Online Estimation of Ship’s Mass and Center of Mass Using Inertial Measurements

Jonas Linder ∗ Martin Enqvist ∗ Thor I. Fossen ∗∗
Tor Arne Johansen ∗∗ Fredrik Gustafsson ∗

* Division of Automatic Control, Linköping University, Linköping, Sweden (e-mail: jonas.linder@liu.se, {maren, fredrik}@isy.liu.se).
** Centre for Autonomous Marine Operations and Systems (AMOS), Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway (e-mail: thor.fossen@ntnu.no, tor.arne.johansen@itk.ntnu.no).

Abstract: A ship’s roll dynamics is sensitive to the mass and mass distribution. Changes in these physical properties might introduce unpredictable behavior of the ship and a worst-case scenario is that the ship will capsize. In this paper, a recently proposed approach for online estimation of mass and center of mass is validated using experimental data. The experiments were performed using a scale model of a ship in a wave basin. The data were collected in free run experiments where the rudder angle was recorded and the ship’s motion was measured using an inertial measurement unit. The motion measurements are used in conjunction with a model of the roll dynamics to estimate the desired properties. The estimator uses the rudder angle measurements together with an instrumental variable method to mitigate the influence of disturbances. The experimental study shows that the properties can be estimated with quite good accuracy but that variance and robustness properties can be improved further.

Keywords: Modelling and identification, Operational safety, Inertial measurement unit

1. INTRODUCTION

In marine vessels, mathematical models are nowadays commonly used to increase performance or accuracy. A good model is essential, for instance, in model-based control where a poor model will affect the performance negatively (Skogestad and Postlethwaite, 2005), or in decision support systems where an error in the model might result in bad advice. Ships have time-dependent properties and by estimating these online, a higher model accuracy can be achieved. One example is the mass of a container ship being changed due to loading of containers. The dynamic behavior of the ship is affected by these properties and a large variation of certain properties might be safety critical.

A ship’s roll dynamics is very sensitive to changes in the loading conditions and a worst-case scenario is that the ship will capsize (Fossen, 2011; Tannuri et al., 2003). Iseki and Terada (2001) study the problem of estimating the directional wave spectrum from ship motion. The wave spectrum can then be used to simulate a ship’s response over time, to apply control or to suggest appropriate actions. This is basically an inverse problem and the result is dependent on the ship’s mass. Inaccurate knowledge of the ship’s mass, and thus of the model, might lead to an inaccurate wave spectrum, which in the end might lead to poor performance if the wave spectrum is used in the earlier mentioned control or decision support systems.

Perez (2005) presents methods for ship roll stabilization or ship roll reduction systems using model-based control. The model used in the approach is a linear maneuvering model where the parameters are assumed to be known. The effects of model errors are not investigated, but due to changes in the ship roll dynamics shown in, for instance, Fossen (2011) and Tannuri et al. (2003), it seems likely that a significant change in mass will affect the ship dynamics and that online estimation of the mass would make it possible to increase the performance of the controller.

In most mechanical systems, the mass is actually one of the properties that influence the dynamics the most. If the forces acting on the system are not known, it is difficult to uniquely determine the mass with motion data only since large forces acting on a heavy system cannot be distinguished from small forces acting on a light system. This ambiguity can be overcome with special experiments where the forces acting on the system are known, or by introducing sensors that can measure the forces. However, introducing special sensors or experiments is in many cases intractable or too expensive.

Online mass estimation for vehicles has been considered in especially automotive applications, see for instance, Fathy et al. (2008). However, for a ship, there are additional challenges that are not present in ground vehicles due to the complex interaction with the water. For example, there are strong couplings between the ship’s degrees of freedom and the motion of the ship is strongly affected by the environmental disturbances.

An approach to mitigate the influence of the environmental disturbances using an instrumental variable (IV) method and the rudder angle was proposed in Linder et al. (2014b) and Linder et al. (2014a). A simplified model of the roll dynamics was used and it was assumed that only motion data from an inertial measurement unit (IMU) together with the rudder angle were available. In Linder et al. (2015), an extended model was derived from well-established results in literature to also consider the strong couplings in ships.

This paper presents an experimental study of online estimation of a ship’s mass and center of mass using the recently proposed approach derived in Linder et al. (2015) with data recorded from a scale model of a fishing vessel operated in a basin. The data were collected under moderate sea conditions in free run experiments where the scale model was controlled manually using a joystick. The goals of the study are to validate the model and method using real data, and to evaluate the properties, such as the accuracy, of the estimator. Furthermore, the IV estimator is compared with a least-squares estimator to investigate the influences from disturbances.

The outline of this paper is as follows. In Section 2, the model used in the approach is introduced. In Section 3, the
model is discretized, identifiability issues are discussed and an IV estimator is suggested. Sections 4 and 5 introduce the experimental setup and the data. Finally, the results are presented and discussed in Section 6 and conclusions are given in Section 7.

2. MODEL FOR MASS AND CM ESTIMATION

The model presented in this section has been derived in Linder (2014) and Linder et al. (2015). Here, a short summary is included and for a thorough derivation and discussion, the reader is referred to the mentioned references.

The roll dynamics are particularly sensitive to the loading condition and to get a connection from the rudder angle to the roll dynamics, the four degree-of-freedom (DOF) surge–sway–yaw–manoeuvring model with rudder input developed and discussed in Blanke and Christensen (1993) and Perez (2005) is used as a foundation. The model can be written in the nonlinear state-space form

$$\dot{\mathbf{x}} = F(x, \delta) + \tau$$

where τ is the environmental disturbance, $\dot{\mathbf{x}}$ is the inertia matrix, $F(x, \delta)$ is a nonlinear state transition function and δ is the rudder angle. The states are given by

$$x^T = [\phi, \psi, \nu, \rho, \tau]$$

where ϕ is the roll angle and ψ is the yaw angle expressed in a Earth-fixed coordinate system which is assumed to be inertial. Furthermore, ν is the linear sway speed, r is the angular velocity about the roll axis and τ is the angular velocity about the yaw axis expressed in a body-fixed coordinate system, see Fig. 1.

Since the actual forces acting on the ship are unknown and we instead work with measurement of the motion, we will estimate the change in mass and change in center of mass (CM). The total mass of the ship is split into a nominal mass M and a load mass m with CMs given by z_g and m_s, respectively, see Fig. 1 for a sketch.

To get a model of the roll subsystem, the model (1) is linearized about $\dot{x} = 0$ and $\delta = 0$ when it is assumed that the surge component can be decoupled due to much slower dynamics and that the ship is port-starboard and fore-aft symmetric, i.e. $g_y = \bar{g}_y = 0$. The third row of this linearized system is after a few manipulations given by

$$A_1 \ddot{\phi} = -(k + Mz_g + mz_m)\ddot{\phi} - d \ddot{\phi}$$

$$+ (K_\phi + Mz_g + mz_m)Ur + K_\tau \phi + \tau$$

where

$$A_1 = Mz^2 + m^2 = I_\phi - K_\phi + Mz^2 + m^2, \quad (4)$$

I_ϕ is the ship’s inertia about the CM, K_ϕ and K_τ are added moments of inertia, K_τ is the Coriolis coefficient due to added moment of inertia and τ is the process disturbance.

Here, the two lumped parameters

$$k = -K_\phi Ur^2 + pg \nabla GM - Mz_g + mz_m,$$

and

$$d = -K_\rho - K_{\rho u} |U|$$

have been introduced to get an identifiable model structure. The parameter k should be thought of as representing the physical restoring properties of the ship which, for instance, are dependent on factors such as the hull shape, while the term $Mz_g + mz_m$ represents the influence by the mass and its location on the restoring properties.

2.1 Sensors – Intertial Measurement Unit (IMU)

The ship’s motion is assumed to be observed with an IMU and its position can be seen in Fig. 1. The IMU measures

$$y_{1,t} = p_t + b_1,t + c_1,t = \phi_t + b_1,t + e_{1,t}$$

$$y_{2,t} = a_{s,t} + b_2,t + c_{2,t}$$

$$y_{3,t} = -\dot{r}_t + b_3,t + c_{3,t}$$

where p_t is the sampled system’s angular velocity about the roll axis, $a_{s,t}$ is the tangential acceleration after sampling, r_t is the sampled system’s angular velocity about the yaw axis, $b_i,t, i = 1, 2, 3,$ are sensor biases and $e_i,t, i = 1, 2, 3,$ are measurement noise. Assuming that the roll angle ϕ is small, the acceleration sensed by the IMU is

$$a_s = z_\phi \ddot{\phi} + g \phi - a_v,$$

where z_ϕ is the distance from the center of rotation (CR) to the origin of the IMU coordinate system. The first term is the contribution from the angular acceleration, the second term is due to gravity and the third term is the acceleration of the CR in the xy-plane in the earth-fixed frame. Note that the identity $p = \phi$ is not valid in general and only holds due to the assumption of small roll angles.

2.2 A Motion Measurement Approach

With \dot{v}, r, ϕ and τ as inputs, the model (3) is a mass–spring–damper model. The issue is that \dot{v} is unknown but an alternative model can be formed by eliminating \dot{v}. The key to this elimination is the known relation between the measured tangential acceleration $a_{s,t}$ defined in (7), the acceleration a_v and the signal \dot{v} (Linder et al., 2015). The acceleration a_v of the ship in the Earth-fixed xy-plane has two parts, firstly a contribution from the sway motion and secondly a term due to the angular velocity about the yaw axis.

The total sway acceleration is given by

$$a_v = \dot{v} + Ur$$

which means that \dot{v} is indirectly measured by the tangential acceleration $a_{s,t}$, i.e. $a_{s,t}$ contains both the input we are interested in and a contribution from the roll dynamics. Assuming that the surge speed is constant, then combining (8) with (7), solving for \dot{v} and substituting it into (3) give

$$A_2 \ddot{\phi} = -(k - K_\phi)\phi - d \phi - (K_\phi + Mz_g + mz_m)\dot{v}_s + K_\tau \phi + \tau$$

where

$$A_2 = A_x + Mz_g(z_g - z_s) + mz_m(z_m - z_s) - K_\phi z_s$$

and

$$K_\tau = (K_{ur} - K_\phi)U$$

have been introduced to enable estimation of the CR, the CMs and the position of the IMU are expressed as

$$z_g = \bar{z}_g + z_t, \quad z_m = \bar{z}_m + z_f$$

and

$$z_s = \bar{z}_s + z_f$$

where z_t is the distance from the CR to the body-fixed coordinate system and $z_i, i = g, m, s$ are relative to the body-fixed coordinate system, see Fig. 1. The parameters k, d and K_τ are all dependent on the surge speed U but the dependencies are not written out to ease notation. Finally, note that even though the use of the proposed model avoids building a model of the entire ship, it introduces some new challenges. Most notably, the signals r, a_v and ϕ are all correlated with the disturbance τ, i.e. all signals will be affected by the waves due to the coupling in the real system. This complicates the parameter estimation since the problem is similar to closed-loop system identification (Linder, 2014).
3. MASS AND CM ESTIMATION

When it comes to estimation of the parameters in (9) there are a lot of details that have to be considered. In this section, the most important points are summarized for completeness. For a more detailed discussion, see Linder (2014).

3.1 Discretization Using Physical Parameters

The model (9) with the output $y = \phi$ can be written on transfer function form and be discretized using the bilinear transform $p = (2q - 2)/(Tq + T)$ where T is the sample period, p is the differentiation operator and q is the shift operator. This gives the discrete-time model

$$y_t = G_d(q)(x_{s,t} + F_{r,d}r_t + F_{d,s}d_t + n_t)$$

where

$$\begin{align*}
G_d(q) &= 1 + a_1q^{-1} + a_2q^{-2}, \\
a_1 &= 2(k - K_d)T^2 - 8A_2, \\
a_2 &= -2dT + (k - K_d)T^2 + 4A_2.
\end{align*}$$

The subject of uniquely determining the parameters in a chosen model structure is both connected to the model structure considered and the informativity of the data set used for identification (Bazanella et al., 2010). Assuming that g and z_2 are known, the model (9) with ϕ as an output is not identifiable with respect to the parameters $\theta_p = [M, z_2, k, A_x, d, K_r, K_d, K_0, z_1, m, z_m]$, (19) using a single dataset due to over-parameterization (Linder, 2014). To overcome this identifiability issue, more information has to be introduced. In this work, the extra information is introduced through the datasets

$$Z_n = (y_t, u_t, \delta_t)^{N_x+n}_1 = (y_t, u_t, \delta_t)^{N_x+n}_1$$

which are called the nominal and calibration data, respectively. The nominal dataset is collected with a known nominal mass M with the CM z_2 while the calibration dataset has a different known mass and the total CM expressed using the load mass $m = m_c$ with the CM $z_m = z_c$. Then during normal operation, the loaded dataset

$$Z_l = (y_t, u_t, \delta_t)^{N_x+n}_1$$

is collected and all datasets are used to simultaneously estimate the parameters

$$\theta_{p,k}^{(\text{known})} = \theta_{p,u}^{(\text{unknown})}$$

in the models

$$\begin{align*}
y_t &= (\phi_i')^T g_0(\delta_i) + \tau_i, \\
g_0 = \delta_{p,m=0}, \\
\delta_i &= \delta_{p,m=m_c+1}, \; p_i = \delta_p
\end{align*}$$

Note that the starting times $t_i, i = n, c, l$ are used to emphasize that these datasets are collected at different times. For more details, see Linder et al. (2015) or Linder (2014).

3.3 The Instrumental Variable Estimator

There are two terms contributing to the output of (23), one containing information about the interesting input-output relation and a second containing a contribution from disturbances. An instrumental variable (IV) method uses instruments to extract the interesting information from the data. In principle, the interesting information is estimated by requiring that the sample covariance between the instruments and the prediction error should be zero (Söderström and Stoica, 1989). A good instrument should in this case be correlated with the motion induced by the rudder but be uncorrelated with the process disturbance τ, the sensor biases b_i, and the measurement noises e_i. This idea is implemented using a version of the extended IV method, where the parameters are found by computing

$$\hat{\theta}_{p,2} = \text{argmin} \sum_{t=n,c,l} ||y_t - \Phi g_0(\delta_{p,t})||^2$$

3.2 Identifyability Issues – Using Multiple Datasets

3.2.1 The method presented in this section is based on the method of Gilson et al. (2006) where the parameters are estimated in an iterative scheme. In each iteration, the instruments are created by simulating the inputs and the outputs from the rudder angle by using the latest parameter estimates and the iterations are terminated when the parameters have converged. In the jth iteration, firstly, $\theta_{p,j}$ are estimated using the vectors of instruments from the $(j-1)^{\text{st}}$ iteration. To create the instruments, the output and inputs of (12) are simulated with δ_i as input, which gives the signals

$$y_{i,j} = G_{y,d}(q)\delta_i, \; a_{i,j}^0 = G_{b,a}(q)\delta_i$$

and the instrument vectors are created according to

$$c_{i,j} = [y_{i,j}^T, y_{i,j}^{n-1}, ... y_{i,j}^{c-1}, y_{i,j}^{l-1}]^T$$

where the constants n_c, $k = y, a, r, \delta$, are the number of time lags (including the non-delay signal) included in $c_{i,j}$. For instance, $n_\delta = 0$ means that $\delta_{i,j}$ is not included in $c_{i,j}$. In the initializing (0^{th}) iteration, the transfer functions of (27) are blackbox models estimated from data. In the refining steps, the transfer functions of (27) are given by

$$G_{y,i,d}^{c,0} = G_{y,i,d}^{c,j} - U G_{y,i,d}^{c,j} F_{i,d}^{c,j} F_{d,i}^{c,j}$$

and the instrument vectors are created according to

$$c_{i,j} = [y_{i,j}^T, y_{i,j}^{n-1}, ... y_{i,j}^{c-1}, y_{i,j}^{l-1}]^T$$

where $G_{y,i,d}^{c,j}$ and $G_{y,i,d}^{c,0}$ are the blackbox models estimated from data in the initialization step and the dependencies on q and $\delta_{i,j}$ have been dropped for brevity.

3.4 Summary of the Indirect Approach

In this work, the ship’s current mass and CM are found by online estimation of the deviation from the maximum mass M and the maximum load m_C. This is necessary since the approach uses motion data from an IMU. The drawback with not knowing the forces acting on the ship is the requirement of a priori information. The necessary prior information is:

- A nominal dataset collected with a known mass M and CM z_2
- A calibration dataset collected with known change in mass m and change in CM z_2 (relative the nominal)
- The position of the IMU z_2

Finally, the loaded dataset is collected during normal operation and the change in mass m and change in CM z_2 can be estimated simultaneously with the other parameters according to Section 3.3. Note that the required positions $z_i, i = g, c, s$ are in relation to the body-fixed coordinate system chosen by the user and that the CR is estimated.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length between perpendiculars L_{pp}</td>
<td>0.8</td>
<td>m</td>
</tr>
<tr>
<td>Length at the waterline L_w</td>
<td>0.85</td>
<td>m</td>
</tr>
<tr>
<td>Beam B</td>
<td>0.3</td>
<td>m</td>
</tr>
<tr>
<td>Draft at COG D</td>
<td>0.144</td>
<td>m</td>
</tr>
<tr>
<td>Draft fore D_f</td>
<td>0.144</td>
<td>m</td>
</tr>
<tr>
<td>Draft aft D_a</td>
<td>0.144</td>
<td>m</td>
</tr>
<tr>
<td>Displacement Δ</td>
<td>22.04</td>
<td>kg</td>
</tr>
<tr>
<td>LCG from midship</td>
<td>0.125</td>
<td>m</td>
</tr>
<tr>
<td>KG</td>
<td>0.146</td>
<td>m</td>
</tr>
<tr>
<td>GM_T</td>
<td>0.018</td>
<td>m</td>
</tr>
<tr>
<td>Radius of Gyration in Roll K_{xp}/B</td>
<td>0.537</td>
<td>m</td>
</tr>
<tr>
<td>Radius of Gyration in Pitch K_{yp}/L</td>
<td>0.272</td>
<td>m</td>
</tr>
<tr>
<td>Radius of Gyration in Yaw K_{zz}/L</td>
<td>0.272</td>
<td>m</td>
</tr>
</tbody>
</table>

4. EXPERIMENTAL SETUP

The experiments were performed in the small wave basin (40 × 6.45 × 1.5 m – length × width × depth) of the Marine Cybernetics Laboratory (MCLab) at the Norwegian University of Science and Technology (NTNU) in Trondheim.

An overview of the experimental setup can be seen in Fig. 2. The lines correspond to information flow where the arrows represent the flow direction. The dashed line corresponds to Bluetooth communication, dotted lines correspond to WIFI communication and solid lines correspond to any wired communication or signal. The system had three major components, the ship, the Qualisys real-time positioning system and the human-machine interface.

The scale model, hereafter called the ship, was a model of a fishing vessel called “Our Lass II” that is roughly 20 m long, see Fig. 3. The ship was in scale 1 : 24 and the known physical quantities are listed in Table 1. The ship had a cRIO Controller that ran the LabVIEW Real-Time operating system and communicated via a WIFI bridge to the external computer that ran LabVIEW. The ship had its own propulsion and steering that were controlled through the onboard cRIO controller. The cRIO controller collected data from the three onboard sensors, an IMU and two pulse encoders that were measuring the RPM of the motor and the steering angle, respectively. The IMU was an Xsens MTi-G that was equipped with a three-axes gyro and a three-axes accelerometer and it was mounted underneath the black box seen on top of the ship in Fig. 3.

As can be seen in Fig. 3, the ship is close to square in shape, which meant that for small changes in the roll angle, the wetted surface area should not change much. This implies that the restoring torque will be close to linear for a given forward speed (Journee and Massie, 2001). The position of the load was chosen to be on top of the black box covering the IMU. Since the distance from the CR (> 20 cm) was large, the weights had quite a big impact on the roll dynamics and stability of the ship. In the lower right picture of Fig. 3, a load mass of 2 kg was added to the ship and with this mass, it was barely stable, which resulted in a large constant roll angle. Due to this, the load masses were chosen to be 0.200 and 0.400 kg. These correspond to an increase of 0.91% and 1.81% in the total mass, respectively.

The external computer was used as a human-machine interface, plotting the ship’s current status, logging data and taking commands from a joystick to control the ship.

5. DATASETS AND ESTIMATOR SETTINGS

The data was collected in free run experiments where the ship was untethered and running by its own power. The propeller speed was kept constant and the ship was manually controlled with the joystick. The runs did not follow any particular trajectory and both short and long turns were performed while as much as possible of the basin was utilized. Several datasets were recorded for 0, 200 and 400 kg loads. In this paper, four datasets were used, one nominal set, two sets with 0.200 kg load mass and one with 0.400 kg load mass. The datasets were combined into three different cases according to Table 2. The datasets were sampled at 100 Hz, filtered through an
The accelerations of gravity \(g \) and the position \(z \) of the IMU in relation to the body-fixed coordinate system were both assumed to be known. Furthermore, the initial value of the parameters were in all cases assumed to be
\[
\bar{\theta}_{p.2} = [k, A_x, d, K_r, K_v, K \bar{s}, z_f, m, \bar{z}_m]^T
\]
In all iterations, the instruments (28) were created using the constants \(n_g = 16, n_a = 16, n_v = 16 \) and \(n_s = 2 \) for each dataset. The experiments were performed without using the wave maker but reflections of the bow waves on the walls of the basin were observed. This corresponds to sea states 1 and 2 (rippled and smooth waves) (Fossen, 2011).

6. RESULTS

The instrumental variable method described in Section 3.3 was applied to each case in Table 2 and the results can be seen in Table 3. Note that the estimated parameters were roughly the same in all three cases. As expected, Case 1 had the best results of all the cases in Table 2, probably since the calibration dataset was similar to the loaded dataset, i.e. having the same mass and position. The estimated mass was less than 1 g away from the true value and the CM location had an error of less than 4 mm. Cases 2 and 3 were more realistic cases in the sense that the masses and the centers of gravity were different between the calibration and loaded datasets. The largest relative error in the mass estimation error was 16.6 % which corresponds to 66.5 g or 0.3 % of the total mass of the ship.

To test the variation of the IV estimator the datasets of Case 1 were split into two cases. Case 1(a) roughly corresponded to the first half of the datasets and Case 1(b) roughly corresponded to the last half of the datasets. As an example, the end of the nominal datasets of Case 1(a) is indicated as the dashed red line in Fig. 4. In the same way, the start of the nominal dataset of Case 1(b) is indicated as the dashed green line in Fig. 4. In Case 1(a), the data lengths were 1576, 901 and 1276 samples after decimation for the nominal, calibration and loaded datasets, respectively. For Case 1(b), the corresponding numbers were 1701, 1026 and 1401. The estimation results can be seen with the indices A and B in Table 3. The maximum relative error, 54 % was quite large, however, it corresponds to less than 1 % of the total mass of the ship. Also, note that there might be a finite data effect since the datasets are quite short. Cases 2 and 3 had the same nominal and loaded datasets but different calibration datasets which was another indication that the variation was acceptable for the IV estimator. In Fig. 5 the normalized residuals are plotted together with the scaled absolute value of the rudder angle. The figure shows clear deterministic components in the residuals with large spikes at the turn entries which indicates that there was unmodeled dynamics.

Note that no pre-processing, except for the low-pass-filtering, has been performed on the data. A side effect of using the IV method is that the biases in the measurements, in addition to the process disturbance and measurement noises, are automatically taken care of. The disturbances acting on the data, i.e. the sensor biases \(b_{i, t}, i = 1, 2, 3 \), the process disturbance \(\tau \) and measurement noises \(e_{i, t}, i = 1, 2, 3 \), were quite important to consider. To get an indication of the importance of the disturbances, the constrained least squares estimator, i.e. setting \(\zeta_i = \phi_i, i = n, c, l \), was used to compute the estimate and the result can be seen in Table 4. There is quite a significant difference compared to the IV estimator which performed better in all cases. Note that a constant heel angle, i.e. that the mean of the roll angle is non-zero, only
In this paper, online estimation of a ship’s mass and center of mass has been investigated using data collected from a scale ship and a model of the ship’s roll dynamics together with measurements from an inertial measurement unit. To mitigate the impact of the disturbances, sensor biases and measurement noises, an iterative instrumental variable estimator was applied to the data with good results. The residuals indicate a possibility for improved modeling. Future work includes analysis of the residuals to improve the performance of the estimator. Furthermore, it would be interesting to apply the method in full-scale tests. In full-scale, the measured signals will be of the same magnitude as the scale model since acceleration does not scale, i.e. an IMU in the same position on the ship will sense the same acceleration as the scale model since acceleration does not scale, i.e. an IMU in the same position on the ship will sense the same acceleration as the scale model since acceleration does not scale, i.e. an IMU in the same position on the ship will sense the same acceleration as the scale model since acceleration does not scale, i.e. an IMU in the same position on the ship will sense the same acceleration as the scale model since acceleration does not scale, i.e. an IMU in the same position on the ship will sense the same acceleration as the scale model since acceleration does not scale, i.e. an IMU in the same position on the ship will sense the same acceleration as the scale model since acceleration does not scale, i.e. an IMU in the same position on the ship will sense the same acceleration as the scale model since acceleration does not scale, i.e. an IMU in the same position on the ship will sense the same acceleration as

<table>
<thead>
<tr>
<th>(m)</th>
<th>(\delta m)</th>
<th>(\delta f)</th>
<th>(\delta r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5000</td>
<td>0.1000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.1810</td>
<td>2.7139</td>
<td>0.1025</td>
<td>0.5825</td>
</tr>
<tr>
<td>0.1582</td>
<td>0.2830</td>
<td>0.9108</td>
<td>0.5827</td>
</tr>
<tr>
<td>0.1517</td>
<td>0.2802</td>
<td>0.9099</td>
<td>0.0586</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
</tbody>
</table>

will be visible through the gravity-term in (7) and that this “bias” will be treated in the same way as a sensor bias. Fig. 6 shows an estimate of the surge speed for the nominal dataset. The estimate was obtained using an extended Kalman smoother with a continuous turn model and data from the available Qualisys positioning system. There is a clear variation of the surge velocity that is correlated to the rudder angle which means that the assumption of constant velocity was violated. This might be one reason for the spikes in the residuals seen in Fig. 5. However, the method managed to estimate the parameters fairly well and was thus robust against these variations. Note that surge speed estimate was not used to obtain the parameters.

7. CONCLUSIONS AND FUTURE WORK

In this paper, online estimation of a ship’s mass and center of mass has been investigated using data collected from a scale ship and a model of the ship’s roll dynamics together with measurements from an inertial measurement unit. To mitigate the impact of the disturbances, sensor biases and measurement noises, an iterative instrumental variable estimator was applied to the data with good results. The residuals indicate a possibility for improved modeling. Future work includes analysis of the residuals to improve the performance of the estimator. Furthermore, it would be interesting to apply the method in full-scale tests. In full-scale, the measured signals will be of the same magnitude as the scale model since acceleration does not scale, i.e. an IMU in the same position on the ship will sense the same acceleration as the scale model since acceleration does not scale, i.e. an IMU in the same position on the ship will sense the same acceleration as the scale model since acceleration does not scale, i.e. an IMU in the same position on the ship will sense the same acceleration as the scale model since acceleration does not scale, i.e. an IMU in the same position on the ship will sense the same acceleration as the scale model since acceleration does not scale, i.e. an IMU in the same position on the ship will sense the same acceleration as

Table 4. Estimation results for LS estimator on the cases in Table 2. P: parameters; T: true values; I: initial values and E: the relative error. Here, the rows starting with 1, 2 and 3 correspond to the cases discussed in Section 6.

<table>
<thead>
<tr>
<th>(A_y)</th>
<th>(d)</th>
<th>(k)</th>
<th>(K_y)</th>
<th>(K_z)</th>
<th>(\delta y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2000</td>
<td>0.2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 6. Variation in surge speed in the nominal dataset. Red: The surge velocity in m/s estimated from Qualisys data. Gray: The scaled absolute value of the rudder angle. The area between the rudder angle and the \(x \)-axis is filled to make the plot easier to read.

Acknowledgements

This work has been supported by the Vinnova Industry Excellence Center LINK-SIC and by the Research Council of Norway through the Centers of Excellence funding scheme, number 223254 - Centre for Autonomous Marine Operations and Systems (AMOS). The authors would like to thank Torgeir Wahl for his invaluable support during the wave basin tests.

References

