate x̂k with its associated covariance Px

k
is calculated. This is

ndicated by the constraint candidate CC7. It is worth noticing that
onstraining the state estimate x̂k (CC8) has no direct impact on
he covariance Px

k
in all the presented algorithms, except for the

LP UKF, QP UKF (see Section 5.2) and the reformulated UKF where
he constrained estimate will have a direct impact on the associated
ovariance. This aspect, that the constraints are propagated directly
hrough the succeeding covariance calculations, is in our view one
f the most important aspects of using the proposed reformulated
KF-algorithm.

.1.3. Constraints implementation
A logical choice when implementing constraints on the sigma

oints (CC1), the propagated sigma points (CC2) and the updated
igma points (CC4 and CC7), is to apply clipping after the calcu-
ation step, since no covariance is associated with these constraint
andidates. Clipping (or minimum square if there is a algebraic rela-
ionship between the constraints) could also be applied to the other
onstraint candidates (CC3, CC6 and CC8). Alternatively, by instead
tilizing the covariance in the constraints calculations, the con-
trained x̂−

k
, ŷk and x̂k can be calculated by the maximum likelihood

pproach as

in
x̃−

k

(x̃−
k

− x̂−
k

)T (P−
x

k
)−1(x̃−

k
− x̂−

k
) s.t. Dkx̃−

k
≤ dx̂−

k
(29)

in
ỹk

(ỹk − ŷk)T P
−1
y

k
y

k
(ỹk − ŷk) s.t. Dỹ

k
ỹk ≤ dŷ

k
(30)

in
x̃k

(x̃k − x̂k)T P
−1
x

k
(x̃k − x̂k) s.t. Dkx̃k ≤ dx̂

k
(31)

he choice of which method to use, least squares or maximum
ikelihood, depends on the system and available computational
esources.

.2. The NLP/QP-UKF

The Kalman-approach assumes a linear correction of the pre-
icted estimate, see (5). In Vachhani et al. (2006) they use the UKF
ormulation in Julier et al. (1995), i.e. the algorithm as by Table 5
ith [˛ ˇ �] as in (19), and propose a nonlinear correction by

olving an NLP. A special property of their NLP algorithm is a recal-
ulation of the weights W if the sigma points �k−1 violates some
onstraints.

In this work we propose an NLP for the correction step as in
achhani et al. (2006), but without recalculating the weights W.
urther we present the NLP UKF for the fully augmented scaled
KF. Assuming the nonlinear system given by (1) and (2) corrupted
y Gaussian noise, the algorithm is given as in Table 10.

By choosing

=(yk − h(�x
k,i))

T R−1
k

(yk − h(�x
k,i)) + (�x

k,i − �x−
k,i

)T (P−
x

k
)−1(�x

k,i − �x−
k,i

)

(32)

s in Vachhani et al. (2006), this leads to a NLP problem. However,
y assuming a linear output model, as by (4) it can be shown, see
ppendix A.3, that the problem reduces to a QP-problem. In this
ase J becomes

= �xT

k,i(D
T
k R−1

k
Dk + (P−

k
)−1)�x

k,i − 2(yT
k R−1

k
Dk + �x−T

k,i
(P−

k
)−1)�x

k,i
(33)

Intuitively, (32) and (33) balances the correction between the
utput yk and the propagated state sigma points �x−

k,i
according to
x̂k = 2n

i=0
Wx

i
· �x

k,i

Px
k

=
∑2n

i=0
Wc

i
(�x

k,i
− x̂k)(�x

k,i
− x̂k)T

the output uncertainty Rk and the predicted covariance P−
x

k
. Here-

after we will refer to the algorithm using (32) as the NLP UKF and the
algorithm using (33) as the QP UKF. The QP UKF formulation dras-
tically reduces the computational load compared to the NLP UKF,
see Appendix B, since a QP solver generally is less computationally
demanding then an NLP solver.

Both the NLP UKF and the QP UKF minimize J with respect to
�x

k,i
such that some constraints are fulfilled. The constraints can

typically be given by (34)

min
�x

k,i

J s.t. xilow
≤ �x

k,i ≤ xiupp , Hi�
x
k,i ≤ bi (34)

Note that �x
k,i

can be calculated directly after computing P−
x

k
. The

model output sigma point set �k,i can then be calculated utilizing
the updated sigma points �x

k,i
, i.e �k,i = h(�x

k,i
, �w

k,i
). Note also that

the steps regarding �x
k,i

, x̂k and Px
k

as defined in Table 10 could be
applied to all the other UKF algorithms as well, e.g. to the algorithm
as in Table 4.

6. Notes regarding the algorithms

We have so far presented several algorithms based on the
Kalman-approach. It may be worth mentioning that all the uncon-
strained algorithms reduces to the linear Kalman filter for linear
systems with Gaussian noise. Further we have pointed to several
ways of implementing constraints in the presented algorithms.
Although the UKF algorithms have been presented as independent
algorithms, we will emphasize the fact that the conceptual ideas
from one algorithm could easily be used in one of the others, i.e.
the reformulated steps, the NLP/QP steps and the constraint han-
dling can be applied to any of the presented UKF algorithms in any
combination. For example one can combine the UKF algorithm in
Table 4 with constraints in the prediction steps and NLP/QP in the
correction steps to facilitate nonlinear update in this step. In the
simulation chapter to come we will show some examples of such
combinations.

7. Simulation studies
Several authors have investigated the performance of the UKF
and compared it with the EKF or other estimation algorithms, see
Julier and Uhlmann (1994), Julier et al. (1995), Julier, Uhlmann, and
Durrant-Whyte (1997), Zandt (2001), Julier and Uhlmann (2002),
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agreement with the results of Hasseltine and Rawlings (2003) and
Kandepu et al. (2008). The reason why the EKF fails is that while
the negative pressure is unphysical, the unconstrained estimator
S. Kolås et al. / Computers and Che

kin et al. (2003), Laviola (2003), Julier and Uhlmann (2004), van
er Merwe (2004), Romanenko and Castro (2004), Romanenko et
l (2004), Rawlings and Bakshi (2006), Xiong et al. (2006), Xiong et
l. (2007), Pieper (2007) and Kandepu et al. (2008).

In the following we present some of the presented algorithms’
bility to handle problems where the EKF suffers from convergence
roperties, or even fail to converge. We do not consider the KF, since
e study nonlinear systems only in this simulation study.

The case selection is based on cases in Hasseltine and Rawlings
2003) used to indicate the performance of the Moving Horizon
stimation (MHE) approach and at the same time show the lim-
tations using the EKF. The key challenge in the selected cases is
hat they all have a multi-modal pdf, where some solutions are
hysically valid, and some not.

.1. Case ‘2-state CSTR’

.1.1. Case description
Consider the gas-phase, reversible reaction (Hasseltine &

awlings, 2003)

A
kr→B kr = 0.16 (35)

ith stoichiometric matrix

= [s1 s2] = [−2 1] (36)

nd reaction rate

= krP2
A (37)

The state and output vectors are defined as

=
[

PA

PB

]
=
[

x1
x2

]
, y = [1 1]x (38)

here PA and PB are the partial pressures. It is assumed that the
deal gas law holds (high temperature, low pressure), and that the
eaction occurs in a well-mixed, isothermal batch reactor. From first
rinciples, the continuous model for this system is

˙ (t) = fc(x(t)) = sT r(t) (39)

nd the output model

(t) = hc(x(t)) = [1 1]x(t) (40)

A discrete analytical solution of (39) is

1,k+1 =
(

1
x1,k

− s1kr�t

)−1

= x1,k

1 − s1kr�t x1,k
= x1,k

1 + 2kr�t x1,k

(41)

2,k+1 = x2,k + s2kr

s1kr
(x1,k+1 − x1,k) = x2,k + kr�t x1,k

1 + 2kr�t x1,k
(42)

here �t is the integration step length. Further it is assumed that
he system experience Gaussian noise both in the states and in
he outputs, given by vk ∼ N(0, Qk) and wk ∼ N(0, Rk). The discrete
ystem becomes
k+1 = f (xk) + vk (43)

nd the discrete model of (40)

k = h(xk) + wk = [1 1]xk + wk (44)
Fig. 2. Unconstrained EKF.

The parameters used for this system are

�t = tk+1 − tk = 0.1 P0 =
[

62 0
0 62

]
Qk =

[
0.0012 0

0 0.0012

]
Rk = 0.12

x0 =
[

3
1

]
x̂0 =
[

0.1
4.5

] (45)

Note that the initial guess for the states (x̂0), is very poor. This
simple example is used by several authors in order to investi-
gate estimator performance, see Hasseltine and Rawlings (2003),
Vachhani et al. (2006), Rawlings and Bakshi (2006), and Kandepu
et al. (2008). The reason why this problem is interesting is that the
estimator may experience a multimodal pdf, which may lead to
unphysical estimates.

7.1.2. Simulation results
In the following chapters we investigate some of the previous

described algorithms applied on the 2-state CSTR case. Note that
all the parameters are as described in the case description above
for all the presented algorithms and that the noise sequences are
identical in all simulations. Note also that we have used the exact
solution to (39). By using Euler or Runge–Kutta integration schemes,
the results will differ slightly from the results presented below.
This is especially the case in the unconstrained cases. However, the
main characteristics are maintained whichever integration scheme
is used. We have chosen to be true to the source of these examples
(Hasseltine & Rawlings, 2003), and have used the same parameters
to achieve comparable results.

7.1.2.1. EKF. Fig. 2 shows the results of the simulation using uncon-
strained EKF as by Table 3, with numerically derived Jacobians.

As Fig. 2 shows, the unconstrained EKF fails to converge to
the true states within the given time frame.7 These results are in
allows the estimate to enter regions where the partial pressure

7 Actually the EKF will converge very slowly, but one need to run the simulation
approximately 1000 samples.
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mulated steps makes this algorithm to almost converge after only
2 samples (0.2 s) for this particular noise sequence.

We now investigate the QP UKF by combining Table 10 and (33)
with the algorithm presented in Table 4, again using the symmetric
square root formulation.
Fig. 3. Constrained EKF.

ay be negative. The behavior of the estimator in this case is best
xplained “as a poor initial guess leading to an errant region of attrac-
ion” (Hasseltine & Rawlings, 2003). The “errant region of attraction”
xist due to the multimodal properties of this system’s pdf, see
asseltine and Rawlings (2003) for a broader discussion of why

he EKF fails.
Fig. 3 shows the results of the simulation using EKF with con-

traints. The constraint is implemented as clipping the corrected
tate estimate (CC8), and the constraints are such that x̂k ≥ 0.

As Fig. 3 shows, the constrained EKF fails to converge to the true
tates. These results are in agreement with the results of Hasseltine
nd Rawlings (2003) and Kandepu et al. (2008). By clipping the
tate x̂k, it is restricted to a valid physical region, but the knowledge
bout the constraints is not propagated into the covariance, and
he hence accuracy of the approximated covariance matrix Px

k
is

uestionable. As Fig. 3 indicates, the performance of the clipped
KF is rather poor.

.1.2.2. UKF. In the following chapters a selection of the presented
acobian free algorithms is tested on the 2-state CSTR case. For the
KF algorithms using (12) for sigma point selection, (18) is used for
, ˇ and �. For the UKF algorithms using (11) for the sigma point
election, the values given by (20) is used for ˛, ˇ and �.

First we investigate the unconstrained fully augmented UKF
iven in Table 7 and using the Cholesky square root algorithm. Fig. 4
hows the results of the simulation.

As Fig. 4 shows, this algorithm fails to converge to the true states
ithin the given time frame. These results are in agreement with

he results of Kandepu et al. (2008). Assuming (26) also is valid for
he UKF, the unconstrained UKF as well as the EKF has to deal with

ultiple optima, and we believe this is the reason why the uncon-
trained UKF algorithms suffer poor performance on this case.

Next, we extend the fully augmented UKF as in Table 7 with
onstraint handling and Cholesky square root. The constraints is
uch that �x

k−1 ≥ 0 (CC1). Fig. 5 shows the results of the simulation.
As Fig. 5 shows, this algorithm converges to the true states after

pproximately 25 samples regards (t = 2.5 s). These results are in
greement with the results achieved by Kandepu et al. (2008).

y constraining �x

k−1 ≥ 0 (CC1) the sigma points are restricted to
hysical valid values. Also, by inspecting the structure of the UKF
lgorithm, one sees (e.g. see Table 7) that constraining the sigma
oints not only propagates the constraints to the mean value, but
Fig. 4. Unconstrained fully augmented UKF.

also influences the covariance calculations. By this the covariance
is related to the mean value, and the unphysical region of attraction
is limited. Note that since the sigma points are propagated through
the model after they are constrained, constraining the sigma points
only (CC1) does not generally guarantee that the state estimates
does not enter an unphysical value.

All the UKF algorithms converge to the true state when
constraining the sigma points �x

k−1 ≥ 0 (CC1). Although the uncon-
strained UKF in Table 4 with symmetric square root calculation may
converge, it is possible to increase the convergence performance.
By using the reformulated correction steps from the algorithm in
Table 8 and constraint handling by using CC1 (�x

k−1 ≥ 0) and CC7
(�x

k
≥ 0) applied on the non-augmented algorithm in Table 4, we

get the results as given in Fig. 6.
In fact, the combination of constraint handling and the refor-
Fig. 5. Constrained (�x
k−1

≥ 0 (CC1)) fully augmented UKF.
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Fig. 6. Constrained (CC1 and CC7) non-augmented UKF as by D. Simon.
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Fig. 7. QP-UKF using symmetric square root calculations.

The system under investigation has a linear output model, and
ence the results of the QP UKF are identical to the NLP UKF
Table 10). The results of the simulation are shown in Fig. 7.

As Fig. 7 shows, the NLP/QP-algorithm converge after 2 samples
0.2 s). Notice also the lack of the initial spike in the output. This is
ecause the output in this situation is selected using the optimized
igma point set �x

k,i
instead of �x−

k,i
.

Although the QP UKF and NLP UKF produces the same estimate
n the case of a linear output model, there is a huge difference when
t comes to computational load. Used on the 2-state CSTR problem,
he QP UKF is approximately 8 times faster than the NLP UKF8 when
sing the algorithm in Table 4 as a basis, see Appendix B. Using
he QP UKF described in Table 10 is approximately 11 times faster

han the NLP UKF. In this case we also experience best convergence
erformance using the symmetric square root and not the Cholesky
quare root algorithm.

8 Implemented in Matlab using the quadprog() for the QP problem and fmincon()
or the NLP problem.
Engineering 33 (2009) 1386–1401 1395

7.2. Case ‘3-state batch reactor’

7.2.1. Case description
Consider the gas-phase, reversible reaction (Hasseltine &

Rawlings, 2003)

A
k1
�
k2

B + C (46)

2B
k3
�
k4

C (47)

k = [ k1 k2 k3 k4 ] = [ 0.5 0.05 0.2 0.01 ] (48)

with stoichiometric matrix

v =
[

−1 1 1
0 −2 1

]
(49)

and reaction rate

r =
[

k1cA − k2cBcC

k3c2
B − k4cC

]
(50)

The state and output vectors are defined as

x =
[

cA

cB

cC

]
=
[

x1
x2
x3

]
, y = [RT RT RT]x, RT = 32.84 (51)

where ci is the concentration of the species. It is assumed that the
ideal gas law holds, and that the reaction occurs in a well-mixed,
constant volume, isothermal batch reactor. From first principles, the
continuous model for this system is

ẋ(t) = fc(x(t)) = vT r(t) (52)

and the output (measurement) model

y(t) = h(x(t)) = [RT RT RT]x(t) (53)

The model is discretized by using Runge–Kutta 4th order
method. Further it is assumed that the system experiences Gaus-
sian noise both in the state and in the measurements, respectively
wk ∼ N(0, Qk) and vk ∼ N(0, Rk). The discrete system is given by

xk+1 = f (xk) + wk (54)

yk = h(xk) + vk = [RT RT RT]xk + vk (55)

The parameters used for this system are

�t = tk+1 − tk = 0.25 P0 =
[

0.52 0 0
0 0.52 0
0 0 0.52

]

Qk =
[

0.0012 0 0
0 0.0012 0
0 0 0.0012

]
Rk = 0.252

x0 =
[

0.5
0.05

0

]
x̂0 =
[

0
0
4

] (56)

It may be noted that the initial guess for the estimator (x̂0), is
very poor. Again the estimator may encounter a multi-modal pdf,
which may lead to unphysical estimates.

7.2.2. Simulation results
In the next chapters we present some results of our investi-

gation on the 3-state CSTR case. Note that all the parameters are

as described in the case description above for all the presented
algorithms. Also the noise sequences wk and vk are identical in
all simulations. The performance of the EKF and the constrained
(clipped) EKF used on this case is well documented in Hasseltine
and Rawlings (2003), and since our results is in full agreement with
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Fig. 9. The figure shows the performance of the UKF algorithm based on the algo-
rithm in Table 8 with constraints. The constraints used are CC1, CC3 and CC7.
ig. 8. The figure shows the performance of the UKF algorithm based on the algo-
ithm in Table 7 with constraint handling using CC1.

hose results regarding the EKF, we have chosen not to include them
ere.

Further, none of the unconstrained UKF algorithms presented
n this work converged within the time limit. Hence, the following
esults are focused on the constrained approach.

The fully augmented UKF as in Table 7 is first applied, using the
holesky square root algorithm, constrained sigma points (CC1) and
˛ ˇ �] as in (18).

As Fig. 8 shows, the performance is rather poor when it comes
onvergence speed. Note that all of the constrained UKF algorithms
onverge within the time limit, but uses unacceptable long time
hen constraining only the sigma point set by �x

k−1 ≥ 0 (CC1).
Second, we investigate the reformulated fully augmented UKF

Table 8) with the Cholesky square root algorithm and constrained
igma points (CC1 and CC7), constrained predicted state estimates
CC3) and

˛ ˇ �
]

=
[

0.7 0 3 − n
]

(57)

y using the constraints

�x
k−1 ≥ 0 (CC1)

�x
k,i

≥ 0 (CC7)

x−
k

≤ [∞ ∞ 4]T (CC3)

(58)

e got the results as shown in Fig. 9. Convergence to the correct
tates is fast.

The results of the other UKF algorithms, using the reformulated
orrection steps, the same [˛ ˇ �]-set as defined by (57)9 and
onstraints as defined in (58), have all similar performance.

Third, we study the NLP/QP UKF with additive system noise, i.e.
he algorithm in Table 5 with �x

k,i
, x̂k and Pxk

as in Table 10. Further,
he symmetric square root algorithm is used, constrained sigma
oints (CC1), constrained predicted state estimate x−

k
(CC3) and

˛ ˇ �] = [1 10 0] (59)
y using the constraints

x
k−1 ≥ 0 (CC1) (60)

9 Note that the algorithms using Eq. (11) for the sigma point selection, uses (20)
s their [˛ ˇ �]-set.
Fig. 10. The figure shows the performance of the QP UKF algorithm based on the
algorithm in Table 5 with the correction steps as in Table 10. The constraints used
are CC1, CC3 and CC7.

x−
k

≤ [∞ ∞ 4]T (CC3) (61)

and minimize �x
k,i

such that

0 ≤ �x
k,i ≤ [∞ ∞ 4]T (i.e. CC7 by QP) (62)

we got the results10 as shown in Fig. 10.
As Fig. 10 shows, the performance is further improved. Note that

the use of the constraints (CC1) and (CC3) was required in order to
achieve these results, as well as some tuning of the ˛, ˇ and � (for

a broader general discussion of the effect of ˛, ˇ and � see Julier &
Uhlmann, 2002; Julier & Uhlmann, 2004).

10 The constraints CC7 was found by using process knowledge combined with trail
and error.
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Fig. 11. A comparison of the effect of the different formulation alternatives. The figure shows four sub-figures with the states of the 20 first samples of the 2-state CSTR case,
using the non-augmented UKF as in Table 4, weights (W) by (17) and constraining �x

k−1
≥ 0 (CC1). In (a) the Cholesky square root algorithm is used. (b) The change in the

estimates from (a) as the Cholesky square root algorithm is replaced with a symmetric square root. (c) The change in the estimates from sub-figure (a) as the reformulated
c e estim
s 0 (CC7
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orrection steps is introduced along with constraining �x
k,i

≥ 0. (d) the change in th
quare root and the reformulated correction steps is introduced constraining �x

k,i
≥

. Discussion

We have shown several UKF based algorithms and proposed
ome methods to implement constraints using these algorithms.
urther we have indicated that the convergence performance of the
lgorithms is not only different, but for the same algorithm might
e influenced by the selection of the square root algorithm,11 at
hich algorithm step the constraints are placed, and the use of the

eformulated correction steps. Fig. 11 further illustrates this.
As Fig. 11 demonstrates there is an effect of using both the refor-

ulated correction steps and the symmetric square root calculation
n the 2-state CSTR case with respect to convergence speed.

Compared to the results in Kandepu et al. (2008) and the results
resented in Fig. 5, we have shown that it is possible to decrease
he convergence time from 25 (2.5 s) samples to approximately 2
amples (0.2 s) (see Fig. 11d). Compared to the unconstrained EKF,
hich converges in approximately 1000 samples with this partic-

lar noise sequence, this indicates the superior performance of the
uggested constrained UKF-approach applied to the 2-state CSTR
ase.12

11 See Appendix B.
12 See Appendix B for performance measurements regard the ‘Case 2A-¿B’.
ates from sub-figure (a) as the Cholesky square root is replaced with a symmetric
).

Also, by applying UKF to the 3-state case, we have demon-
strated that the constrained reformulated approach achieves good
performance. The constrained UKF, constraining only �x

k−1 ≥ 0
(CC1), suffered from poor performance with respect to conver-
gence speed, and converged after approximately 70 samples. The
QP UKF converged after approximately 3 samples, and the refor-
mulated fully augmented constrained UKF after approximately 5
samples.

However, care should be taken. Applying constraints as sug-
gested in this paper may introduce singularities and even indefinite
covariance matrices. This may happen e.g. if all the sigma points of
one state are outside the constraints at the same time as the esti-
mated state also is outside the constraint. Strategies to identify and
overcome such situations may be required. Several strategies could
be applied, but it is beyond the scope (and space) of this paper to
enter that discussion.

By introducing both a reformulation of the correction steps and
the use of constraints in the UKF approach, the UKF may not be
considered ‘unscented’ any more. To distinguish from the original
UKF, it is maybe more correct to refer to the versions utilizing con-

straints and/or reformulated corrections steps as the Constrained
Unscented Kalman filter (CUKF).

Further, Tables 11–13 in Appendix B indicates that adding com-
plexity to the original UKF algorithms have a computational cost,
but as Tables 14 and 15 in the appendix indicates, with a poten-
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Table 11
The table shows the average time to run 10 simulations of the ‘2-state CSTR’ case
using unconstrained versions of the algorithms.

Ch [s] Sy [s] Ch+Re [s] Sy+Re [s]

EKF (Table 3) 0.4 0.4 0.4 0.4
UKF D. Simon (Table 4) 0.4 0.5 0.4 0.5
UKF non-aug (Table 5) 0.5 0.6 0.6 0.6
UKF Q-aug (Table 6) 0.7 0.8 0.8 0.9
UKF fully-aug (Table 7) 0.8 0.9 0.9 0.9

Table 12
The table shows the average time to run 10 simulations of the ‘2-state CSTR’ case
using constrained versions of the UKF algorithms.

Ch [s] Sy [s] Ch+Re [s] Sy+Re [s]

UKF D. Simon (Table 4) 0.8 0.9 1.2 1.2
UKF non-aug (Table 5) 1.0 1.0 1.4 1.5
UKF Q-aug (Table 6) 1.7 1.6 2.4 2.5
UKF fully-aug (Table 7) 1.9 2.0 2.9 2.9

Table 13
The table shows the average time to run 10 simulations of the ‘2-state CSTR’ case
using the QP/NLP UKF algorithms.

QP Ch [s] QP Sy [s] NLP Ch [s] NLP Sy [s]

UKF D. Simon (Table 4) 1.3 1.3 12.2 12.1
UKF non-aug (Table 5) 1.6 1.6 15.1 17.4
UKF Q-aug (Table 6) 2.6 2.6 29.6 29.0
UKF fully-aug (Table 7) 3.0 3.1 35.9 38.3

Table 14
The table shows the average square root error based on 100 Monte Carlo simulations
of the ‘2-state CSTR’ case using constrained versions of the UKF algorithms.

Ch Sy Ch+Re Sy+Re

UKF D. Simon [0.37 0.43]T [0.36 0.41]T [0.32 0.42]T [0.32 0.42]T

UKF non-aug [0.42 0.48]T [0.40 0.46]T [0.33 0.45]T [0.33 0.45]T

UKF Q-aug [0.49 0.55]T [0.45 0.51]T [0.41 0.51]T [0.40 0.49]T

UKF fully-aug [0.52 0.58]T [0.46 0.52]T [0.44 0.53]T [0.42 0.52]T

Table 15
The table shows the average square root estimation error based on 100 Monte
Carlo simulations of the ‘2-state CSTR’ case using constrained versions of the UKF
algorithms.
398 S. Kolås et al. / Computers and Che

ial increase in estimation accuracy, even though the most complex
ot necessarily gives the most accurate estimation. Given a system,
hich algorithm to select is a trial and error process.

. Conclusions

We have in this paper given a broad overview of several UKF
ased nonlinear estimation algorithms as an alternative to the
KF, suggested a reformulation of the correction step which can
e applied to all of the presented UKF algorithms, presented a QP
ormulation of the NLP UKF (which also can be applied to all of
he presented UKF algorithms) and proposed alternatives to realize
onstraints within the UKF approach.

Further we have demonstrated the superior performance of the
onstrained UKF approach over the EKF approach applied to both a
2-state CSTR’ example system and a ‘3-state batch’ example system.
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ppendix A. Algebraic proofs

.1. Proof of reformulated corrected state estimate

We want to show that

ˆk =
2n∑
i=0

Wx
i · �x

k,i = x̂−
k

+ Kk(yk − ŷ−
k

) (63)

Define

x
k,i = �x−

k,i
+ Kk(yk − h(�x−

k,i
�w

k,i)) (64)

hen

x̂k =
2n∑
i=0

Wx
i · �x

k,i

=
2n∑
i=0

Wx
i (�x−

k,i
+ Kk(yk − h(�x−

k,i
�w

k,i)))

=
2n∑
i=0

Wx
i �x−

k,i
+

2n∑
i=0

Wx
i Kk(yk − h(�x−

k,i
�w

k,i))

=
2n∑
i=0

Wx
i �x−

k,i
+ Kk

2n∑
i=0

Wx
i (yk − h(�x−

k,i
�w

k,i))

=
2n∑
i=0

Wx
i �x−

k,i
+ Kk

(
2n∑
i=0

Wx−
i

yk −
2n∑
i=0

Wx
i h(�x−

k,i
�w

k,i)

)

= x̂−
k

+ Kk(yk − ŷk)

(65)

Note
∑2n

i=0Wx
i

= 1 and the other definitions as given by Table 8
or the reformulated UKF.

.2. Proof of the reformulated corrected covariance
We want to show that

x
k

=
2n∑
i=0

Wc
i (�x

k,i − x̂k)(�x
k,i − x̂k)T = P−

x
k

− KkPykyk
KT

k (66)
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where

P−
x

k
> 0 (67)

Define

�x
k,i = �x−

k,i
+ Kk(yk − h(�x−

k,i
�w

k,i)) = �x−
k,i

+ Kk(yk − �k,i) (68)
QP Ch QP Sy NLP Ch NLP Sy

UKF D. Simon [0.34 0.40]T [0.34 0.41]T [0.34 0.41]T [0.34 0.41]T

UKF non-aug [0.35 0.41]T [0.35 0.42]T [0.35 0.41]T [0.35 0.41]T

UKF Q-aug [0.41 0.48]T [0.40 0.46]T [0.42 0.48]T [0.41 0.48]T

UKF fully-aug [0.45 0.52]T [0.43 0.50]T [0.45 0.52]T [0.43 0.50]T
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t
U

)T

yk − �k,i) − x̂−
k

− Kk(yk − ŷ−
k

))T

Kk(yk − yk − �k,i + ŷ−
k

))T

ŷ−
k

))T

Kk(�k,i − ŷ−
k

)(�x−
k,i

− x̂−
k

)T + Kk(�k,i − ŷ−
k

)(�k,i − ŷ−
k

)T
KT

k )

−Kk

2n∑
i=0

Wc
i (�k,i−ŷ−

k
)(�x−

k,i
−x̂−

k
)T +Kk

2n∑
i=0

Wc
i (�k,i−ŷ−

k
)(�k,i−ŷ−

k
)T

KT
k

k
PT

xky

(69)
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hen, by using the definitions given in Table 8 for the reformulated
KF we obtain

Px
k

=
2n∑
i=0

Wc
i (�x

k,i − x̂k)(�x
k,i − x̂k)T

=
2n∑
i=0

Wc
i (�x

k,i − (x̂−
k

+ Kk(yk − ŷ−
k

)))(�x
k,i − (x̂−

k
+ Kk(yk − ŷ−

k
))

=
2n∑
i=0

Wc
i (�x−

k,i
+ Kk(yk − �k,i) − x̂−

k
− Kk(yk − ŷ−

k
)) · (�x−

k,i
+ Kk(

=
2n∑
i=0

Wc
i ((�x−

k,i
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k
) + Kk(yk − yk − �k,i + ŷ−

k
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k
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.3. Proof of the QP-formulation

Vachhani et al. (2006) suggested to use an NLP to calculate an
pdated sigma point set. An adoption of Vachhani’s approach leads
o the NLP formulation

in
�x+

k,i

{
(yk − h(�x

k,i
))T R−1

k
(yk − h(�x

k,i
)) + (�x

k,i
− �x−

k,i
)T (P−

x
k

)−1(�x
k,i

− �x−
k,i

)
}

(70)

If the output function h(·) is linear we can formulate the problem

min
�x+

k,i

{
(yk − Dk�x

k,i
)T R−1

k
(yk − Dk�x

k,i
) + (�x

k,i
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x
k
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)
}
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k
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T x
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x
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T x−
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x

k
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}
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T x
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Assume symmetric positive definite Rk and Pk and get

in
{

yT R−1yk − 2yT R−1Dk�x + �
T x DT R−1Dk�x + �

T x (P−
x )−1
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�x
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k
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�x−
k,i

}
(72)
k

However minimizing (72) is the same as minimizing the QP-
problem

min
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Appendix B. Performance measures

All simulations and development of the algorithms was done in
Matlab Release 14. The computer used was a Dell Precision M70
with Intel Pentium M processor running at 2.13 Ghz and 2 GB RAM.

B.1. Computational performance

As a guide to compare and determine the performance of
the various algorithms we measured the average time to run 10

simulations of the case ‘2-state CSTR’. The results are shown in
Tables 11–13. The notation in the tables is as follows: Column
labeled Ch: Simulated using Cholesky matrix square root. Column
labeled Sy: Simulated using symmetric matrix square root. Column
labeled Ch+Re: Simulated using Cholesky matrix square root and
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he reformulated correction steps. Column labeled Sy+Re: Simu-
ated using symmetric matrix square root and the reformulated
orrection steps. All values are in seconds [s].

Note that the results in Table 11 are performance measures
nly, since none of the unconstrained algorithms gave acceptable
erformance with respect to the estimation accuracy. The results

n Table 11 indicate that some of the UKF algorithms in its plain
ersion are not necessarily more computational demanding than
he EKF, given the tested case. However, as the number of the
igma points increase, the computational demand increases as
ell.

Note that for the simulation results shown in Table 12 the
onstraints used are �x

k−1 ≥ 0 (CC1) in all the algorithms. For
he simulations using the reformulated correction steps, the con-
traints �x

k
≥ 0 (CC7) are also used. The notation in the table is as

ollows: Column labeled QP Ch: Simulated using Cholesky square
oot and the QP version of the correction steps. Column labeled
P Sy: Simulated using symmetric square root and the QP version
f the correction steps. Column labeled NLP Ch: Simulated using
holesky square root and the NLP version of the correction steps.
olumn labeled NLP Sy: Simulated using Symmetric matrix square
oot and the NLP version of the correction steps. All values are in
econds [s]

Note also that for the simulation results shown in Table 13 the
onstraints used are �x

k−1 ≥ 0 (CC1) in all the algorithms. For the QP
KF’s the cost function used is as by (33). For the NLP UKF’s the cost

unction used is as by (32).
Tables 11–13 indicates that adding complexity to the UKF algo-

ithms clearly has a computational cost, but as will be shown below,
ith a potential increase in estimation accuracy.

.2. Estimation performance

As a guide to compare and determine the performance of the
arious algorithms we measured the average square root error of
he true and estimated state by 100 Monte Carlo simulations of the
ase ‘2-state CSTR’. The error was measured as

¯ = 1
100

100∑
j=1

(ẽi,j); i ∈ [1, 2] (74)

˜i,j = 1
100

100∑
k=1

√
(xi,k − x̂i,k)(xi,k − x̂i,k)T ; i ∈ [1, 2] (75)

here ẽ is a vector for the average square root error in simulation
un j, and ē is a vector containing the average value of the states of
ll the average square root errors.

The results are shown in Tables 14 and 15.13 The notation in the
able is as follows: Column labeled Ch: Simulated using Cholesky
quare root. Column labeled Sy: Simulated using symmetric square
oot. Column labeled Ch+Re: Simulated using Cholesky square root
nd the reformulated correction steps. Column labeled Sy+Re: Sim-
lated using symmetric matrix square root and the reformulated
orrection steps.

Note that for the simulation results shown in Table 14 the
onstraints used are �x ≥ 0 (CC ) in all the algorithms. For
k−1 1
he simulations using the reformulated correction steps, the con-
traints �x

k
≥ 0 (CC7) are also used. The notation in the table is as

ollows: Column labeled QP Ch: Simulated using Cholesky square
oot and the QP version of the correction steps. Column labeled

13 Notation: UKF D. Simon means the algorithm in Table 4. UKF Non-aug means
he algorithm in Table 5. UKF Q-aug means the algorithm in Table 6. UKF Fully-aug

eans the algorithm in Table 7.
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QP Sy: Simulated using Symmetric square root and the QP version
of the correction steps. Column labeled NLP Ch: Simulated using
Cholesky square root and the NLP version of the correction steps.
Column labeled NLP Sy: Simulated using Symmetric matrix square
root and the NLP version of the correction steps.

Note also that for the simulation results shown in Table 13 the
constraints used are �x

k−1 ≥ 0 (CC1) in all the algorithms. For the QP
UKF’s the cost function used is as by (33). For the NLP UKF’s the cost
function used is as by (32).

Tables 11–13 indicates that adding complexity to the original
UKF algorithms have a computational cost, but as Tables 14 and 15
indicates, with a potential increase in estimation accuracy, even
though the most complex not necessarily gives the most accurate
estimation. Given a system, which algorithm to select is a trial and
error process.
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