Bruk av varmepumper for effektiv energibruk i bygninger og industri

Det er i dag installert ca. 25 000 varmepumper i Norge. Denne artikkelen gir en kort inntjering i virkemåten for varmepumper og dagens bruk av varmepumper i Norge. Videre vurderes muligheten for fremtidig bruk av varmepumper og aktuelle FoU-områder.

Av forsker Jørn Stene og forskningssjef Trygve M. Elkevik

Det som gjør varmepumpeteknologien så attraktiv er at den muliggjør utnyttelse av omgivelsesvarme (fornybar energi) fra eksempelvis sjøvann, grunnvann, fjell, jord, utluft eller lavtemperatur overskuddsvarme fra ventilasjonsluft, avløpsvann, kjølevann osv. Dette er varme som normalt ikke kan utnyttes til oppvarmingsformål på grunn av for lavt temperaturnivå. For å drive varmepumpeprosessen må det tilføres hoyverdig energi. Dette vil i de fleste tilfeller være elektrisitet, men det er også installert et mindre antall gass- og dieseldrevne anlegg i Europa, USA og Japan (ikke Norge).

Figur 1. Varmepumpens prinsipp

Figur 2. Prinsipiell oppbygging av en varmepumpe.

http://www.energy.sintef.no/publ/xergi/99/1/art-8.htm

2004-03-04
Virkemåte
Varmepumpen avgir en varmemengde som er tilnærmet lik summen av
varmemengden som er tatt opp fra varmekilden og tilført elektrisk energi til
drift av anlegget, se figur 1 og 2. Ettersom varmepumper i realiteten "pumper
varme" fra et lavt temperaturnivå til et høyere temperaturnivå, er det ofte
aktuelt og installere varmepumpeanlegg som kan levere både varme og
kjøling (integreerte energianlegg). Ved samtidig varme- og kjøleproduksjon vil
overskuddsvarmen fra bygningen eller prosessen være anleggets
lavtemperatur varmekilde.

Sammenlignet med oppvarmingssystemer basert på direkte bruk av
elektroser i panelovner og elektrokrejler eller gass- og oljefyrt kjølenlegg,
reduserer varmepumper bruken av høyervlig energi med typisk 50-90%,
avhengig av bruksområde, anleggsstørrelse og temperaturnivå, figur 3. For å
oppnå høyest mulig effektivitet for varmepumper til bygningsoppvarming, er
det svært viktig at anleggene leverer varme ved lav temperatur, f.eks. til
gulvvarmesystemer eller lavtemperatur radiatorer (vannbåren varme). For
industrielle varmepumper er temperaturnivået gitt av prosessen, og dagens
anlegg kan levere varme opp til ca. 150 °C.

Store muligheter for varmepumper i Norge
Det er i dag installert ca. 25.000 varmepumper i Norge med en årlig varmeproduksjon på ca. 4,5-5 TWh/år. Dette er relativt moderat
sammenlignet med vår svenske nabo som raskt nærmer seg 20 TWh varme pr år fra varmepumper. Mulighetene for økt bruk av
varmepumper i Norge er imidlertid store, og ulike utredninger har vist at det på sikt vil være lønnsomt å bygge ut kapasiteten til et sted
mellom 10 og 20 TWh. Dagens lave energipriser samt varmepumpens relativt høye investeringskostnader sammenlignet med elektriske
panelovner, medfører imidlertid at det i en overgangsperiode vil være behov for ulike tiltak for å fremme bruken av varmepumper i Norge.

Interessen for varmepumper i Norge har økt betydelig de siste par årene ut i fra et generelt ønske om større satsning på nye, fornybare
energikilder, energieffektiivisering og energifleksibilitet. I april 1998 anbefalte Stortingets energi- og miljøkomité Regjeringen om å utarbeide
en handlingsplan for økt bruk av varmepumper. Varmepumper fikk også en bred presentasjon i NOU 1998:11 "Energi- og kraftbalansen mot
2020".

Stort forbedringspotensiale
Selv om varmepumper i dag representerer en svært energieffektiv og moden teknologi er det fortsatt store muligheter for forbedringer.
Eksemplervis er det ved SINTEF Energiforskning, nylig blitt utviklet et høyteffektivt CO₂ varmepumpsystem for oppvarming av varmt
tappevann. Ved en utgående vanntemperatur på 60 °C oppnår anlegget en effektfaktor på 4,5. Dette er i størrelseseordenen 20% høyere enn
dagens varmepumper, og medfører nesten 80% lavere elektrisitetsforbruk enn ved bruk av konvensjonelle vannvarmskruer. En annen
fordel med systemet er at det kan levere vann med temperaturer opp mot 95 °C uten driftsproblemer, slik at det ikke er nødvendig med

http://www.energy.sintef.no/publ/xergi/99/1/art-8.htm
elektrisk ettervarming ved høye temperaturkrav. Anlegget er nærmere beskrevet i Xergi 1/98.