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Abstract

A state-feedback controller is proposed for a certain class of multi-input nonlinear
positive systems. The controller achieves closed loop convergence to a set, which in
many cases implies convergence to an equilibrium. The controller is applied to the
casing heading problem, an important instability problem occurring in the petro-
leum industry. Both simulations and a laboratory trial illustrate the merits of the
controller.
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1 Introduction

When modeling systems for control based on first principles, one often obtains
nonlinear ordinary differential equations where the state variables (mass, pres-
sure, level, energy, etc.) are positive. In addition, the control input will also
often be positive (valve openings, amount of inflow, heat input, etc.). Hence,
the class of positive systems (systems with nonnegative states and inputs) is
a natural class of systems to consider in a control setting.
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Since mass is an inherently positive quantity, systems modeled by mass bal-
ances [1] are perhaps the most natural example of positive systems. Another
example is the widely studied class of compartmental systems [7,11], used in
biomedicine, pharmacokinetics, ecology, etc. Compartmental systems, which
are often derived from mass balances, are (nonlinear or linear) systems where
the dynamics are subject to strong structural constraints. Each state is a mea-
sure of some material in a compartment, and the dynamics consists of the flow
of material into (inflow) or out of (outflow) each compartment. If these flows
fulfill certain criteria, the system is called compartmental.

Similar to compartmental systems, we will herein assume that each state can
be interpreted as the “mass” (or measure of mass; concentration, level, pres-
sure, etc.) of a compartment. However, we do not make the same strong as-
sumptions on the structure on the flows between the compartments. Instead,
we make other (strong) assumptions related to the system being controllable
according to the control objective under input saturations. Furthermore, we
assume that the compartments that constitute the state vector can be divided
into groups of compartments, which we will call phases. Each phase will have
a controlled inflow or outflow associated with it. The control objective will be
to steer the mass of each phase (the sum of the compartment masses in that
phase) to a constant, prespecified value.

For this model class we propose a state feedback controller, providing closed
loop convergence of the sum of the states of each phase. The controller is
inspired by [2], but the class of systems is larger, especially since the phase
concept allows us to consider multiple input systems. Furthermore, we also
allow saturated inputs and outflow-controlled systems. Similar to [2], we as-
sume that the inputs are positive. The controller in [2] can be viewed as a
special case of the controller herein. A related controller for a (similar) class
of systems exhibiting first integrals is developed in [4]. Instead of controlling
the sum of system states (the total mass), it is controlling (more general) first
integrals to a specified value. The controller of [4] is different from the one
considered herein, for instance the input can take on negative values. How-
ever, the stability properties of the closed loop are similar, in the sense that
they both achieve convergence to a certain set.

The paper is structured as follows: In Section 2 the system class is presented.
The controller and a convergence result from a general invariant domain of
attraction are presented in Section 3. In Section 4, a simple example illustrates
some issues related to the phase concept and stability of the closed loop.
Finally, Section 5 provides a semi-realistic application to stabilization of gas-
lifted oil wells, including simulations on a de-facto industry standard simulator
and lab trials.

In the following, R+ = [0,∞) and R
n
+ = {x = [x1, x2, . . . , xn]T | xi ∈ R+}.

Further, blockdiag(A1, . . . , Ar) denotes a block diagonal matrix with the ma-
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trices A1, . . . , Ar on the “diagonal”.

2 Model class

We consider nonlinear systems

ẋ = f(x, u), (1a)

where the state is positive (x ∈ R
n
+), and the input is positive and upper

bounded, u ∈ U := {u ∈ R
m
+ | 0 ≤ uj ≤ ūj}. Each state can be interpreted

as the “mass” (amount of material, or some measure of amount) in a com-
partment 2 . The controller we will propose exploits system structure, thus we
assume the model equations to be on the following form:

f(x, u) = Φ(x) + Ψ(x) +B(x)u. (1b)

Loosely speaking, Φ(x) represents “interconnection structure” between com-
partments, Ψ(x) represents uncontrolled external inflows to and outflows from
compartments and B(x)u represents controlled external inflows to and out-
flows from compartments.

Furthermore, we will assume that the state vector can be divided into m
different parts, which will be denoted phases. Phase j will consist of rj states,
and have the control uj associated with it, corresponding to either controlled
inflow or outflow to compartments of that phase. The states in phase j will
be denoted χj, such that x = [(χ1)T, (χ2)T, . . . , (χm)T]T, and it follows that
necessarily,

∑m
j=1 rj = n. Corresponding to this structure, the vector functions

Φ(x), Ψ(x) and the matrix function B(x) are on the form

Φ(x) =
[

φ1(x)T, φ2(x)T, . . . , φm(x)T
]

T

Ψ(x) =
[

ψ1(x)T, ψ2(x)T, . . . , ψm(x)T
]

T

B(x) = blockdiag
(

b1(x), b2(x), . . . , bm(x)
)

.

Note that element j is (in general) a function of x, not (only) χj. Also note
that the partitioning into phases need not be unique.

We will state the assumptions on these functions on the set D ⊆ R
n
+. In the

case of global results, D = R
n
+.

2 The word compartment does not imply that the system class we look at is com-
partmental [11]. However, it enjoys strong similarities with compartmental systems.
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A1. (Interconnection structure) The function Φ : D → R
n is locally

Lipschitz, φj
i (x) ≥ 0 for χj

i = 0, and

rj
∑

i=1

φj
i (x) = 0, j = 1, . . . , m.

A2. (Controlled external flows) The block diagonal matrix function B(x) :
D → R

n×m is locally Lipschitz and satisfies:
a. Phase j has controlled inflow:

bji (x) ≥ 0 for all x ∈ D
rj
∑

i=1

bji (x) > 0 for all x ∈ D

b. Phase j has controlled outflow:

bji (x) ≤ 0 for all x ∈ D

χj
i = 0 ⇒ bji (x) = 0 (if {x | χj

i = 0} ∩D 6= ∅)
rj
∑

i=1

bji (x) < 0 for all x ∈ D

These assumptions says that there is zero net contribution to phase mass from
the “interconnection structure”, and that the controlled flows really are inflow
and outflow (and in the outflow-controlled case, that no mass can flow when
a state is zero).

The uncontrolled external flows must satisfy some “controllability” assump-
tion in relation to the controlled flows. Before we define this, it is convenient
to define the “mass” of each phase, being the sum of the compartment masses
(the states) of that phase:

Mj(x) :=
rj
∑

i=1

χj
i .

Our control objective will be to control Mj(x) to some prespecified (positive)
desired mass of phase j, denoted M∗

j , from initial conditions in D. For the
control problem to be meaningful, the intersection of the set where Mj(x) =
M∗

j and D should be nonempty.

A3. (Uncontrolled external flows) For given M∗ = [M∗

1 ,M
∗

2 , . . . ,M
∗

m]T,
Ψ(x) : D → R

n is locally Lipschitz and satisfies ψj
i (x) ≥ 0 for χj

i = 0 (if
{x | χj

i = 0} ∩D 6= ∅), and in addition, if:
a. Phase j has controlled inflow:

1. For x ∈ {x ∈ D | Mj(x) > M∗

j },
∑rj

i=1 ψ
j
i (x) ≤ 0 and the set

{x ∈ D | ∑rj

i=1 ψ
j
i (x) = 0 and Mj(x) > M∗

j } does not contain
an invariant set.
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2. For x ∈ {x ∈ D |Mj(x) < M∗

j }, −
∑rj

i=1 ψ
j
i (x) <

∑rj

i=1 b
j
i (x)ūj.

b. Phase j has controlled outflow:
1. For x ∈ {x ∈ D | Mj(x) < M∗

j },
∑rj

i=1 ψ
j
i (x) ≥ 0 and the set

{x ∈ D | ∑rj

i=1 ψ
j
i (x) = 0 and Mj(x) < M∗

j } does not contain
an invariant set.

2. For x ∈ {x ∈ D |Mj(x) > M∗

j },
∑rj

i=1 ψ
j
i (x) < −∑rj

i=1 b
j
i (x)ūj.

Assumption A3.a.1 (A3.b.1) means that when the phase mass is large (small),
the outflow of this phase is dominantly outflow (inflow). The “no invariant
set” part plays the same role as the assumption of “zero state detectability”
through (the equivalent of)

∑rj

i=1 ψ
j
i (x) in [2]. The assumption A3.a.2 (A3.b.2)

means that when the phase mass is small (large) and the controller is saturat-
ing, the outflow (inflow) must be smaller than the (saturated) inflow (outflow)

Proposition 1 (Positivity) For x(0) ∈ R
n
+, the state of the system (1) ful-

filling A1-A3 with D = R
n
+, satisfies x(t) ∈ R

n
+, t > 0.

Proof It suffices to notice that for xi = 0, ẋi ≥ 0. 2

3 Stabilizing state feedback controller

In this section, the state feedback controller is defined, and a convergence result
is given for a general invariant set D that (is a subset of the set that) A1-A3
hold on. The set D could then be considered a region of attraction.

As mentioned in the previous section, our control objective is to control the
total mass Mj(x) of each phase to a prespecified value M∗

j . To this end, the
following constrained, positive state feedback control law is proposed:

uj(x) =















0 if ũj(x) < 0

ũj(x) if 0 ≤ ũj(x) ≤ ūj

ūj if ũj(x) > ūj

(2)

where

ũj(x)=
1

∑rj

i=1 b
j
i (x)

(

−
rj
∑

i=1

ψj
i (x)+λj(M

∗

j −Mj(x))

)

(3)

and λj is a positive constant. Assumption A2 ensures that
∑rj

i=1 b
j
i (x) 6= 0

always, such that ũj is always defined.

Define the set

Ω={x ∈ R
n
+ |M1(x)=M∗

1 , . . . ,Mm(x)=M∗

m}.
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Assumption 1 There exists a set D that is invariant for the dynamics (1)
under the closed loop with control (2), and has a nonempty intersection with
Ω.
Assumption 2 For x ∈ Ω ∩D, 0 < ũj(x) < ūj.

Under the given assumptions, the convergence properties of the controller are
summarized as follows:

Theorem 1 Under the given assumptions, the state of the system (1), con-
trolled with (2) and starting from some initial condition x(0) ∈ D, stays
bounded and converges to the set Ω ∩D which is positively invariant.
Proof The set D is by Assumption 1 invariant, hence Assumptions A1-A3
hold along closed loop trajectories.

Define the positive semidefinite function

V (x) :=
1

2

m
∑

j=1

(

Mj(x) −M∗

j

)2
, (4)

with time derivative

V̇ (x) =
m
∑

j=1

[

Mj(x) −M∗

j

]

( rj
∑

i=1

ψi
j(x) +

rj
∑

i=1

bij(x)uj(x)

)

.

For Mj(x) 6= M∗

j , we have one of the following cases:

(1) If 0 ≤ ũj ≤ ūj, summand j is

[

Mj(x) −M∗

j

]

( rj
∑

i=1

ψi
j(x) +

rj
∑

i=1

bij(x)uj(x)

)

= −λj

[

Mj(x) −M∗

j

]2
< 0.

(2) If ũj < 0, then uj(x) = 0 and summand j is

[

Mj(x) −M∗

j

]

rj
∑

i=1

ψi
j(x).

Assumption A3.a.1 and A3.b.1 ensures that this is negative for both
inflow and outflow controlled phases.

(3) If ũj ≥ ūj, then uj(x) = ūj and summand j is

[

Mj(x) −M∗

j

]

( rj
∑

i=1

ψi
j(x) +

rj
∑

i=1

bij(x)ūj

)

.

Assumption A3.a.2 and A3.b.2 ensures that this is negative for both
inflow and outflow controlled phases.

For the details of point 2 and 3, check [10]. We can conclude that Ω∩D is in-
variant, since D is invariant, and by Assumption 2 and a continuity argument,
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case (1) (and thus V̇ (x) < 0) holds in the intersection between a neighborhood
of Ω ∩D and D.

Moreover, since V̇ (x) ≤ 0, V (x(t)) ≤ V (x(t0)) along system trajectories.
From the construction of V (x) it is rather easy [10] to see that for x ∈ R

n
+,

‖x‖ → ∞ if and only if V (x) → ∞, hence V (x(t)) bounded implies that ‖x(t)‖
is bounded. This allows us to conclude from LaSalle’s invariance principle that
x(t) converges to the largest invariant set contained in {x | V̇ (x) = 0} ∩ D.
By the above and Assumption A3.a.1 and A3.b.1, there is no other invariant
set for which V̇ (x) = 0 larger than Ω ∩D. 2

To use this theorem, we need to find invariant sets D. In some cases, the
assumptions might hold globally in the sense that D = R

n
+. However, in the

general case, constructing a set D might be hard. Typically, one would look
for sets of the shape D = D1 or D = D2, where

D1 :={x∈R
n
+|M∗

j −cj ≤Mj(x)≤M∗

j +cj , j = 1, . . . , m}

that is, a “Lyapunov level set”-type region, and

D2 :={x∈R
n
+ | χi

j
≤χi

j ≤χi
j , i = 1, . . . , rj and

M∗

j −cj ≤Mj(x)≤M∗

j +cj , j = 1, . . . , m}.

For further details and examples, we refer to [10].

Although this theorem merely shows convergence to the set Ω, it is possible to
prove that Ω is asymptotically (set) stable [9]. In many applications, stability
of equilibria is arguably more interesting. It is thus interesting to note that
the controller (2) often (but not always, as the counterexample in [10] reveals)
leads to a stable equilibrium. A sufficient condition for an asymptotically stable
equilibrium can be found from the theory of semidefinite Lyapunov functions.
Here, we state the following theorem which can be proved in a similar way as
Theorem 5 in [4]:

Theorem 2 Let the conditions of Theorem 1 hold. If the closed loop (1) has
a single equilibrium in the interior of Ω∩D that is asymptotically stable with
respect to initial conditions in Ω ∩ D and attractive for all initial conditions
in Ω ∩ D, the equilibrium is asymptotically stable for the closed loop with a
region attraction (of at least) D.

We conclude this section with a brief remark about robustness: The proposed
feedback scheme is independent of the interconnection structure and hence
robust 3 to model uncertainties in Φ(x) (as long as Assumption A1 holds).
This is the most important robustness property. As mentioned in [2], the in-
terconnection terms are in practical examples often the terms that are hardest

3 Robust in the sense that convergence to Ω still holds. Note that changes in Φ(x)
will typically move the equilibria in Ω.
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to model. However, the unconstrained controller also has some (weaker) ro-
bustness properties with respect to bounded uncertainties in Ψ(x) and B(x).
For further details on this, we refer to [10].

4 Simple example: Tanks in series

This example illustrates the versatility of the phase concept, in addition to
shedding light on how to compute a region of attraction and decide stability of
equilibria. Further simulation studies, including a benchmark Van der Vusse
reactor, can be found in [10].

Consider a system with three tanks in series,

ẋ1 = u1 − α1

√
x1

ẋ2 = α1

√
x1 − α2

√
x2

ẋ3 = α2

√
x2 − α3

√
x3u2,

where the states are the level (or mass, or pressure) in each tank. The inflow
to the first tank and the outflow of the third thank can be controlled, and are
bounded, 0 ≤ ui ≤ ūi. The system is obviously positive.

According to the model structure in Section 2, there are several different con-
trol structures that can be chosen, depending on how we divide the state into
phases, and which inputs we choose to control.

i) One phase, inflow controlled: Choosing u1 as control, setting u2 = u∗2 > 0
constant, and total mass M(x) = x1 + x2 + x3 gives

ũ1 = α3

√
x3u

∗

2 + λ1(M
∗ −M(x)).

The (single) phase is inflow controlled. Assumption A3.a.1 obviously holds
globally, and Assumption A3.a.2 (which translates to α3

√
x3u

∗

2 < ū1 for

M(x) < M∗) holds on R
3
+ ifM∗ is chosen such that α3

√
M∗u∗2 < ū1. Then,

by Theorem 1 with D = R
3
+, the state converges to Ω = {x |M(x) = M∗}

from any (positive) initial condition.
ii) One phase, outflow controlled: Choosing u2 as control, setting u1 = u∗1 >

0 constant, and total mass M(x) = x1 + x2 + x3 gives

ũ2 =
−1

α3

√
x3

[−u∗1 + λ2(M
∗ −M(x))] .

The single phase is outflow controlled. Assumption A3.b.1 holds glob-
ally, but Assumption A3.b.2 (u∗1 < α3

√
x3ū2 for M(x) > M∗) does not

hold globally for any combination of M∗ and ū2 (consider e.g. an initial
condition with x3(0) = 0 and M(x(0)) > M∗).

8



Let D2 = {x ∈ R
3
+ | x1 ≥ a, x2 ≥ b, x3 ≥ c} with a, b and c positive

constants satisfying a <
(

u∗

1

α1

)2
, b <

(

α1

α2

)2
a and c <

(

α2

α3

)2
b. Assump-

tion A3.b.2 hold on D2 if ū2 satisfies u∗1 < α3

√
cū2. Since D2 is invariant,

convergence to Ω (if the intersection between Ω and D2 is nonempty) from
initial conditions in D2 follows from Theorem 1.

iii) Two phases, case 1: Phase 1 consist of x1 and x2 (M1(x) = x1+x2), phase
2 of x3 (M2(x) = x3):

ũ1 = α2

√
x2 + λ1(M

∗

1 −M1(x)),

ũ2 =
−1

α3

√
x3

[−α2

√
x2 + λ2(M

∗

2 −M2(x))] .

Phase 1 is inflow controlled. Assumption A3.a.1 holds, and Assump-
tion A3.a.2 (α2

√
x2 < ū1 for M1(x) < M∗

1 ) holds globally if α2

√
M∗

1 < ū1.
Phase 2 is outflow controlled. Assumption A3.b.1 holds globally, but As-
sumption A3.b.2 (α2

√
x2 < α3

√
x3ū2 forM2(x) > M∗

2 ) does not hold glob-
ally. However, since α2

√
x2 < α3

√
x3ū2 for M2(x) > M∗

2 holds when x2 <
(

α3

α2

)2
M∗

2 ū2, we can have D1 = {x ∈ R
3
+ | 0 ≤ x1 + x2 ≤

(

α3

α2

)2
M∗

2 ū2}
(obviously, with M∗

1 <
(

α3

α2

)2
M∗

2 ū2) and convergence to Ω is guaranteed

from initial conditions in D1 from Theorem 1.
iv) Two phases, case 2: Phase 1 consist of x1 (M1(x) = x1), phase 2 of x2

and x3 (M2(x) = x2 + x3):

ũ1 = α1

√
x1 + λ1(M

∗

1 −M1(x)),

ũ2 =
−1

α3

√
x3

[−α1

√
x1 + λ2(M

∗

2 −M2(x))] .

Phase 1 is inflow controlled. Assumption A3.a.1 holds globally, and As-
sumption A3.a.2 (α1

√
x1 < ū1 for M1(x) < M∗

1 ) holds if α1

√
M∗

1 < ū1.
Phase 2 is outflow controlled. Assumption A3.b.1 holds globally, but As-
sumption A3.b.2 (α1

√
x1 < α3

√
x3ū2 for M2(x) > M∗

2 ) does not hold
globally.

Suppose we specify that initial conditions for x1 should satisfy a ≤
x1(= M1(x)) ≤ a. Similarly as in ii), there exists b and c such that D2 =
{a ≤ x1(= M1(x)) ≤ a, x2 ≥ b, x2 ≥ c} is (closed loop) invariant. Suppose
that α1

√
a < α3

√
cū2 holds, then Theorem 1 guarantees convergence to

Ω from initial conditions in D2.

Simulations indicate that the regions of attractions given in iii) and iv) are
rather conservative. The reasons for this is that Theorem 1 requires the time
derivative of Vj(x) to be negative at all times. In both cases, if there is a large
amount of mass in the first phase compared to the second phase, due to the
saturation of the outflow, it is impossible to avoid the situation where the mass
in the second phase increases. However, since the inflow to the first phase is
also restricted, after a while the mass is distributed such that the masses in
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both phases decrease.

Let us analyze the dynamics in Ω in i) above (when the input u1 = α3

√
x3u

∗

2).
The dynamics in Ω can be parameterized by x1 and x2, with x3 = M∗−x1−x2:

ẋ1 = α3

√

M∗ − x1 − x2u
∗

2 − α1

√
x1 =: f1(x)

ẋ2 = α1

√
x1 − α2

√
x2 =: f2(x).

Note that there is a unique equilibrium in Ω, which by linearization is (as-
ymptotically) stable. Furthermore, we see that

∂f1

∂x1

+
∂f2

∂x2

= − α3u
∗

2

2
√
M∗ − x1 − x2

− α1

2
√
x1

− α2

2
√
x2

has the same sign for all x1, x2 such that M∗ − x1 − x2 > 0 (and thus, in
the interior of Ω). This allows us to use Bendixon’s Criterion (see e.g. [13])
to conclude that no periodic orbits can exist in Ω. Moreover, the generalized
Poincaré-Bendixson Theorem tells us that in the two-dimensional case, the
only possibilities for trajectories confined to a compact set, are convergence to
an equilibrium or a periodic orbit (or a graphic). This means that all trajecto-
ries in Ω converge to the (single) asymptotically stable equilibrium in Ω, and
we may conclude from Theorem 2 that the equilibrium in Ω is globally (with
respect to the positive orthant) asymptotically stable (for the total system).

A very similar analysis for case ii) above shows that D1 is then a region
of attraction for the unique equilibrium in Ω. In case iii) (and case iv)),
the dynamics in Ω can be parameterized by ẋ2 = α1

√
M∗

1 − x2 − α2

√
x2

(ẋ2 = α1

√
M∗

1 − α2

√
x2) with unique equilibrium x2 = α2

1M
∗

1 /(α
2
1 + α2

2)
(x2 = M∗

1α
2
1/α

2
2). In both cases, ẋ2 is strictly decreasing in x2, and asymptotic

stability of the equilibrium in Ω is immediate.

5 Stabilization of flow in gas-lifted oil wells

This section presents an application to an important instability problem in
the petroleum industry. First, the problem and a simple mass-balance model
with two manipulated variables, suitable for control design, is presented. A
two input version of the controller is then applied to a stylistic (but realis-
tic) well, analyzed for the simple model and assessed with simulations using
the rigouros (de facto industry standard) multiphase flow simulator OLGA
2000. Thereafter, a one-input version (the second input is kept constant) is
considered for a laboratory scale well.
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5.1 Gas-lifted oil wells

The use of hydrocarbons is essential in modern every-day life. In nature, hydro-
carbons are typically found in petroleum-bearing geological formations (reser-
voirs) situated under the earth’s crust, and hydrocarbons from these reservoirs
are produced by means of an oil well. An oil well is made by drilling a hole
(wellbore) into the ground. A metal pipe (casing) is placed in the wellbore to
secure the well, before “downhole well completion” is performed by running
the production pipe (tubing), packing and possibly valves and sensors into the
well and perforate the casing to make the reservoir fluid flow into the well.
Detailed information on wells and well completion can e.g. be found in [8], see
also Figure 1.

If the reservoir pressure is high enough to overcome the back pressure from
the flowing fluid column in the well and the surface (topside) facilites, the
reservoir fluid can flow to the surface. In some cases, the reservoir pressure
is not high enough to make the fluid flow freely, at least not at the desired
rate. A remedy is then to inject gas close to the bottom of the well, which
will mix with the reservoir fluid, see Figure 1. The gas is transported from
the topside through the gas-lift choke into the annulus (the space between
the casing and the tubing), and enters the tubing through the injection valve
close to the bottom of the well. The gas will help to “lift” the oil out of
the tubing, through the production choke into the topside process equipment
(separator). This is the type of oil well, called gas-lifted well, we will consider
herein. A problem with these type of wells, is that they can become (open
loop) unstable, characterized by highly oscillatory well flow, known as casing
heading. The flow regime of the well (tubing) in this case is denoted slug flow.
The two main factors that induce casing heading, is high compressibility of
gas in the annulus, and gravity dominated pressure drop in the two-phase flow
in the tubing.

The oil production for a typical oscillating well can be seen in Figure 2. This
slug flow is undesirable since it creates operational problems for downstream
processing equipment. Further, stabilizing the slug flow in the well leads to
increased production, as illustrated in Figure 3. The casing heading problem
is industrially important, as a considerable amount of such wells exhibit slug
flow. This (or similar) control problems are considered in e.g. [12,5].

For simplicity, we will assume that the reservoir contains only oil, which is a
good approximation if the fraction of gas and water is low. We assume realistic
boundary conditions, that is, constant separator pressure (downstream the
production choke), constant gas injection pressure (upstream the gas injection
choke) and constant reservoir pressure (far from the well). The (vertical) well
is 2km deep and the high fidelity model is modelled in OLGA 2000 dividing
both the tubing and the annulus into 25 volumes.
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Fig. 1. A gas-lifted oil well.

5.2 A simple model of a gas-lifted oil well

As discussed above, the mechanisms that make the well produce in slugs, are
related to the mass of gas in the annulus (compressibility) and the mass of
fluid in the tubing (gravity). Consequently, it is reasonable to believe that
an ODE based on mass balances will give a good description of the dynamic
behavior of the well,

ẋ1 = −wiv(x) + wgc(x, u1) mass of gas, annulus

ẋ2 = wiv(x) − wpg(x, u2) mass of gas, tubing

ẋ3 = wr(x) − wpo(x, u2) mass of oil, tubing

where wgc is the flow of gas through the gas injection choke, wiv is the flow
of gas through the injection valve, wpg and wpo are the flow of gas and oil
through the production choke and wr is the inflow of oil from the reservoir.
The challenge in making such a model, is to find the relation between the
system masses (x) and the pressures in the system that determines the flows
(w) based on valve-type equations. To keep the presentation short, we do not
go into this, but refer to [10], and note that the three state model gives a
reasonable approximation to the OLGA model as shown in Figure 2.
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5.3 State feedback control

The system written as above can fulfill (a slightly modified) Assumption A2.
However, as the expressions for the flows are rather inaccurate (especially for
the multiphase flow through the production choke) we will assume that the
flow of gas through the gas-lift choke and the flow of oil through the produc-
tion choke are measured, and that fast control loops control these measured
variables. The setpoints for these loops will be the new manipulated variables.
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This will, in addition to being a more sensible “engineering approach”, sim-
plify the equations. It also allows us to include rate saturations on the opening
of the chokes in the simulations.

The dynamic model with the manipulated flows as inputs, is

ẋ1 = −wiv(x) + v1

ẋ2 = wiv(x) − wpg(x, u2(x))

ẋ3 = wr(x) − v2

We choose as phases the sum of gas in the tubing and annulus (x1 +x2, phase
1 being inflow controlled) and the oil in the tubing (x3, phase 2 being outflow
controlled). The upper saturations on both v1 and v2 (the maximum flows
through the gas-lift choke and the production choke) depend on the state
(through the pressures). Noting that the maximum flows are always obtained
when the chokes are maximally open, Assumption A3 can be checked for these
saturations. Denote the maximum flows as v̄1(x) and v̄2(x), which are given
by inserting u1 = u2 = 1 into the expressions for wiv(x, u1) and wpo(x, u2).

Then, for j ∈ {1, 2}, the controller is given by

vj(x) =















0 if ṽj(x) < 0

ṽj(x) if 0 ≤ ṽj(x) ≤ v̄j(x)

v̄j(x) if ṽj(x) > v̄j(x)

where

ṽ1(x) = wpg(x, u2(x)) + λ1(M
∗

g − x1 − x2)

ṽ2(x) = wr(x) − λ2(M
∗

o − x3).

For a detailed analysis of stability, and some notes on performance, we refer
to [10]. Here, we briefly note that for the simple mass balance model of the oil
well, asymptotic stability of an equilibrium follows from Theorem 1 and 2 for
M∗

g = 4400 kg and M∗

o = 4600 kg, and with the set D chosen as

3640 ≤ x1 ≤ 4240, 510 ≤ x2 ≤ 590, 4550 ≤ x3 ≤ 4650.

Simulations (on the simple model) show that the real region of attraction is
considerably larger than the one found above, but not global. For instance,
if the system is started in a “no production” state (tubing filled with oil –
x2 = 0), the system must be brought to a producing condition before the
controller is turned on. This is due to the saturation of the chokes. If the
tubing is filled with oil, the casing can be filled with enough gas such that
x1 +x2 = M∗

g , without gas being inserted into the tubing. The “oil controller”
tries to decrease the amount of oil, but is unsuccessful since the well cannot
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produce oil with no gas inserted. Increasing M∗

g (temporarily) might be a
solution in this case.

5.4 OLGA simulations

Using the OSI 4 link between OLGA and Matlab, the controller, implemented
in Matlab, was used on a well modeled in OLGA. The simulation results are
shown in Figure 5 and 4. Note that these are state feedback simulation results,
the masses and flows were assumed measured.

In the simulations, the well is operated in open loop the two first hours. In
this period, the well is stabilized by using a high opening of the gas-lift choke
(u1 = 0.7) and a low opening of the production choke (u2 = 0.4). Then,
the controller (with M∗

g = 3450 kg and M∗

o = 9400 kg) is switched on, and
remains on for three hours. We see that the controller stabilizes the well at a
higher production, and with a significantly lower use of injection gas (in this
case, the production increases approximately 2% while the use of injection
gas is reduced with 40%). The controller is switched off after 5 hours, keeping
the inputs constant. It is seen that the new operating point is open loop
unstable. In Figure 5, we see that the controller does not quite reach the mass
setpoints. This is mainly due to the flashing phenomena, meaning that there
is mass leaving the oil phase entering the gas phase, which is not accounted
for in the simple model (and hence the controller). This can be interpreted as
errors in the external flows, which the controller has some robustness towards,
as discussed in Section 3. The influence is more pronounced in the gas phase,
since the total external flow in the oil phase is larger than in the gas phase.
Simulations indicate that larger λ’s (λ1 = λ2 = 0.001s−1 was used in the
simulations shown) reduce the steady state error. Choosing too high λ’s leads
to problems with saturations, and also numerical problems in Olga may occur.
Another remedy for reducing this offset is including an estimate of the flashing
in the equations.

5.5 Lab trial

A slightly different controller structure was tried on a lab setup at TU Delft
in The Netherlands 5 . The laboratory setup is shown in Figure 6.

4 OLGA Server Interface (OSI) toolbox, for use with Matlab, developed by ABB
Corporate Research.
5 The experimental setup is designed and implemented by Shell International Ex-
ploration and Production B.V., Rijswijk, and is now located in the Kramers Lab-
oratorium voor Fysische Technologie, Faculty of Applied Sciences, Delft University
of Technology.
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The laboratory installation represents a gas-lifted well, using compressed air
as lift-gas and water as produced fluid. The production tube is transparent,
facilitating visual inspection of the flow phenomena occurring as control is
applied. The production tube measures 18m in height and with an inner di-
ameter of 20mm, see Figure 6a. The fluid reservoir is represented by a tube
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of the same height and an inner diameter of 80mm. The reservoir pressure is
given by the static height of the fluid in the reservoir tube. A 30 liter gas bottle
represents the annulus, see Figure 6b, with the gas injection point located at
the bottom of the production tube. In the experiments run in this study, gas
is fed into the annulus from a constant pressure source, giving approximately
a rate of 9 L/min (atmospheric conditions). Input and output signals to and
from the installation are handled by a microcomputer system, see Figure 6c,
to which a laptop computer is interfaced for running the control algorithm
and presenting output.

a) The production tube and the
reservoir tube.

b) The annulus volume

c) The microcomputer

Fig. 6. The gas-lift laboratory

Having only one control input available (the production choke), we treated the
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oil in the tubing and gas in annulus and tubing as one phase. This gives us
less control freedom than in the simulations in the previous section, but can
in many cases be more realistic - for instance there can be situations where
the gas-lift choke is not available for control, for example if the amount of
available lift gas topside is given by production constraints. An advantage of
this structure is that the controller is independent (and hence robust) to mass
transfer between the oil and gas phase in the tubing, and that tuning (in terms
of total mass setpoint) should be significantly easier. The expected disadvan-
tages are a smaller region of attraction, and that the achievable performance
of the well (the oil production) is lower.

The input (flow through production choke) for the system with one phase is
then given by (2) and

ṽ2(x) = wr(x) + wgc(x) − λ2(M
∗

o − x1 − x2 − x3).

OLGA simulations of this controller (using all available measurements from
OLGA) with a PI-controller ensuring the correct mass flow through the pro-
duction choke, is shown in Figure 7.

The high frequency oscillations seen in Figure 7 are due either to errors in the
way OLGA was setup for these simulations, or internal problems in OLGA,
possibly due to the small physical size of this laboratory well. Since they are
much faster than the interesting dynamics, they should not have an influence
on the results and conclusions.

We see that the controller takes the system to a state with higher production.
When the controller is turned off, the system starts to oscillate which shows
that this operating point is open loop unstable.

Since we in this case have good knowledge of the in- and outflows, there is no
steady-state error in the total mass. The fact that we do not know the flashing,
does no longer give steady state error in total mass, since the flashing is now
an “interconnection flow” (no longer an “external flow”) which the controller
is robust against.

There is an interesting phenomena apparent in the OLGA simulations (Fig-
ure 7): After the (controlled) mass has converged, the inflow (and the choke
opening) continues to move (drift) slowly, before a steady state is reached af-
ter around 10 minutes. An explanation for this in terms of the theory, is that
there must be a slow dynamic mode in Ω, the set of masses where the total
mass is constant. This slow dynamic mode was not observed with the simple
model, but it was apparent in the lab trials, as we will see. Even though this
mode should not have a direct impact on stability, it makes tuning hard and
time consuming, and it obscures the relation between total mass setpoint and
well production (production choke opening).
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Fig. 7. Total mass vs setpoint, flow through production choke vs setpoint calculated
by mass controller, and production choke opening. The controller is turned on after
5 minutes, and turned off after 25 minutes.

The same controller was implemented on the lab. Some limitations in the lab
setup posed challenges to the trial. First, there were no available (multiphase)
flow measurements of the flow through the production choke. Thus, instead of
letting the controller compute the flow through the production choke, we used
a simple correlation to compute the desired differential pressure (dp) over
the production choke. A (noisy) dp measurement was then used to obtain
the desired dp. Second, the phase masses in the lab setup were not measured,
necessitating a state observer. The development of a state observer is reported
in [6].

The controller proved hard to tune to satisfactory (or even stable) operation,
compared with the corresponding simulations on the OLGA simulator model
of the lab. The reason for this we believe is partly the bad performance of the
inner control loop (due to both the noisy dp measurement and errors in the
correlation between the dp measurement and the corresponding multiphase
flow). In addition (and probably equally important) comes the slow dynamic
mode, as explained above for the OLGA simulations.

In Figure 8 we see the results of a trial, where the well is started rather close
to the total mass setpoint. The first transient is due to the convergence of the
observer, and then the controller is turned on after two minutes. The controller
keeps the mass (and hence the production) stable, until the controller is turned
off after 30 minutes. Thereafter, we see that the well starts oscillating. The
drift in production choke opening from the controller is turned on to about 25
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minutes is clearly seen in the lowermost plot.
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Fig. 8. Estimated mass vs setpoint, differential pressure measurement vs setpoint
calculated by mass controller, and production choke opening. The controller is
turned on after 2 minutes, and turned off after 30 minutes.

6 Concluding remarks

A controller for a class of positive systems is proposed, leading to closed loop
convergence to (or, stability of) a set. The system class could potentially have
high applicability, as illustrated by the range of examples studied herein and
in [10]. The main restrictive assumption is Assumption A3, ensuring that
the “Lyapunov function” used in the proof of the main result is decreasing
when the input saturates. The way these assumptions are used in the proof of
Theorem 1, along with experience from the examples, indicate that it should
be possible to get less conservative conditions, at least for a specific system.

The closed loop system has some robustness properties, most importantly ro-
bustness towards unmodeled interconnection terms. These are often the terms
that are hardest to model, as for instance in the gas-lift case in Section 5. The
closed loop convergence holds independently of the rate-of-convergence para-
meter λj . This means that this parameter (at least nominally) can be used to
shape the closed loop performance in terms of the convergence of the mass of
each phase, without affecting stability.

The suggested approach leads to stability of a compact set. The approach
does not give any guarantees pertaining to the behavior on this set, apart
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from boundedness. However, if the set contains an equilibrium that is asymp-
totically stable with respect to the set, the equilibrium is also asymptotically
stable in the original state space.

The controller was applied to stabilization of gas-lifted wells. Both analysis
on the simple model, simulations using the multiphase flow simulator OLGA,
and the lab trials confirm that the developed controller was able to stabilize
the flow in the gas-lifted well at an open-loop unstable operating point with
increased oil production and reduced use of lift gas.

An important feature of the controller is that the developed state feedback
controller is independent of the flow through the injection valve, wiv(x), and
hence is robust to modeling errors in this flow. This is in contrast to the fact
that the system can be open loop stabilized (or destabilized) by the charac-
teristics of this valve. In some cases this valve is designed to always be in a
critical flow condition, effectively decoupling the annulus dynamics from the
tubing dynamics. Even though this takes care of the instability problem, op-
erational degrees of freedom are lost compared to the approach herein since it
implies a constant, given at the design stage, gas injection into the tubing.

Experience from both OLGA simulations and lab trials have shown us that
the controller is hard to tune to satisfactory performance - especially for the
case where only production choke was used as control. The are several reasons
for this - most importantly, perhaps, the difficulty in finding a good relation
between mass setpoints and resulting well production. Contributing to this are
the slow mode apparent in Ω, and also (and probably related) that for some
wells (including the lab setup) the fact that large variations in production
gives only rather small variations in mass.
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