

			Nausea		
			none or little	much	Total
Ventricular tube	no	Count	18	12	30
		% within Treatment: ventricular tube	60.0%	40.0%	100.0%
	yes	Count	24	5	2
		% within Treatment: ventricular tube	82.8%	17.2%	100.0%
	Total	Count	42	17	5
		% within Treatment: ventricular tube	71.2%	28.8%	100.0%
Differenc	e in su	ccess probabilities:			
Estimate:	82.8%	- 60% = 22.8%			
95% Nev	vcombe	confidence interval:	-0.4% to 42.9%	6	
(Wold m	thod .	ot recommended, 0.5	0/ to 45.00/		

References

- Proschan, M. A., Lan, K. K., Wittes, J. T. (2006): "Statistical Monitoring of Clinical Trials: A Unified Approach" Springer *) Jennison C and Turnbull, B W (2000): "Group Sequential Methods: Applications to Clinical Trials" Chapman & hall *)
- Mazumdar M and Bang H (2008): "Sequential and group Sequential Designs in Clinical Trials: Guidelines for Practitioners". Chapter 16 (pages 2491-512) in Rao , Miller and Rao: "Handbook of Statistics Vol 27: Epidemiology and Medical Statistics" http://folk.ntnu.no/slyderse/medstat/Mazumdar_Bang.pdf
- Armitage P, Berry, G, Matthews, J N S (2002): "Statistical methods in medical research". 4th ed. Section 18.7 Data Monitoring (page 613-623). http://folk.ntnu.no/slyderse/medstat/Armitage_et_al.pdf **
- International Committee on Harmonization ICH E9 (1998): Statistical principles for Clinical Trials. www.ich.org

- *) Available as E-book at UBIT **) Curriculum Course st2303 "Medical Statistics" spring 2010 NTNU
- Why interim analyses in an RCT? • Early termination if treatment is superior to control · Early termination if treatment is more harmful than control But: · Interim analyses HAS implications for study design and analysis and interpretation of results NTNU

NTNU

NTNU

OBF boundaries with k=5:			Example (Armitage et al) RCT with 2 parallell groups, $\alpha = 0$.	Example (Armitage et al) RCT with 2 parallell groups, $\alpha = 0.05$, power = 0.80	
Look no	Boundary for B(t):	Boundary for Z(t):		Sample size (without interim looks)	to detect an effect size
t	a(t)	a(t)/(t/k)1/2	α_{lowered}	n=126 (63 per group)	
1	2.040	4.562	0.0000051		
2	2.040	3.226	0.0013	Alternative sequential designs with	5 equally spaced looks:
3	2.040	2.634	0.0085	(Mazumadar and Bang page 497)	COCK and OBF procedure
4	2.040	2.281	0.023	$n_{Pocock} = 126 \times 1.23 = 155$ and $n_{OBF} =$	$= 126 \times 1.03 = 130$
5	2.040	2.040	0.041	Armitage et al, Table 18.4 and Figu	re 18.1 page 619-620
				• NTNU	NTN

Alpha spending function

- · Controls how much of alpha can be used at each look, as function of the proportion of total information observed.
- This proportion may be estimated as fraction of - subjects recruited
 - events observed
- Number of looks, timing of looks, need NOT to be prespecified.
- The alpha spending function must be pre-specified (for example Pocock or OBF)
- Prochan et al Table 5.1 and Figure 5.1 page 6 TNU
- Figure 5.3 and Table 5.3 page 86-87

Data-driven looks:

- · Violates assumptions for the alpha spending function
- · But results are approximately unaffected. Proschan et al page 89-90: "Intention to cheat" results in max 10% inflation of type I error rate.

NTNU

Analysis after a sequential trial

- Two situations:
 - After completion of trial
 - At an interim analysis
- In both situations, naïve anayses (as if data were from a fixed sample experiment) are inappropriate (see i.e. Prochan et al 2006 Chapter 7)
 - Effect size estimates and CI are biased away from 0
 - Actual CI coverage substantially lower than nominal coverage.
 - P-values are too small
- "Most statisticians acknowledge that the observed effect from a trial that is stopped early overestimates the true value, but (Proschan et al, page 114)

