A Geometric Approach to Actuator Failure in Robotic Manipulators

Pål Johan From1,*, Cong Dung Pham1, and Jan Tommy Gravdahl2

1 Department of of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
2 Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway

The use of robotic manipulators in remote and sensitive areas calls for more robust solutions when handling joint failure, and the industry demands mathematically robust approaches to handle even the worst case scenarios. Thus, a systematic analysis of the effects of external forces on manipulators with passive joints is presented. In parallel manipulators passive joints can appear as a design choice or as a result of torque failure. In both cases a good understanding of the effects that passive joints have on the mobility and motion of the parallel manipulator is crucial. We first look at the effect that passive joints have on the mobility of the mechanism. Then, if the mobility, considering passive joints only, is not zero we find a condition for which the parallel manipulator is conditionally equilibrated with respect to a specific external force. We then find all configurations for which the mechanism is conditionally equilibrated with respect to an external force. Without loss of generality assume that all the passive joints are at the end of the sub-chains, i.e.,

\[M = M_A \cdot M_P \]

where \(M_A \) represents the active and \(M_P \) the passive joints. We need to verify if the mechanism, considering the passive joints only, is equilibrated with respect to an external force \(F_g \). We denote the transformation of \(M_P \) by the active joints \(g_A \) and find [2]

\[G_A = \{ g_A \mid R_{g_A^{-1}}^\cdot T_{g_A^{-1}}^\cdot C_{M_P} \in R_{g_A^{-1}}^\cdot T_{g_A^{-1}}^\cdot Q_{S0} \} \] (1)

i.e., the joint positions of the active joints that generate only equilibrated motion \(Q_S = R_{g_A^{-1}}^\cdot T_{g_A^{-1}}^\cdot Q_{S0} \). More specifically,

\[R_{g_A^{-1}}^\cdot T_{g_A^{-1}}^\cdot C_{M_P} = R_{g_A^{-1}}^\cdot T_{g_A^{-1}}^\cdot C_{M_P} \cap \cdots \cap R_{g_A^{-1}}^\cdot T_{g_A^{-1}}^\cdot C_{M_P} \] (2)

is the attainable spatial velocities of \(M_P \) at \(g_A \) and \(R_{g_A^{-1}}^\cdot T_{g_A^{-1}}^\cdot Q_{S0} \) is the equilibrated motion with respect to \(F_g \) in a specific reference frame \(g \) and \(R_{g_A^{-1}}^\cdot T_{g_A^{-1}}^\cdot h \) is the differential of the inverse of the right translation defined as \(R_{g_A^{-1}}^\cdot T_{g_A^{-1}}^\cdot h = hg \). See [3] for details.

The main observation here is that the infinitesimal motions attainable by \(M_P \), when \(M_P \) is at the end of the chains, are transformed by a rigid transformation \(g_A \) which depends on the active joints only. Thus, we denote the Adjoint map of \(g_A \) by \(\overline{A}^{-1}_P = \overline{A}^{-1} \) and write \(\overline{A}_P = \overline{A}^{-1} \). We will divide the motion of the mechanism into two motions. First, \(C_{M_P} \) is the motion due to the passive joints. This motion is affected by the external disturbances. The other motion is \(C_{M_A} \), which is due to the active joints. This is not affected by the external disturbance. The aim of this paper is to find the configurations of the active joints so that \(C_{M_P} \) is \(Q_S \). We will write \(\overline{g}_j = \overline{A}_j^{-1} \) where \(g_j \) is the transformation from the base to joint \(i \) of chain \(j \). Thus the direction of the twists of the passive joints will depend on the position of the active joints, i.e., \(g_j \) depends on the position of the active joints.

We need to verify if \(\overline{A}_P \in Q_S \) where \(\overline{A}_P = \overline{A}_P \cap \overline{A}_P \cap \cdots \cap \overline{A}_P \cap \overline{A}_P = \{ \overline{g}_j, \overline{g}_j, \cdots, \overline{g}_j \} \) are the twists of \(g_j \) of link \(j \). We can now find the set of conditionedally equilibrated configurations as

\[G_A = \{ g_A \mid \overline{A}_P (g(\theta)) \in Q_S \} \] (3)

which is found by \(G_A = \{ g_A \mid (\overline{A}_P (g(\theta)), F_g) = 0 \} \) which is the set of all equilibrated configurations for \(M \), i.e., the joint positions for which the mechanism is not affected by \(F_g \).

* Corresponding author: e-mail pjafr@nmbu.no

Copyright line will be provided by the publisher
3 Example

Free swinging joint faults affect parallel manipulators differently than serial manipulators. For serial manipulators joint faults is extremely serious while this is not always the case for closed chain manipulators due to the kinematic constraints. In this section we present a simple example illustrating the effects of torque failure in parallel mechanisms.

Consider the parallel manipulator in Fig. 1. Assume that the actuated joints are chosen as in Fig. 1 and joint failure occurs in \(\mathcal{M}_{12} \). We choose a reference configuration as in Fig. 1 and the twists of each chain is given by [4]

\[
\mathcal{M}_{p1} = \left\{ \begin{bmatrix} v_x \\ 0 \end{bmatrix}, \begin{bmatrix} p_{12} \times w_x \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} p_{13} \times w_x \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} p_{14} \times w_z \\ w_z \end{bmatrix} \right\}
\]

\[
\mathcal{M}_{p2} = \left\{ \begin{bmatrix} v_z \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ w_z \end{bmatrix} \right\},
\]

\[
\mathcal{M}_{p3} = \left\{ \begin{bmatrix} v_z \\ 0 \end{bmatrix}, \begin{bmatrix} p_{12} \times w_z \\ w_z \end{bmatrix}, \begin{bmatrix} p_{15} \times w_z \\ w_z \end{bmatrix} \right\},
\]

and we get

\[
\mathcal{M}_p = \mathcal{M}_{p1} \cap \mathcal{M}_{p2} \cap \mathcal{M}_{p3} = \left\{ \begin{bmatrix} v_z \\ 0 \end{bmatrix} \right\}.
\]

Thus for the chosen reference configuration, \(\mathcal{M}_p \) is not conditionally equilibrated with respect to the gravitational forces. It is, however, conditionally equilibrated with respect to all forces in the \(xy \)-plane, e.g.

\[
\langle \mathcal{M}_p, F_x \rangle = 0, \quad \langle \mathcal{M}_p, F_y \rangle = 0, \quad \langle \mathcal{M}_p, F_z \rangle \neq 0.
\]

We now look into for what configurations this is true. This is straight forward due to the observation that \(q_{A} \) does not appear in neither \(\mathcal{M}_{p1}, \mathcal{M}_{p2} \), nor \(\mathcal{M}_{p3} \), so

\[
\mathcal{M}_{pj} = \text{Ad}_{q_j} (\mathcal{M}_p) \mathcal{M}_{pj} = \mathcal{M}_{pj}, \quad \forall i, j, \theta
\]

and thus the twists of the passive joints are independent of positions of the active joints. The set of joint positions for which the manipulator is conditionally equilibrated with respect to \(F_y \) (a linear force in the direction of the \(y \)-axis) is thus given by

\[
\Theta_{F_y} = \{ \theta \mid \langle \text{Ad}_{q_j (\theta)} (\mathcal{M}_p), F_y \rangle = 0 \} = \{ \forall \theta \}
\]

which means that it can always resist a force in this direction. Similarly, the set of joint positions for which the manipulator is conditionally equilibrated with respect to \(F_z \) is thus given by

\[
\Theta_{F_z} = \{ \theta \mid \langle \text{Ad}_{q_j (\theta)} (\mathcal{M}_p), F_z \rangle = 0 \} = \{ \emptyset \}
\]

which means that it can never resist a force in this direction.

4 Conclusion

A mathematically rigorous framework for analysing the effects of joint failure in parallel manipulators is presented. For parallel manipulators, we can find a set of active joints for which the design itself is fault tolerant. In this sense, the parallel manipulators are more robust than their serial counterparts. On the other hand, when actuator failure occurs and this allows for a motion in the passive joints, we have less flexibility to deal with this in the control algorithms than for serial manipulators. In general we find that the parallel manipulator is either conditionally equilibrated for all configurations, or it is never conditionally equilibrated. Fault tolerance of parallel manipulators should thus be addressed in the design of the mechanism.

References