
 
 

 

  

Abstract— Nonlinear Model Predictive Control (NMPC) 
algorithms are based on various nonlinear models. Recently, an 
on-line optimization approach for stochastic NMPC based on a 
Gaussian process model was proposed. A significant advantage 
of the Gaussian process models is that they provide information 
about prediction uncertainties, which would be of help in 
NMPC design. On the other hand, an explicit solution to the 
stochastic NMPC problem based on Gaussian process model 
would allow efficient on-line computations as well as 
verifiability of the implementation. This paper suggests an 
approximate multi-parametric Nonlinear Programming 
approach to explicit solution of stochastic NMPC problems for 
constrained nonlinear systems based on Gaussian process 
model. In particular, the reference tracking problem is 
considered. The approach builds an orthogonal search tree 
structure of the state space partition and consists in 
constructing a feasible PWL approximation to the optimal 
control sequence. 

I. INTRODUCTION 
ONLINEAR Model Predictive Control (NMPC) involves 
the solution at each sampling instant of a finite horizon 

optimal control problem subject to nonlinear system 
dynamics and state and input constraints [1], [2], [3], [4]. A 
recent survey of the main on-line optimization strategies of 
NMPC is given in [5]. Mathematical models of engineering 
systems usually contain some amount of uncertainty 
(unknown additive disturbances and/or uncertain model 
parameters). Therefore, the robust MPC problem 
formulation requires the model uncertainty to be taken into 
account. In many applications, the system to be controlled is 
described by a stochastic model where the probabilistic 
distribution of the uncertainty is assumed to be known. 
Several approaches for constrained MPC based on stochastic 
models (stochastic MPC) are proposed in [6]–[12]. The 
approaches [6], [7], [8] are based on linear state space 
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models with stochastic parameters and/or additive noise and 
they optimize the expected value of the cost function subject 
to hard input constraints [6] or probabilistic constraints [7], 
[8]. In [9], [10], [11], [12], stochastic MPC approaches 
incorporating a probabilistic cost and probabilistic 
constraints are developed. The method suggested in [9] is 
based on a moving average (MA) model with random 
coefficients. It was further extended to linear time-varying 
MA models [10] and to state space models with stochastic 
uncertainty in the output or the input map [11], [12]. 

It should be noted that the stochastic MPC approaches 
[6]–[12] are based on parametric probabilistic models. 
Alternatively, the stochastic systems can be modeled with 
non-parametric models which can offer a significant 
advantage compared to the parametric models. This is 
related to the fact that the non-parametric probabilistic 
models provide information about prediction uncertainties 
which are difficult to evaluate appropriately with the 
parametric models. The Gaussian process model is an 
example of a non-parametric probabilistic black-box model 
and up to now it has been applied to model mainly static 
nonlinearities. The use of Gaussian processes in the 
modelling of dynamic systems is a recent development e.g. 
[13], [14], [15]. In [16], [17], [18], an on-line optimization 
approach for stochastic NMPC based on Gaussian process 
model is proposed. 

It has recently been shown that the feedback solution to 
linear and quadratic constrained MPC problems has an 
explicit representation as a piece-wise linear (PWL) state 
feedback defined on a polyhedral partition of the state space 
[19]. The benefits of an explicit solution, in addition to the 
efficient on-line computations, include also verifiability of 
the implementation, which is an essential issue in safety-
critical applications. For nonlinear and stochastic MPC the 
prospects of explicit solutions are even higher than for linear 
MPC, since the benefits of computational efficiency and 
verifiability are even more important. An approach for 
efficient on-line computation of NMPC for constrained 
input-affine nonlinear systems has been suggested in [20]. In 
[21], [22], [23], approaches for off-line computation of 
explicit sub-optimal PWL predictive controllers for general 
nonlinear systems with state and input constraints have been 
developed, based on the multi-parametric Nonlinear 
Programming (mp-NLP) ideas [24]. The mentioned methods 
for explicit NMPC are based on deterministic first principle 
models of the systems. 
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This paper suggests an approximate mp-NLP approach to 
explicit solution of stochastic NMPC problems for 
constrained nonlinear systems based on a Gaussian process 
model (referred to as GP-NMPC problems). In particular, 
the reference tracking problem is considered. The 
contribution of the present work is the formulation of a more 
general GP-NMPC problem compared to [16], [17], [18], 
and representing it as an mp-NLP problem. Further, the 
approximate mp-NLP approach [23] is applied to build an 
orthogonal search tree structure of the state space partition 
and construct a feasible PWL approximation to the optimal 
control sequence. Thus, the approach proposed in this paper 
can be considered as an application of the approximate 
methods [22], [23], [25] for explicit solution of MPC 
problems to the cases where the system dynamics is 
described by a probabilistic (Gaussian process) model. 

The following notation will be used in the paper. 0A ;  
means that the square matrix A  is positive definite. For 

nx ∈\ , the Euclidean norm is Tx x x=  and the 
weighted norm is defined for some symmetric matrix 0A ;  

as T
Ax x Ax= . For a random variable y  with Gaussian 

distribution, 2( ), ( ))( y yµ σN  denotes its probability 

distribution, and ( )yµ  and 2 ( )yσ  are respectively its mean 
and variance. 

II. MODELLING OF DYNAMIC SYSTEMS WITH GAUSSIAN 
PROCESSES 

A Gaussian process is an example of the use of a flexible, 
probabilistic, nonparametric model which directly provides 
us with uncertainty predictions. Its use and properties for 
modelling are reviewed in [26]. 

A Gaussian process is a collection of random variables 
which have a joint multivariate Gaussian distribution. 
Assuming a relationship of the form ( )y f z=  between an 

input Dz ∈\  and output y ∈\ , we have 
(1), (2), ... , ( )~ (0, )y y y M ΣN , where 

Cov( ( ), ( )) ( ( ), ( ))pq y p y q C z p z qΣ = =  gives the covariance 

between the output points ( )y p  and ( )y q  corresponding to 
the input points ( )z p  and ( )z q . Thus, the mean ( )zµ  
(usually assumed to be zero) and the covariance function 

( ( ), ( ))C z p z q  fully specify the Gaussian process. Note that 
the covariance function ( ( ), ( ))C z p z q  can be any function 
with the property that it generates a positive definite 
covariance matrix. A common choice is: 

2
1 0

1

1( ( ), ( )) exp ( ( ) ( ))
2

D

i i i pq
i

C z p z q v w z p z q v α
=

⎡ ⎤
= − − +⎢ ⎥

⎣ ⎦
∑  (1) 

where 1 0 1[ , ... , , , ]Dw w v vΘ =  are the ‘hyperparameters’ of 
the covariance function, iz  denotes the i-th component of 

the D -dimensional input vector z , and pqα  is the 

Kronecker operator. Other forms of covariance functions 
suitable for different applications can be found in [27]. For a 
given problem, the hyperparameters are learned (identified) 
using the data at hand. After the learning, one can use the w  
parameters as indicators of ‘how important’ the 
corresponding input components (dimensions) are: if iw  is 
zero or near zero it means that the inputs in dimension i  
contain little information and could possibly be removed. 

Consider a set of M D-dimensional input vectors 
[ (1), (2),..., ( )]Tz z z M=Z  and a vector of output data 

[ (1), (2), ... , ( )]TY y y y M= . Based on the data ( , )YZ , and 

given a new input vector *z , we wish to estimate the 
probability distribution of the corresponding output *y . 
Unlike other models, there is no model parameter 
determination as such, within a fixed model structure. With 
this model, most of the effort consists in tuning the 
parameters of the covariance function. This is done by 
maximizing the log-likelihood of the parameters, which is 
computationally relatively demanding since the inverse of 
the data covariance matrix (M×M) has to be calculated at 
every iteration. 

The described approach can be easily utilized for 
regression calculation. Based on a training set Z , a 
covariance matrix K  of size M×M is determined. As 
already mentioned before, the aim is to estimate the 
probability distribution of the corresponding output *y  at 

some new input vector *z . For a new test input *z , the 
predictive distribution of the corresponding output is 

* *| , ( , )y z YZ  and is Gaussian, with mean and variance: 
* * 1

2 * * * 1 *
0 0

( ) ( )

( ) ( ) ( ) ( )

T

T

z k z Y

z k z k z k z v

µ

σ

−

−

=

= − +

K

K
    (2) 

where * * *( ) [ ( (1), ), ..., ( ( ), )]Tk z C z z C z M z=  is the M×1 
vector of covariances between the test and training cases and 

* * *
0 ( ) ( , )k z C z z=  is the covariance between the test input 

and itself. 
Gaussian processes can be used to model static 

nonlinearities and can therefore be used for modelling of 
dynamic systems if delayed input and output signals are 
used as regressors [13]. In such cases an autoregressive 
model is considered, such that the current predicted output 
depends on previous estimated outputs, as well as on 
previous control inputs: 

ˆ ˆ ˆ( ) [ ( 1), ( 2), ... , ( ), ( 1),

( 2), ... , ( )]
ˆ( ) ( ( )) ( )

T

z t y t y t y t L u t

u t u t L
y t f z t tη

= − − − −

− −
= +

   (3) 

where t denotes consecutive number of data sample, L  is a 
given lag, and ( )tη  is the prediction error. The quality of 
the predictions with a Gaussian process model is assessed by 



 
 

 

computing the average squared error (ASE): 
2

1

1 ˆ[ ( ( )) ( )]
M

i
ASE y i y i

M
µ

=
= −∑      (4) 

and by the log density error (LD) [13]: 
2

2
2

1

ˆ1 [ ( ( )) ( )]ˆlog(2 ) log[ ( ( ))]
2 ˆ( ( ))

M

i

y i y iLD y i
M y i

µπ σ
σ=

−
= + +∑  (5) 

In (4), (5), ˆ( ( ))y iµ  and 2 ˆ( ( ))y iσ  are the prediction mean 
and variance, ( )y i  is the system’s output and M  is the 
number of the training points. 

The iterative multi-step ahead prediction can be done in 
the following ways, as described in [28]: 

1) by feeding back at each time step the predictive mean 
only; 

2) by feeding back at each time step both the predictive 
mean and the predictive variance; 

3) by Monte Carlo simulations. 
Thus, the uncertainty attached to each intermediate 
prediction is taken into account. The Gaussian process 
model now not only describes the dynamic characteristics of 
the non-linear system, but at the same time provides 
information about the confidence in the predictions. The 
Gaussian process can highlight areas of the input space 
where prediction quality is poor, due to the lack of data, by 
indicating the higher variance around the predicted mean. It 
is worthwhile noting that the derivatives of means and 
variances with respect to input data can be calculated in 
straightforward manner. For more details see [28]. 

III. FORMULATION OF THE GP-NMPC PROBLEM AS AN MP-
NLP PROBLEM 

Consider a stochastic system described by an uncertain 
nonlinear discrete-time model: 

( 1) ( ( ), ( )) ( )x t f x t u t tξ+ = +      (6) 

where ( ) nx t ∈\  and ( ) mu t ∈\  are the state and input 

variables, ( ) ntξ ∈\  are Gaussian disturbances, and 

: n m nf × →\ \ \  is a nonlinear continuous function. The 
uncertainty consists in that the analytical expression of 

( , )f x u  is not known and neither are the mean values and 
the covariances of the disturbances ( )tξ . The relationship 
(6) is represented in the form: 

( ) ( ( )) ( )Gy t f z t tξ= +        (7) 

where ( ) ( 1) ny t x t= + ∈\  and ( ) [ ( ), ( )] n mz t x t u t += ∈\ . 
Suppose that we have an output data set 

[ (0), (1),..., ( 1)]i i i iY y y y M= − , 1, 2,...,i n=  corresponding 
to an input data set [ (0), (1),..., ( 1)]z z z M= −Z . Assume that 
the relationship (7) is approximated with Gaussian processes 
with distributions: 

1 1~ (0, )Y ΣN , 2 2~ (0, )Y ΣN , … , ~ (0, )n nY ΣN   (8) 
where the covariance functions 

1, 1 1 1 1Cov ( ( ), ( )) ( ( ), ( ))pq y p y q C z p z qΣ = = , … , 

, Cov ( ( ), ( )) ( ( ), ( ))n pq n n n ny p y q C z p z qΣ = =  with 

0,1,..., 1p M= − , 0,1,..., 1q M= − , depend on the given 
input and output data sets. Having obtained the Gaussian 
process model (8), the probability distribution of the output 

( )y M  corresponding to a new input ( )z M  can be 
determined as described in the previous section: 

2
1 1 1 1

2

( )| ( ), ( )~ ( ( ( )), ( ( )))

( )| ( ), ( )~ ( ( ( )), ( ( )))n n n n

y M z M ,Y y M y M

y M z M ,Y y M y M

µ σ

µ σ

Z

Z

#
N

N

  (9) 

In (9), ( ( ))iy Mµ  and 2 ( ( ))iy Mσ  denote respectively the 
mean and the variance of the output variable ( )iy M , 

1, 2,...,i n= . We introduce the vectors 

1( ) [ ( ( )),..., ( ( ))]y nM y M y Mµ µ µ=  and 
2 2 2

1( ) [ ( ( )),..., ( ( ))]y nM y M y Mσ σ σ=  and the matrix 

1 2[ , ,..., ]nY Y Y=Y . Then, the relation (9) is represented: 
2( )| ( ), ( )~ ( ( ), ( ))y yy M z M , M Mµ σZ Y N    (10) 

As shown in [28], it is possible to obtain a multi-step 
ahead prediction: 

2( )| ( ), ( )~ ( ( ), ( ))

0,1, ... , 1
y yy M k z M k , M k M k

k N

µ σ+ + + +

= −

Z Y N
 (11) 

Suppose the initial state |( ) t tx t x=  and the control inputs 

( ) , 0,1, ... , 1t ku t k u k N++ = = −  are given. Then, by taking 
into account that ( ) ( 1)y t x t= +  and ( ) [ ( ), ( )]z t x t u t= , from 
(11) we obtain the probability distribution of  the predicted 
states 1| , 0,1, ... , 1t k tx k N+ + = −  which correspond to the 

given initial state |t tx  and control inputs 

, 0,1, ... , 1t ku k N+ = − : 
2

1| | 1| 1|| , ~ ( ( ), ( ))

0,1, ... , 1
t k t t k t t k t k t t k tx x u x x

k N

µ σ+ + + + + + + +

= −

N
  (12) 

The 95% confidence interval of the random variable 1|t k tx + +  

is 1| 1| 1| 1|[ ( ) 2 ( ); ( ) 2 ( )]t k t t k t t k t t k tx x x xµ σ µ σ+ + + + + + + +− + , where 

1|( )t k txσ + +  is the standard deviation. 
Here, we consider a reference tracking problem where the 

goal is to have the state vector ( )x t  track the reference 

signal ( ) nr t ∈\ . In the problem formulation, the type of the 
cost function is like the one used in [19]. Suppose that a full 
measurement of the state ( )x t  is available at the current time 
t. For the current ( )x t , the reference tracking GP-NMPC 
solves the following optimization problem: 

Problem P1: 
*( ( ), ( ), ( 1)) min ( , ( ), ( ), ( 1))

U
V x t r t u t J U x t r t u t− = −  (13) 

subject to | ( )t tx x t=  and: 



 
 

 

| | min( ) 2 ( ) , 1, ... ,t k t t k tx x x k Nµ σ+ +− ≥ =      (14) 

| | max( ) 2 ( ) , 1, ... ,t k t t k tx x x k Nµ σ+ ++ ≤ =      (15) 

min max , 0,1, ... , 1t ku u u k N+≤ ≤ = −        (16) 

min max , 0,1, ... , 1t ku u u k N+∆ ≤ ∆ ≤ ∆ = −      (17) 

| |

| |

max{ ( ) 2 ( ) ( ) ,

( ) 2 ( ) ( ) }

t N t t N t

t N t t N t

x x r t

x x r t

µ σ

µ σ δ

+ +

+ +

− −

+ − ≤
      (18) 

1, 0,1, ..., 1t k t k t ku u u k N+ + + −∆ = − = −       (19) 
2

1| | 1| 1|| , ~ ( ( ), ( ))

0,1, ... , 1
t k t t k t t k t k t t k tx x u x x

k N

µ σ+ + + + + + + +

= −

N
   (20) 

with 1 1[ , ,..., ]t t t NU u u u+ + −=  and the cost function given by: 
2

|

1 2 2
|

0

( , ( ), ( ), ( 1)) ( ) ( )

( ) ( )

t N t P
N

t k t t k RQ
k

J U x t r t u t x r t

x r t u

µ

µ

+

−

+ +
=

− = − +

⎡ ⎤− + ∆⎢ ⎥⎣ ⎦∑
      (21) 

Here, N is a finite horizon. From a stability point of view it 
is desirable to choose δ  in (18) as small as possible [2]. 
However, due to the uncertainty of the |t N tx +  prediction, 

characterized by the variance 2
|( )t N txσ + , the feasibility of 

problem P1 will rely on δ  being sufficiently large. A part of 
the GP-NMPC design will be to address this tradeoff. If the 
system is asymptotically stable (or pre-stabilized), N is large, 
and the Gaussian process model has a small prediction 
uncertainty, then it is more likely that the choice of a small 
δ  will be possible. 

A more general stochastic MPC problem is formulated in 
[9], [10], [11], [12], where a probabilistic formulation of the 
cost is introduced that includes the probabilistic bounds of 
the predicted variable. Also in these references, a 
probabilistic formulation of the constraints is used, i.e. the 
random variable should not exceed a certain bound with a 
given probability. The stochastic MPC problem considered 
in this paper (problem P1) is of a more special form 
compared to the general problem formulated in [9]–[12]. 
Here, the cost function (21) includes the mean value of the 
random variable and the constraints (14), (15) and (18) are 
equivalent to the following probabilistic constraints: 

| minPr( ) , 1, ... ,t k tx x p k N+ ≥ = =      (22) 

| maxPr( ) , 1, ... ,t k tx x p k N+ ≤ = =      (23) 

|Pr( ( ) )t N tx r t pδ+ − ≤ =         (24) 

where the probability p  is 0.95 (the confidence interval 
used in (14), (15) and (18) is associated with this level of 
probability). 

The following assumptions are made: 
A1. , , 0P Q R ; . 
A2. maxmin 0 xx << , maxmin 0 uu << and maxmin 0 uu ∆<<∆ . 

We introduce an extended state vector: 
( ) [ ( ), ( ), ( 1)] nx t x t r t u t= − ∈ �� \ , mnn += 2~     (25) 

Let x~  be the value of the extended state at the current time 
t . Then, the optimization problem P1 can be formulated in a 
compact form as follows: 

Problem P2: 
)~,(min)~(* xUJxV

U
=       (26) 

subject to: 
0)~,( ≤xUG          (27) 

The GP-NMPC problem defines an mp-NLP, since it is NLP 
in U  parameterized by x~ . An optimal solution to this 
problem is denoted * * * *

1 1[ , ,..., ]t t t NU u u u+ + −=  and the control 
input is chosen according to the receding horizon policy 

*( ) tu t u= . Define the set of N-step feasible initial states as 
follows: 

{ | ( , ) 0 for some }n Nm
fX x G U x U= ∈ ≤ ∈�� �\ \   (28) 

If δ  in (18) is chosen such that the problem P1 is feasible, 
then fX  is a non-empty set and due to assumption A2, the 

origin is an interior point in fX . 

In parametric programming problems one seeks the 
solution )~(* xU  as an explicit function of the parameters x~  

in some set n
fX X⊆ ⊆ �\  [24]. The explicit solution 

allows us to replace the computationally expensive real-time 
optimization with a simple function evaluation. In this paper 
we suggest a computational method for constructing an 
explicit PWL approximate solution of the reference tracking 
GP-NMPC problem. 

IV. APPROXIMATE MP-NLP APPROACH TO EXPLICIT GP-
NMPC 

Here, the computational issues related to the non-
convexity of the optimization problem are treated in a way 
similar to that in [23]. 

A. Close-to-global solution of mp-NLP 
In general, problem P2 can be non-convex with multiple 

local minima. Therefore, it would be necessary to apply an 
efficient initialization of problem P2 so to find a close-to-
global solution. One possible way to obtain this is to find a 
close-to-global solution at a point 0 0v X∈  by comparing the 
local minima corresponding to several initial guesses and 
then to use this solution as an initial guess at the 
neighbouring points 0 1, 1,2, ... ,iv X i N∈ = , i.e. to 
propagate the solution. The following procedure is used to 
generate a set of points { }10 0 1 2, , , ... , NV v v v v= , where 

0 1, 0,1, 2, ... ,iv X i N∈ = . 
Procedure 1 (generation of set of points): 
Consider any hyper-rectangle 0 fX X⊆  with vertices 

{ }1 2

0 0 0 0, , ... , Nλ
λ λ λΛ =  and center point 0v . Consider also 



 
 

 

the hyper-rectangles 00 , 1,2,...,j
jX X j N⊂ =  with vertices 

respectively { }1 2
, , ... , , 1, 2,...,j j jj

jN j N
λ

λ λ λΛ = = . 

Suppose 1 2
0 0 0... jNX X X⊂ ⊂ ⊂ . For each of the hyper-

rectangles 0X  and 00 , 1,2,...,j
jX X j N⊂ = , determine a 

set of points that belongs to its facets and denote this set 

{ }1 2, , ... , , 0,1, 2, ...,j j jj
jN j N

φ
φ φ φΦ = = . Define the set of 

all points { }10 0 1 2, , , ... , NV v v v v= , where 

1
0 0

, 1,2, ... ,
j jN N

j j
i

j j
v i N

= =

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪∈ Λ Φ =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

∪∪ ∪ . 

The following procedure is applied to find a close-to-
global solution at the points 0 1, 0,1, 2, ... ,iv V i N∈ = : 
Procedure 2 (close-to-global solution of problem P2): 
Consider any hyper-rectangle 0 fX X⊆  with a set of points 

{ }10 0 1 2, , , ... , NV v v v v=  determined by applying Procedure 

1. Then: 
 a). Determine a close-to-global solution of problem P2 

at the center point 0v  through the following minimization: 

{ }1

*
0 0

,...,
( ) arg min ( , )

local local local
i NU

local
i

U U U
U v J U v

∈
= ,     (29) 

where , 1, 2, ... ,local
i UU i N=  correspond to local minima of 

the cost function 0( , )J U v  obtained for a number of initial 

guesses 0 , 1, 2, ... ,i UU i N= . 
 b). Determine a close-to-global solution of problem P2 

at the points 0 1, 1,2, ... ,iv V i N∈ =  in the following way: 
1. Determine a close-to-global solution of P2 at the center 

point 0v  by solving problem (29). Let 1i = . 

2. Let { }20 1 2 0, , , ... ,s
NV v v v v V= ⊂  be the subset of 

points at which a feasible solution of P2 has been already 
determined. 

3. Find the point sv V∈  that is most close to the point iv , 

i.e. arg min
s i

v V
v v v

∈
= − . Let the solution at v  be *( )U v . 

4. Solve P2 at the point iv  with initial guess for the 

optimization variables set to *( )U v . 
5. If a solution of P2 at the point iv  has been found, mark 

iv  as feasible and add it to the set sV . Otherwise, mark iv  
as infeasible. 

6. Let 1i i= +  . If 1i N≤ , go to step 2. Otherwise, 
terminate. 

B. Computation of feasible PWL solution 
Definition 1 (Feasibility on a discrete set): 
Let { }1 2, , ... , n

QX v v v= ⊂ �\  be a discrete set. A function 

)~(xU  is feasible on X  if { }( ( ), ) 0, 1,2, ... ,i iG U v v i Q≤ ∈ . 

We restrict our attention to a hyper-rectangle nX ⊂ �\  
where we seek to approximate the optimal solution )~(* xU  
to problem P2. We require that the state space partition is 
orthogonal and can be represented as a k – d tree. The main 
idea of the approximate mp-NLP approach is to construct a 
feasible piecewise linear (PWL) approximation )~(ˆ xU  to 

)~(* xU  on X , where the constituent affine functions are 
defined on hyper-rectangles covering X . In case of 
convexity, it suffices to compute the solution of problem P2 
at the n~2  vertices of a considered hyper-rectangle 0X  by 

solving up to n~2  NLPs. In case of non-convexity, it would 
not be sufficient to impose the constraints only at the 
vertices of the hyper-rectangle 0X . One approach to resolve 
this problem is to include some interior points in addition to 
the set of vertices of 0X  [23]. These additional points can 
represent the vertices and the facets centers of one or more 
hyper-rectangles contained in the interior of 0X . Based on 
the solutions at all points, a feasible local linear 
approximation 000

~)~(ˆ gxKxU +=  to the optimal solution 

)~(* xU , valid in the whole hyper-rectangle 0X , is 
determined by applying the following procedure: 
Procedure 3 (computation of explicit approximate 
solution): 
Suppose A1 and A2 hold. Consider any hyper-rectangle 

0 fX X⊆  with a set of points { }10 0 1 2, , , ... , NV v v v v=  

determined by applying Procedure 1. Compute 0K  and 0g  
by solving the following NLP: 
Problem P3: 

1

0 0

*
0 0, 0

2*
0 0 2

min ( ( , ) ( )

( ) )

N

i i iK g i

i i

J K v g v V v

K v g U vβ

=
+ −

+ + −

∑
    (30) 

subject to: 
( )0 0 0, 0 ,i i iG K v g v v V+ ≤ ∀ ∈     (31) 

In (30), the parameter 0β >  is a weighting coefficient. 

C. Estimation of error bounds 

Suppose that a state feedback )~(ˆ
0 xU  that is feasible on 

0 0V X⊆  has been determined by applying Procedure 3. 
Then, for the cost function approximation error in 0X  we 
have: 

*
0 0

ˆ( ) ( ) ( ) ,x V x V x x Xε ε= − ≤ ∈� � � �    (32) 

where )~),~(ˆ()~(ˆ
0 xxUJxV =  is the sub-optimal cost and 

)~(* xV  denotes the cost corresponding to the close-to-global 

solution )~(* xU , i.e. )~),~(()~( ** xxUJxV = . The following 



 
 

 

procedure can be used to obtain an estimate 0ε̂  of the 
maximal approximation error 0ε  in 0X . 
Procedure 4 (computation of the error bound): 
Consider any hyper-rectangle 0 fX X⊆  with a set of points 

{ }10 0 1 2, , , ... , NV v v v v=  determined by applying Procedure 

1. Compute an estimate 0ε̂  of the error bound 0ε  through 
the following maximization: 

{ }1

*
0 0,1,2, ... ,

ˆˆ max ( ( ) ( ))i ii N
V v V vε

∈
= −     (33) 

D. Approximate mp-NLP algorithm for explicit GP-
NMPC 

Assume the tolerance 0ε >  of the cost function 
approximation error is given. The following algorithm is 
proposed to design explicit reference tracking GP-NMPC: 
Algorithm 1 (explicit reference tracking GP-NMPC) 

1. Initialize the partition to the whole hyper-rectangle, 
i.e. { }XΠ = . Mark the hyper-rectangle X  as unexplored. 

2. Select any unexplored hyper-rectangle 0X ∈ Π . If no 
such hyper-rectangle exists, terminate. 

3. Compute a solution to problem P2 at the center point 
0v  of 0X  by applying Procedure 2a. If P2 has a feasible 

solution, go to step 4. Otherwise, split 0X  into two hyper-
rectangles 1X  and 2X  by applying the heuristic rule 2 from 
[23]. Mark 1X  and 2X  unexplored, remove 0X  from Π , 
add 1X  and 2X  to Π , and go to step 2. 

4. Define a set of points { }10 0 1 2, , , ... , NV v v v v=  by 

applying Procedure 1. Compute a solution to problem P2 for 
x~  fixed to each of the points 1, 1, 2, ... ,iv i N=  by applying 
Procedure 2b. If P2 have a feasible solution at all these 
points, go to step 6. Otherwise, go to step 5. 

5. Compute the size of 0X  using some metric. If it is 
smaller than some given tolerance, mark 0X  infeasible and 
explored and go to step 2. Otherwise, split 0X  into hyper-
rectangles 1X , 2X , …, 

sNX  by applying the heuristic rule 

1 from [23]. Mark 1X , 2X , …, 
sNX  unexplored, remove 

0X  from Π , add 1X , 2X , …, 
sNX  to Π , and go to step 2. 

6. Compute an affine state feedback )~(ˆ
0 xU  using 

Procedure 3, as an approximation to be used in 0X . If no 
feasible solution was found, split 0X  into two hyper-
rectangles 1X  and 2X  by applying the heuristic rule 3 from 
[23]. Mark 1X  and 2X  unexplored, remove 0X  from Π , 
add 1X  and 2X  to Π , and go to step 2. 

7. Compute an estimate 0ε̂  of the error bound 0ε  in 0X  
by applying Procedure 4. If 0ε̂ ε≤ , mark 0X  as explored 
and feasible and go to step 2. Otherwise, split 0X  into two 

hyper-rectangles 1X  and 2X  by applying Procedure 4 from 
[23]. Mark 1X  and 2X  unexplored, remove 0X  from Π , 
add 1X  and 2X  to Π , and go to step 2. 

V. SIMULATION EXAMPLE 

A. The nonlinear system 
Consider the stochastic system described by the following 
nonlinear state space model: 

3
1tanh( )x x u ξ= − + +�        (34) 

where 1ξ  is white noise with variance 0.0025 and zero 
mean. The sampling time, determined according to system 
dynamics, was selected to be 0.5sT = . The Euler 
approximation of system (34) is: 

3
2( 1) ( ) tanh( ( ) ( ) ) ( )sx t x t T x t u t tξ+ = − + +    (35) 

where 2 1( ) ( )st T tξ ξ= . 

B. Gaussian process model identification 
The control signal u  was generated by a random number 
generator with normal distribution. The control signal 
blocking was 6u sT T= , i.e. it is kept constant for 6 time 
instants. The number M  of the input signal samples used 
for the identification determines the dimension of the 
covariance matrix. In our case, 200M = .  Let mx  be the 
mean value of the state of system (35) obtained for the 

generated control signals, i.e. 
1

1 ( )
M

mx x t
M

= ∑ . By 

introducing the variable ( ) ( ) my t x t x= − , we would like to 
obtain a Gaussian process model for the following discrete-
time stochastic system: 

3
2( 1) ( ) tanh( ( ) ( ) ) ( )sy t y t T y t u t tξ+ = − + +    (36) 

Based on the generated data set, the discrete-time system 
(36) is approximated with Gaussian process with zero mean 
and covariance function of the form (1). The maximum 
likelihood framework was used to determine the 
hyperparameters. The optimization method applied for 
identification of the Gaussian process model was the 
conjugate gradient method with line searches [28]. The 
following set of hyperparameters was found: 

1 2 0 1[ , , , ] [0.3952,0.9754,1.0333,0.0354]w w v vΘ = =  (37) 
A validation control input signal was generated by random 
number generator with normal distribution and rate of 
change that is different from the one used for the 
identification signal. The response of the Gaussian process 
model to the validation signal is shown in Fig. 1. The 
associated average squared error and log density error are 
respectively 0.0017ASE =  and 2.1476LD = − . 
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Fig. 1. Response of the Gaussian process model to the excitation signal used 
for validation. 

C. Design of explicit reference tracking GP-NMPC 
controller 
The mp-NLP approach described in section IV is applied 

to design an explicit reference tracking GP-NMPC 
controller for the system (35) based on the obtained 
Gaussian process model. 

In the GP-NMPC problem formulation (problem P1), the 
predicted state 1|t k tx + +  of system (35) is used. This 
prediction is obtained in the following way. First, we obtain 
the prediction of 1|t k ty + +  from the Gaussian process model 
of system (36): 

2
1| | 1| 1|| , ~ ( ( ), ( ))

0,1, ... , 1
t k t t k t t k t k t t k ty y u y y

k N

µ σ+ + + + + + + +

= −

N
  (38) 

Then, the predicted 1|t k tx + +  is: 

1| 1|t k t t k t mx y x+ + + += +         (39) 
The iterative multi-step ahead prediction was done by 
feeding back at each time step the predictive mean only. 

The following control input and rate constraints are 
imposed on the system: 

1 1 ; 0.5 0.5u u− ≤ ≤ − ≤ ∆ ≤      (40) 
The prediction horizon is 8N =  and the terminal constraint 
is: 

| |

| |

max{ ( ) 2 ( ) ( ) ,

( ) 2 ( ) ( ) }

t N t t N t

t N t t N t

x x r t

x x r t

µ σ

µ σ δ

+ +

+ +

− −

+ − ≤
    (41) 

where 0.015δ = . The weighting matrices in the cost 
function (21) are 10Q = , 1R = , 10P = . The GP-NMPC 
minimizes the cost function (21) subject to the Gaussian 
process model (38)–(39) and the constraints (40), (41). 

The formulated GP-NMPC problem results in 
optimization problem P2 with 8 optimization variables and 
33 constraints. One internal region 1

0 0X X⊂  is used in 
Procedures 1, 2, 3 and 4. This results in problem P3 which 
has 32 optimization variables and 285 constraints. In (30), it 

is chosen 10β = . The approximation tolerance is chosen in 
the following way: 

0

*
0( ) max( , min ( ))a r x X

X V xε ε ε
∈

=
�

� ,    (42) 

where 0.005aε =  and 0.05rε =  are the absolute and the 
relative tolerances, respectively. The extended state vector is 

3( ) [ ( ), ( ), ( 1)]x t x t r t u t= − ∈� \ , which leads to a 3-
dimensional state space to be partitioned. The latter is 
defined by [ 1.2, 1.2] [ 0.7, 0.7] [ 1, 1]X = − × − × − . 

The partition has 1419 regions and 18 levels of search. 
Totally, 24 arithmetic operations are needed in real-time to 
compute the control input (18 comparisons, 3 
multiplications and 3 additions). 

The performance of the closed-loop system was simulated 
for the following set point change: 

( ) 0.5 , [0;50] ; ( ) 0.2 , [51;100]
( ) 0.2 , [101;150] ; ( ) 0.5 , [151;200]

r t t r t t
r t t r t t

= − ∈ = − ∈
= ∈ = ∈

 (43) 

and initial conditions for the state and control variable  
(0) 0x =  and (0) 0u = , respectively. The resulting closed-

loop response is depicted in Fig. 2 to Fig. 4. 
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Fig. 2. The control input. The dashed curve is with the approximate explicit 
GP-NMPC and the dotted curve is with the exact GP-NMPC. 
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Fig. 3. The mean value of the state variable predicted with the Gaussian 
process model. The dashed curve is with the approximate explicit GP-
NMPC, the dotted curve is with the exact GP-NMPC, and the solid curve is 
the set point. 
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Fig. 4. The 95% confidence interval of the state variable predicted with the 
Gaussian process model. The dashed curve is with the approximate explicit 
GP-NMPC, the dotted curve is with the exact GP-NMPC, and the solid 
curve is the set point. 
 
The results show that the exact and the approximate 
solutions are almost indistinguishable. 

VI. CONCLUSIONS 
In this paper, an approximate mp-NLP approach to 

explicit solution of reference tracking NMPC problems 
based on Gaussian process models is developed. The 
approach builds an orthogonal search tree structure of the 
state space partition and consists in constructing a feasible 
PWL approximation to the optimal control sequence. 
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