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Abstract

In this paper a new model-based optimizing controller for a set of nonlinear systems is proposed. The

nonlinear model set is based on a convex combination of two bounding linear models. An optimal control

sequence is computed for each of the two bounding models. The proposed control algorithm is based on a

convex combination of the two control sequences. A novel feature in these two optimizations is an added

constraint related to the feasibility of the 'other' bounding model. The control algorithm can for example be

used in model predictive control. We provide robust feasibility guarantees and an upper bound on the optimal

criterion if the bounding models are linear FIR models. Further, simulation examples demonstrate signi�cant

feasibility improvements in the case where the bounding models are general linear state-space models. The

proposed method guarantees robust feasibility for a 1-step ahead prediction in the general case. This can be of

interest in MPC applications.

1 Introduction

The combined use of dynamic models and optimization for process control o�ers a concept in which process

knowledge can be linked to operational goals formulated by some optimization criterion. This concept has seen

widespread use, particularly through the applications of model predictive control (MPC). MPC refers to a class

of algorithms where an optimization problem is solved repetitively, at every new time-instant. Only the �rst part

of the computed control sequence is applied to the system since a new optimal control sequence is computed and
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applied at the next time-step. Several reviews of MPC technology exist, see for example Lee [4], Rawlings et al.

[8] and Qin and Badgwell [7], the latter emphasizing industrial use of the technology. The interaction between

control and optimization is discussed in an illuminating way in Mayne [6]. In this paper the divide between convex

and non-convex problems is emphasized. In particular the problems arise by using nonlinear models since the

optimization problem in these cases in general becomes non-convex.

State-of-the-art optimizing control is based on linear dynamic models and linear constraints on the control

inputs and system outputs. Nonlinear optimizing control has been studied by Rawlings et al. [8] and Genceli and

Nikalaou [3]. Further, some approaches were described by Bequette [1] in a somewhat earlier paper. These control

strategies normally result in a nonconvex optimization problem.

In this paper we explore optimizing control based on nonlinear models. In particular, the goal is to derive an

approach which can o�er a smooth transition from linear optimizing control to nonlinear and robust optimizing

control. By smooth transition we mean an approach which does not invoke the full mathematical 'machinery' of

nonlinear optimizing control in the general case. This is particularly important from an industrial viewpoint as

it simpli�es the transition from the application of linear to nonlinear optimizing control. The smooth transition

is accomplished by constraining the nonlinear optimization problem along three axes. First, the set of nonlinear

models is limited. Second, constraints are added to the optimization problem to enhance feasibility of an optimal

solution for a set of bounding linear models. Third, the control sequence is computed as a convex combination of

control sequences computed on the basis of the bounding linear models.

The remainder of this paper is structured as follows: In the next section we formulate the problem. Following

this, the theoretical foundation for the proposed control algorithm is developed. In section 4 three simulation

examples are investigated to explore the theoretical �ndings, and to study the proposed method beyond the

assumptions given by the theory. The proposed method is after this investigated in closed loop control. Finally, a

comprehensive discussion is provided before the conclusions �nalizes the paper.

2 Problem de�nition

2.1 Background

Assume an optimality criterion given by

�(�; �) =
X
i2IN

l(xi+1; ui) (1)

where

� = fuT0 ; : : : ; u
T
N�1g; ui 2 U � Rmu ; � = U � : : :� U

� = fxT1 ; : : : ; x
T
Ng; xi 2 X � Rmx ; X = X � : : :�X

U;X � convex set



l : Rmu�my ! R+; l � convex function; i 2 IN

IN = f0; : : : ; N � 1g

The optimality criterion is de�ned on a time horizon 0 to N . ui denotes the control input to a system. The

control input ui is constant during the time span [i; i+ 1). xi denotes the system states at time i. Since U and X

are convex sets, � and X are convex sets. Further, � is convex since l is convex.

We de�ne two linear state-space models (�1;�0) and a set of nonlinear models (�w) based on the interpolation

of the two linear models.

�1 : h1(xi+1; xi; ui) = xi+1 � f1(xi; ui) = xi+1 �A1xi �B1ui = 0; i 2 IN (2)

�0 : h0(xi+1; xi; ui) = xi+1 � f0(xi; ui) = xi+1 �A0xi �B0ui = 0; i 2 IN (3)

�w = fhw : hw(xi+1; xi; ui) = w(xi; ui)h1(xi+1; xi; ui) + (1� w(xi; ui))h0(xi+1; xi; ui) = 0 (4)

8i 2 IN ; w 2W; W = fw 2 C : w(xi; ui) 2 [0; 1] 8xi 2 X 8ui 2 Ugg

hw is a nonlinear function, constructed as convex combinations of h1 and h0. It should be noted that the

continuous function w in general will depend on the states and the control inputs. We further observe that the

interpolated model hw 2 �w is not generally a convex function since w may be any continuous function bounded

by [0; 1].

Finally, we de�ne initial conditions.

x0 � given (5)

The problem we want to address is to minimize (1) with respect to � based on the di�erent constraints discussed

above, hence we want to solve

�o = arg min�2� �(�; �) (6)

subject to the constraints � 2 X , (5) using one of the models (2), (3) or (4).

The optimization problem above is generally nonconvex when a nonlinear model within �w is used. This can

cause problems, especially in on-line control where computation time can be an issue.

In MPC the minimization problem (6) is solved repetitively, at each time-step, with new initial conditions.

Only the �rst control value of the � sequence is actually applied to the process. Furthermore, it is typical to

parameterize the control sequence as follows:

� = fuT0 ; : : : ; u
T
M ; : : : ; uTMg; M < N � 1 (7)

This means that the control input is constant during the last part of the control input sequence.



The criterion function (1) does not cover all possible criteria, penalizing changes in the control input is for

example not included. This type of change does not inuence the results in this paper as long as the criterion

function remains convex.

2.2 Interpolating control

We will in the following describe the proposed controller. First, we de�ne two control sequences �1 2 � and �0 2 �

and a set of interpolating controllers.

�� = f�� : �� = ��1 + (1� �)�0; 8� 2 [0; 1]g (8)

The control sequence �� forms the basis for the controller. It should be noted that �� is feasible since it is

based on interpolation within a convex set, ie. �� � �. � may in general vary from one time-instant to another.

For later convenience we pursue with some de�nitions. �1 and �0 are the state sequences on the horizon

f1; : : : ; Ng obtained by applying some control sequence � 2 � to �1 and �0, respectively. �
l
k = fxlk1; : : : ; x

l
kNg is

the state sequence obtained by applying the control sequence �l, l 2 f1; 0g to the system �k, k 2 f1; 0g. Further,

we de�ne the set of states associated with the model set �w and the control sequence set ��.

X�
w = f��w : ��w = fx�w1; : : : ; x

�
wNg; 8 hw 2 �w; � 2 [0; 1]g (9)

Later we will in particular study the interpolated controller set �� where �1 and �0 are computed on the basis

of the following two optimizing problems.

�o1 = arg min�2� �(�; �1) (10)

subject to the initial conditions (5), constraints �1 2 X , and �1 given by (2).

�o0 = arg min�2� �(�; �0) (11)

subject to the initial conditions (5), constraints �0 2 X , and �0 given by (3).

If we choose �1 = �o1 and �0 = �o0 the state sequences �11 and �00 are the optimal sequences for �1 and �0,

respectively. Further, following the above notation �lk is the criterion value obtained by applying the control

sequence �ol , l 2 f1; 0g to system �k, k 2 f1; 0g. This means that �
1
1 and �00 are the optimal criterion values for

�1 and �0.

Note that we assume that the state sequences discussed above are based on the initial value (5).

3 Analysis

We will in this section analyze the use of the interpolating controller on the model set �w.



3.1 Guaranteeing feasibility

There is no guarantee that the state constraints are satis�ed on the horizon f1; : : : ; Ng when the control sequence

�� 2 �� is applied to the system hw 2 �w. We will in the following include restrictions on the choice of �1 and

�0, and on �w so as to ensure that X�
w � X .

Before we do this we state the well-known connection between FIR-models and state space models.

Proposition 1 An FIR-model of this form

yi+1 = Ck0ui + : : :+ CkLui�L = ~Ck ~ui; k 2 f1; 0;Wg; i 2 IN (12)

yi 2 Y � Rmy

is equivalent to a state-space model on the form (2), (3) or (4) if

Ak =

0
@ ~I 0

Ck1 : : : CkL 0

1
A ~I =

0
BBBBBB@

0 : : : : : : 0

I 0 : : : 0

.

.

.
. . . 0

0 : : : I 0

1
CCCCCCA

Bk =

0
BBBBBBBBB@

I

0

.

.

.

0

Ck0

1
CCCCCCCCCA

; k 2 f1; 0;Wg

and yi = (0; : : : ; 0; I)Txi.

We note that Cwj , or ~Cw (w 2 W ), and correspondingly Ak and Bk in general depend on the control inputs

and states.

If we limit the bounding linear models to be FIR-models, and include feasibility constraints on the choice of �1

and �0 it is possible to guarantee feasibility in the sense that X�
w � X . This is shown below.

Theorem 1 Assume two control sequences �1 and �0 such that �lk 2 X 8l 2 f0; 1g; k 2 f0; 1g for the initial

conditions (5). Further, de�ne a control input sequence set �� by (8).

If the linear models �1 and �0 are FIR-models, and �� 2 ��, then ��w 2 X . �
�
w is de�ned in (9).

Proof:

We �rst use Proposition 1. Since the bounding models (2) and (3) are FIR-models, we transform them into the

equivalent input-output model structure (12). The model set �w contains nonlinear FIR-model and may, hence,

also be transformed into a FIR-structure.

Let zlk denote the j0th element of the predicted output vector yi+1 of the FIR-model (12) at some i 2 IN if we

apply the control sequence �l; l 2 f1; 0g to the system �k; k 2 f1; 0g. The assumptions on �1 and �0 guarantee

that zlk 2 Xj where X = X1 � : : :�Xmx
.



Let z�w denote the j0th element of output vector yi+1 of the FIR-model (12) by applying a control sequence

�� 2 �� to the system hw 2 �w.

Let c1, c0 and cw denote the j'th row vector of ~C1, ~C0 and ~Cw, w 2W , respectively.

We �rst show that cT1 ~u�i 2 Xj .

cT1 ~u�i = cT1 (�~u1i + (1� �)~u0i) = �cT1 ~u1i + (1� �)cT1 ~u0i = �z11 + (1� �)z01 (13)

cT1 ~u�i lies in Xj since it is a convex combination of two elements in the convex set Xj . An identical argument

may be formulated for cT0 ~u�i.

We now choose some element � 2 [0; 1] and show that cTw~u�i 2 Xj for any w(xi; ui) 2 [0; 1].

cTw~u�i = w(xi; ui)c
T
1 ~u�i + (1� w(xi; ui))c

T
0 ~u�i (14)

We have above shown that cT1 ~u�i 2 Xj and cT0 ~u�i 2 Xj . Since Xj is a convex set, the convex combination

cTw~u�i must lie in Xj .

The above result cannot be generalized to arbitrary A1 and A0 matrices. Further, it is critically dependent on

the assumption that each of the control sequences �1 and �0 applied to either of the models �1 or �0 obey the

state constraint on the horizon f1; : : : ; Ng.

This theorem will form the basis for several corollaries. First, we use it in the case where �1 and �0 are based

on the solution of some optimization problem.

Corollary 1 Given the following control sequences

�o1 = arg min�2� �(�; �1) (15)

subject to the initial conditions (5), constraints �11 2 X (�11 is the state sequence obtained by applying �1 2 �

to �1), and �10 2 X .

�o0 = arg min�2� �(�; �0) (16)

subject to the initial conditions (5), constraints �00 2 X , and �01 2 X .

If the linear models �1 and �0 are FIR-models, and �� 2 ��, then ��w 2 X .

Proof: Since the control sequences de�ned in (15) and (16) satisfy the state constraints �lk 2 X 8l 2 f0; 1g; k 2

f0; 1g in Theorem 1, the Corollary follows directly from Theorem 1.

Remark: This corollary states the important result that an arbitrity control sequence �� 2 �� applied to

an arbitrary model hw 2 �w will satisfy the state constraints on the horizon f1; : : : ; Ng provided additional hard

constraints are included in the optimization, ie. including �0 2 X for computing �o1 , and �1 2 X for �o0 .

If we limit our attention to 1-step ahead prediction, however, the result can be extended.



Corollary 2 Given the control sequences �o1, �
o
0 and �� as de�ned in (15), (16) and (8). The state sequence which

arises by applying �� to hw 2 �w is denoted ��w = fx�w1; : : : ; x
�
wNg, cf. (9).

Then x�w1 2 X

Proof:

Let zlk denote element j of state vector xlk1 which arises by applying the control input ul0; l 2 f1; 0g to the

system �k; k 2 f1; 0g, and z�w denote element j of state vector x�k1 which arises by applying the control sequence

�� 2 �� to the system hw 2 �w.

Let a1, a0 and aw denote the j'th row vector of A1, A0 and Aw, and b1, b0 and bw denote the j'th row vector of

B1, B0 and Bw. Further, u10 and u00 denote the control input of �1 and �0 at time 0.

We need to show that z�w 2 Xj , where X = X1 � : : :�Xmx
.

We �rst show that aT1 x0 + bT1 u�i 2 Xj .

aT1 x0 + bT1 u�0 = aT1 (�x0 + (1� �)x0) + bT1 (�u10 + (1� �)u00)

= �(aT1 x0 + bT1 u10) + (1� �)(aT1 x0 + bT1 u00)

= �z11 + (1� �)z01 (17)

aT1 x0 + bT1 u�0 lies in Xj since it is a convex combination of two elements in the convex set Xj . An identical

argument may be formulated for aT0 x0 + bT0 u�0.

We now choose some element �2[0; 1] and show that aTwx0 + bT1 u�0 2 Xj for any w(xi; ui) 2 [0; 1].

aTwx0 + bTwu�0 = w(xi; ui)(a
T
1 x0 + bT1 u�0) + (1� w(xi; ui))(a

T
0 x0 + bT0 u�0) (18)

Since aT1 x0+bT1 u�0 2 Xj and a
T
0 x0+bT0 u�0 2 Xj , and Xj is a convex set, the convex combination aTwx0+bTwu�0

must lie in Xj.

Remark: This corollary shows that the 1-step ahead prediction will satisfy the state constraints for any linear

models �1 and �0 if �o1 and �o0 are computed using the additional constraints as in (15) and (16). This implies

that an MPC controller based on �� and (15) and (16) always will be feasible even though the constraints may

be violated on the optimization horizon. The reason is that the MPC controller only applies the the �rst control

input before recalculating the control input at the next time-step.

3.2 Robust performance

Theorem 1 provides a possibility to obtain an upper bound on the following worst case scenario. The upper bound

is de�ned by:



�� = sup hw2�w; ��2���(��; �
�
w) (19)

This result is formulated by the following lemma.

Corollary 3 Suppose the control sequence �� 2 �� is applied to the system hw 2 �w with initial conditions (5).

�1 and �0 are FIR-models.

Further, suppose the optimality criterion function l is given by some separable norm function, ie. l(xi+1; ui) =

kyi+1k
2
Q + kuik

2
R, where yi is the output of the FIR-model formulation (12).

Then an upper bound for �� in (19) is given by

�� �
X
i2IN

Cui + �ui (20)

where Cui = maxk;l2f1;0gk ~Ck~ulik
2
Q and �ui = maxl2f1;0gkulik

2
R.

Proof:

We �rst compute a upper bound for kyi+1k
2
Q.

kyi+1k
2

Q = k ~Cw~u�ik
2

Q = k(w ~C1 + (1� w) ~C0)~u�ik
2

Q

� [wk ~C1~u�ikQ + (1� w)k ~C0~u�ikQ]
2

� maxk2f1;0gk ~Ck~u�ik
2

Q

= maxk2f1;0gk ~Ck[�~u1i + (1� �)~u0i]k
2

Q

� maxk2f1;0g[�k ~Ck~u1ikQ + (1� �)k ~Ck~u0ikQ]
2

� maxk;l2f1;0gk ~Ck~ulik
2

Q

= Cui (21)

A upper bound on kuik
2
R is easily computed.

kuik
2

R = ku�ik
2

R = k(�u1i + (1� �)u0ik
2

R

� [�ku1ikR + (1� �)ku0ikR]
2

� maxl2f1;0gkulik
2

R

= �ui (22)

By these expressions the corollary is proved.



The important consequence of the above lemma is the fact that an easily computed upper bound on robust

performance can be found. This can hence be used as a measure for robust performance.

To compute the bound we use the output yi instead of xi. This is no important limitation since yi forms the

output part of the states of a FIR-model. A weighting of yi is, hence, the obvious choice for the criterion.

4 Examples

We will in this section further explore the �ndings in the above sections through three numerical examples. All

the models, except for �0 in example 3, are typical models found in the process control problems. In the �rst

example we will investigate the method on a nonlinear FIR-model. In examples 2 and 3 we will study the method

beyond the assumptions given by the theory. In particular, we investigate situations where there is no theoretical

guarantee for a feasible solution.

4.1 Example 1: FIR models

We assume that a single-input single-output system is given by some model hw 2 �w, cf. (4), with bounding

FIR-models given by

yi+1 = ck0ui + : : :+ ck4ui�4 = ~ck~ui; k 2 f1; 0g (23)

~c1 = f�0:10; 0:30; 0:40; 0:30; 0:10g

~c0 = f0:20; 0:20; 0:15; 0:10; 0:05g

Proposition 1 gives the equivalent state-space formulation.

The two bounding models resemble a system with an inverse response and a stationary gain of 1.0, and a 1st

order response and a stationary gain of 0.7, respectively.

We use the well-known quadratic optimality criterion, add hard constraints on the system output and control

input, and assign initial conditions.

�(�; �) = 0:5

NX
i=1

y2i + ru2i�1

N = 7

r = 0:01

U = [�1; 1]

X = [�1; 1]� [�1; 1]� [�1; 1]� [�1; 1]� [0:00; 1:01]

x0 = (1; 1; 1; 1; 0)T



The state-space model has 5 states. The �rst 4 states are delayed control inputs while the last state is the

system output, equivalent to yi in (23). Hence, the state constraints X limits the system output to [0; 1:01]. Note

that the system output does not depend on the last element of x0 since it does not have any auto-regressive terms.

We will �rst study the feasibility of the proposed controller, (8), by studying the output trajectories. This is

done in three steps.

1. The control sequences �o1 = (0:90; 0:60;�0:70; 0:33; 0:06;�0:11; 0:11)T and

�o0 = (0:90; 0:60;�0:70; 0:13; 0:28;�0:17; 0:08)T are computed using (15), (16), ie. with the additional con-

straints in place. 6 interpolating control sequences �� are generated by choosing � = f0:0; 0:2; 0:4; 0:6; 0:8; 1:0g.

2. We choose 6 models within �w by choosing constant interpolation weights w = f0:0; 0:2; 0:4; 0:6; 0:8; 1:0g.

The 6 models are simulated using the 6 interpolating control sequences as inputs. This gives a total of

6� 6 = 36 simulation runs. The system is simulated from 0 to 7, ie. equal to the optimization horizon.

3. The system outputs for each simulation run is checked against the constraints, ie. [0:00; 1:01]. The result is

shown in the matrix in Table 1. The 36 columns relate to each of the simulation runs, while the 8 lines are

related to time instants f0; 1; : : : ; 7g.

0 indicates no constraint violation, while 1 or 2 signi�es a violation of the minimum or maximum allowable

output, respectively. Table 1 shows that there is no violation of output constraints. This is in accordance

with Theorem 1.

Corollary 3 gives an upper bound on the optimality criterion, for this example we compute �� = 1:93. The

criterion values for the 36 simulation runs in Table 1 lie between 0:47 and 1:61. This indicates that the upper

bound need not be very conservative.

To study the impact of the additional constraint, ie. �0 2 X to compute �o1 and �1 2 X to compute �o0 , we

remove these constraints and perform the computations in item 1-3. This means computing �o1 and �
o
0 according to

(10) and (11). The results are shown in Table 2. There are in these cases many violations of the output constraints.

In the latter case the control sequences are �o1 = (0:90; 0:60;�0:70; 0:33; 0:06;�0:12; 0:09)T and

�o0 = (�1:00;�0:34; 0:34; 0:17; 0:00;�0:17; 0:00)T . They are very di�erent from each other. This is not the case in

item 1 above, in that case the control sequences are identical except for the last control input. The reason for this

are the added constraints which limit the possible choices of control inputs.

4.2 Example 2: Bounding 2nd order models

We again assume that a model set �w de�nes a single-input single-output system. In this example the bounding

linear models are given by

A1 =

0
BBB@

0:00 0:00 0:00

0:00 0:00 1:00

0:00 �0:79 1:78

1
CCCA B1 =

0
BBB@

1:00

0:00

0:01

1
CCCA



A0 =

0
BBB@

0:00 0:00 0:00

0:00 0:00 1:00

0:01 �0:855 1:85

1
CCCA B0 =

0
BBB@

1:00

0:00

0:00

1
CCCA

The 3rd state is the system output, hence yi = (0; 0; 1)Txi. �1 is a 2nd order model with two time constants

of about 6 and 15 time-steps, no time-delay and a stationary gain of 1:0. �0 is a 2nd order model with two

time-constants of about 10 and 20, a time-delay of 1 and a stationary gain of 2:0.

To elaborate on the model set �w, let w(xi; ui) 2 [0; 1] be a constant. Hence, the model set �w consists of

only linear models. The stationary gain, time-delay and time-constants for this model set are shown in Fig.1. We

observe that there is a close to linear change in all the characterizing variables.

The optimality criterion, hard constraints on the system output and control inputs, and initial conditions are

given below.

�(�; �) = 0:5

NX
i=1

y2i + ru2i�1 (24)

N = 6

r = 0:01

U = [�10; 10]

X = (�1;1)� (�1;1)� [0:00; 1:01]

x0 = (1; 1; 1)T

The state constraints X limits the system output to [0; 1:01].

The control sequences �o1 = (�7:48;�5:14;�3:28;�1:87;�0:89;�0:28)T and

�o0 = (�7:49;�4:84;�2:80;�1:35;�0:43; 0:00)T are computed using (15), (16), ie. with the additional constraints

in place. We compute 6 interpolating control sequences �� by choosing � = f0:0; 0:2; 0:4; 0:6; 0:8; 1:0g, and choose

6 models within �w by selecting constant interpolation weights w = f0:0; 0:2; 0:4; 0:6; 0:8; 1:0g. Again we simulate

a total of 6 � 6 = 36 runs and check the system outputs against the constraints. There is no violation at any

time-step in any of the 36 simulation runs.

We also compute the control sequences omitting the additional constraints, ie. using (10), (11). In this case we

obtain identical control sequences as above. Hence, in this case the additional constraints make no di�erence on

the computed control sequences.

4.3 Example 3: Bounding 2nd order models

To make the problem more challenging we will in this example study a set of systems where the bounding models

have di�erent types of behaviour. �1 is equal to �1 in the above example, while �0 is a 2nd order model with



oscillatory modes. The 'time-constant' of the oscillatory modes is 29 time-steps and the oscillation period is 5� 6

time-steps. The stationary gain of �0 is 1:0 and the time-delay is 1. The bounding models are described by:

A1 =

0
BBB@

0:00 0:00 0:00

0:00 0:00 1:00

0:00 �0:79 1:78

1
CCCA B1 =

0
BBB@

1:00

0:00

0:01

1
CCCA

A0 =

0
BBB@

0:00 0:00 0:00

0:00 0:00 1:00

0:62 �0:32 0:70

1
CCCA B0 =

0
BBB@

1:00

0:00

0:00

1
CCCA

To get a feel for the model set �w we simulate a step response for 6 models with constant w-values, cf. Fig.2.

The stationary gain does not change , the dynamics do, however, change a lot. The dynamics are particularly

sensitive to w close to 1.

The optimality criterion, constraints and initial conditions are equal to those in (24). The output is again equal

to yi = (0; 0; 1)Txi.

The control sequences �o1 = (�0:61; 0:52; 0:00; 0:00; 0:00;�0:84)T and �o0 = (�0:59; 0:50; 0:01; 0:00; 0:00; 0:00)T

are computed using (15), (16). Again we simulate a total of 6� 6 = 36 runs and check the system outputs against

the constraints. The result is shown in Table 3. We observe that in many of the late time-steps (4 - 6) there are

violations of the minimum value of the system output.

To study the impact of the additional constraints, we remove these constraints. This gives the control sequences

�o1 = (�7:48;�5:14;�3:28;�1:87;�0:89;�0:28)T and �o0 = (�0:59; 0:50; 0:01; 0:00; 0:00; 0:00)T . The results are

shown in Table 4, the number of violations is substantially larger than in Table 3. The numbers behind these tables

accentuates this di�erence. The minimum output constraint, ie. 0, is only marginally violated in Table 3. Most

of the violating outputs lie in the range [�0:10;�0:05] with a minimum value of �0:16. In Table 4 most of the

violating outputs lie in the range [�3;�2] with a minimum value of �5:92.

To further illuminate the impact of the additional constraints we show the criterion values for the 36 simulation

runs in the cases with and without the additional constraints in Tables 5 and 6. The (1; 1) and (6; 6) -entries show

the nominal cases for �1 and �0, ie. �11 and �00. We observe, as should be expected, that the optimal criterion

value in these nominal cases may increase due to the additional constraints. More interesting, however, is the fact

that the added constraints seem to have a signi�cant robustifying e�ect. The worst case criterion values show

a dramatic improvement, 48:70 to 2:57. The improvements are especially pronounced for high �-values, ie. by

comparing the lower left part of Tables 5 and 6.

5 Closed loop behaviour

As discussed earlier the proposed method can be used for closed loop control. In this section we will investigate this

by extending the simulation examples and discuss issues related to feasibility, closed loop stability and robustness.



5.1 Example 1

We extend Example 1 by using our method in MPC. The system, optimization criterion, constraints and initial

values are unchanged. Fig. 3 shows some typical results. In this simulation the system is given by �1, ie. w 2 1,

while the control input is computed by choosing � = 0, cf. (8), ie. the control input is based on �0. We observe

that the output constraints are satis�ed when the added constraints are used. This is, however, not the case if

these added constratins are omitted.

The above might lead to the conclusion that an initial feasible solution implies a feasible solution at any time.

This cannot be guaranteed. This is seen by performing the same simulation as above but increasing the gain of the

simulated system. We increase the gain of �1 by a factor of 5. Fig.4a shows a violation of the output constraints

at certain time instances. The reason for this is that there exists some x 2 X where no feasible � can be found,

ie. no � 2 � such that the predicted states satisfy the state constraints for both bounding linear models. It should

be noted that this shows a rather extreme situation as the 1st coe�cient of the FIR-model can vary between -0.50

and 0.20, cf. (23) and remember that the gain of �1 is multiplied by 5.

Comparing Fig.4a and b indicates that the added constraints have a robustifying e�ect even though the con-

straints are violated in both cases.

5.2 Example 2

To further gain insight we used our method on the system in Example 2. The system, optimization criterion,

constraints and initial values are unchanged. Fig. 5 shows some typical results. In this simulation the system is

given by �0, ie. w 2 0, while the control input is computed by choosing � = 1, cf. (8), ie. the control input is

based on �1. We can make two observations from the results. First, the output constraints are satis�ed when the

added constraints are invoked. This is in accordance with Corollary 2 since a feasible solution can be found at all

the simulated time steps.

Second, as in Example 1 the results indicate that the added constraints have a robustifying e�ect on the closed

loop controller.

6 Discussion

The proposed method is an attempt to o�er a smooth transition from linear to nonlinear optimizing control as

for example nonlinear MPC. In our opinion a smooth transition is important to promote industrial applications of

nonlinear model-based optimizing control. The features that underline the smooth transition are: (i) The control

algorithm uses well-known optimization based on linear models as its building-blocks. (ii) A control sequence is

computed by smooth interpolation, a commonly applied engineering principle.

The proposed controller can be seen as an extension of linear optimizing control from both a theoretical as well

as an applicational perspective. First, we elaborate on the theoretical results.



� A key and novel feature of the proposed controller is the added constraints included for the two minimization

problems, ie. constraint �10 2 X in (15), and �01 2 X in (16). This makes it possible to guarantee robust

feasibility on some given optimization horizon when the bounding models are linear FIR-models provided

that there exists a feasible control input sequence for each of the two bounding linear models. It should be

noted that the model set �w may have autoregressive terms even if the bounding models are FIR-models,

since the weighting function may depend on xi.

� An easily computable upper bound can be found for the optimality criterion in the case of nonlinear FIR-

models. This provides a tool to investigate robust performance of the proposed controller scheme for this

model class.

� Corollary 2 shows robust feasibility for the 1-step ahead prediction for any type of bounding linear models

if �o1 and �o0 are computed using the additional constraints. This implies that an MPC controller based on

the proposed approach always will be feasible if there exists a feasible control input sequence for each of the

two bounding linear models at each time-step. The reason for this is that the optimal control sequence is

recomputed at every time-step. It will be, however, neither optimal nor necessarily stable if the constraints

are violated on the optimization horizon beyond the 1st prediction step.

� The theoretical results apply whether the underlying system hw 2 �w is linear or nonlinear. The richness of

the nonlinear model class covered by �w and the relevance of this model class for process control problems

need further investigation.

Second, we discuss the simulation results.

� Example 1 with bounding FIR-models support the theoretical �ndings. It also clearly demonstrates, cf. Tables

1 and 2, the importance of the added constraints. Further, the computed upper bound on the optimality

criterion seems to be reasonable in the sense that it is not overly conservative.

� Examples 2 and 3 investigate the results beyond the bounds of the theory. This is of interest since practical

use of controllers usually violates theoretical assumptions at some stage. In Example 2 the bounding models

are quite similar in the sense that they both are 2nd order damped systems, while the model characteristics are

more divided in Example 3. The �ndings in Example 2 indicate that constraint handling need not be di�cult

when the bounding model are similar, in this example control computation without the added constraints

gave only feasible solutions. This picture changed signi�cantly in Example 3, the positive e�ect of the added

constraints was very pronounced here, even though there is no feasibility guarantee in this case.

� Corollary 1, ie. the result on feasibility of the 1-step ahead prediction, is supported by the simulations. There

were no constraint violation at time i = 1 with the added constraints, see Tables 1 and 3. This was not

necessarily the case if these constraints were removed as can be seen in Table 2.



� The closed loop simulations substantiates the open loop �ndings. The added constraints do seem to improve

robust stability and performance. It is important to note that the feasibility guarantee depends on the

existence of a feasible control input sequence for each of the two bounding linear models. This is demonstrated

in Fig.4a.

Finally, we elaborate on some additional issues.

� An open question on the proposed approach is the richness of the model set �w. It might be necessary to

include more than two bounding linear model, ie. let the hw be a convex combination of several, say M ,

linear models. In this case the model set can comprise a large class of nonlinear systems as shown in Johansen

and Foss [5]. The problem that arises is the complexity increase in our algorithm since the number of added

constraints to compute each of the optimal control sequence increases. In addition, the control sequence ��

will be a convex combination of M control sequences.

� There exists methods and tools for identifying models on a format like (4), see eg. [2].

� An alternative approach to the one pursued in this paper is to compute a control sequence based on one

nominal model with added constraints related to one or more bounding models.

� This paper does not provide a closed loop stability proof for the proposed method. The �ndings do, however,

provide a basis for seeking such a result.

� Nonlinear optimizing control provides a nonconvex optimization problem. By this, there is no guarantee that

the global optimum can be found. Hence, an alternative approach is to search for a suboptimal solution with

some performance guarantee. This can be done by limiting the search to the set �� proposed in this paper.

� 2 [0; 1] might be computed in one of three ways. (1) A gain-scheduling approach can be applied if it is

possible to schedule � on some process variables. (2) � is assumed to be time-invariant, and it is computed

using an o�-line or on-line estimation scheme based on some performance measure. (3) � is time-varying

and is computed using a recursive on-line algorithm. This may pave the way for a reliable adaptive MPC

controller, since only one time-varying parameter is required. In practice, robustness of adaptive control is

di�cult to obtain when many parameters are estimated on-line.

7 Conclusions

A new model-based optimizing controller for a set of nonlinear systems is proposed. Robust feasibility with respect

to hard state and/or output constraints is guaranteed on the optimization horizon for a set of nonlinear FIR-models,

while signi�cant feasibility improvements are encountered in the case where the bounding models are general linear

state-space models. Finally, the method guarantees robust feasibility for a 1-step ahead prediction in the general

case. This can be of interest in MPC-applications.
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Time Model 1 w = 0:8 w = 0:6 w = 0:4 w = 0:2 Model 0

�o1 ; : : : ; �
o
0 �o1 ; : : : ; �

o
0 �o1 ; : : : ; �

o
0 �o1 ; : : : ; �

o
0 �o1 ; : : : ; �

o
0 �o1 ; : : : ; �

o
0

i=0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1: Example 1 - Bounding FIR-models. Each column represents a simulation run using the control sequence

�� on a model hw 2 �w. The system outputs of each simulation run are checked against the constraints at each

time-step. 0 indicates no output constraint violation. 1 or 2 signi�es a violation of the minimum or maximum

allowable output, respectively.

Time Model 1 w = 0:8 w = 0:6 w = 0:4 w = 0:2 Model 0

�o1 ; : : : ; �
o
0 �o1 ; : : : ; �

o
0 �o1 ; : : : ; �

o
0 �o1 ; : : : ; �

o
0 �o1 ; : : : ; �

o
0 �o1 ; : : : ; �

o
0

i=0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=1 0 2 2 2 2 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=3 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=4 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0

i=5 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

i=6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2: Example 1 - Bounding FIR-models. Each column represents a simulation run using the control sequence

�� on a model hw 2 �w. The system outputs of each simulation run are checked against the constraints at each

time-step. 0 indicates no output constraint violation. 1 or 2 signi�es a violation of the minimum or maximum

allowable output, respectively.



Time Model 1 w = 0:8 w = 0:6 w = 0:4 w = 0:2 Model 0

�o1 ; : : : ; �
o
0 �o1 ; : : : ; �

o
0 �o1 ; : : : ; �

o
0 �o1 ; : : : ; �

o
0 �o1 ; : : : ; �

o
0 �o1 ; : : : ; �

o
0

i=0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

i=5 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

i=6 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

Table 3: Example 3 - Bounding 2nd order models. Each column represents a simulation run using the control

sequence �� on a model hw 2 �w. The system outputs of each simulation run are checked against the constraints

at each time-step. 0 indicates no output constraint violation. 1 or 2 signi�es a violation of the minimum or

maximum allowable output, respectively.

Time Model 1 w = 0:8 w = 0:6 w = 0:4 w = 0:2 Model 0

�o1 ; : : : ; �
o
0 �o1 ; : : : ; �

o
0 �o1 ; : : : ; �

o
0 �o1 ; : : : ; �

o
0 �o1 ; : : : ; �

o
0 �o1 ; : : : ; �

o
0

i=0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=2 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0

i=3 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0

i=4 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

i=5 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

i=6 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Table 4: Example 3 - Bounding 2nd order models. Each column represents a simulation run using the control

sequence �� on model a model hw 2 �w. The system outputs of each simulation run are checked against the

constraints at each time-step. 0 indicates no output constraint violation. 1 or 2 signi�es a violation of the

minimum or maximum allowable output, respectively.



� �o1 � = 0:8 � = 0:6 � = 0:4 � = 0:2 �o0

Model 1 2.57 2.57 2.57 2.57 2.57 2.57

w = 0:8 1.06 1.06 1.06 1.06 1.06 1.06

w = 0:6 0.74 0.74 0.74 0.74 0.74 0.74

w = 0:4 0.60 0.60 0.60 0.60 0.60 0.60

w = 0:2 0.53 0.53 0.53 0.53 0.53 0.53

Model 0 0.51 0.51 0.50 0.50 0.50 0.50

Table 5: Example 3 - Bounding 2nd order models. The criterion values using the control sequence �� on model

wh1 + (1� w)h0 for di�erent values of � and w. The extra constraints are included.

� �o1 � = 0:8 � = 0:6 � = 0:4 � = 0:2 �o0

Model 1 1.67 1.71 1.81 2.00 2.25 2.57

w = 0:8 19.28 12.05 6.61 2.97 1.12 1.06

w = 0:6 38.52 24.64 13.93 6.37 1.98 0.74

w = 0:4 45.94 29.52 16.78 7.71 2.32 0.60

w = 0:2 48.08 30.92 17.59 8.08 2.39 0.53

Model 0 48.70 31.34 17.84 8.20 2.42 0.50

Table 6: Example 3 - Bounding 2nd order models. The criterion values using the control sequence �� on model

wh1 + (1� w)h0 for di�erent values of � and w. The extra constraints are not included.
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Figure 1: Example 2 - Bounding linear models. The gain, time-delay and time-constants of the models with

constant w-values are depicted.
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Figure 2: Example 3 - Bounding linear models. There is a step in u (u goes from 0 to 1) at time 1. The initial

conditions are x = [0; 0; 0]T . Step responses are shown for the 6 models used in the computations in Example 3,

ie. w = f0:0; 0:2; 0:4; 0:6; 0:8; 1:0g.
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Figure 3: Example 1 - MPC. The simulated system is given by �1, ie. w 2 1, while the control input is computed

by choosing � = 0 (8), ie. the control input is based on �0. In a the added constraints are invoked, while these

are omitted in b. The �gures show the system output and the control input.
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Figure 4: Example 1 - MPC. Same simulation as in Fig.3, but the gain of the simulated system is increased by

a factor of 5. In a the added constraints are invoked, while these are omitted in b. The �gures show the system

output and the control input (note the axis).
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Figure 5: Example 2 - MPC. The system is given by �0, ie. w 2 0, while the control input is computed by choosing

� = 1 (8), ie. the control input is based on �1.In a the added constraints are invoked, while these are omitted in

b. The �gures show the system output.


