
Oppgave/Oppgåve 3. Destillasjon (35%)

Føden til en destillasjonskolonne er 100 kmol/h med 20 mol-% metanol (A) og resten vann. Destillat-produktet skal inneholde 98 mol-% A og tapet av A i bunnproduktet skal være 0.1 % av A i føden.

- Føden er på mettet væske på kokepunktet
- Total kondensator med reflux på kokepunktet
- Oppvarming skjer ved direkte innblåsning av vann damp (V), dvs. det er ingen koker.
- Trykket i kolonnen er 1 atm
- Refluxforhold R=L/D=2
- Angi ytterligere antagelser du gjør for å løse oppgaven

Damp/væske likevektsdata (molfraksjon A)

<table>
<thead>
<tr>
<th>x</th>
<th>0.02</th>
<th>0.04</th>
<th>0.10</th>
<th>0.20</th>
<th>0.40</th>
<th>0.60</th>
<th>0.70</th>
<th>0.80</th>
<th>0.90</th>
<th>0.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0.134</td>
<td>0.23</td>
<td>0.418</td>
<td>0.579</td>
<td>0.729</td>
<td>0.825</td>
<td>0.870</td>
<td>0.915</td>
<td>0.958</td>
<td>0.979</td>
</tr>
</tbody>
</table>

(a) Beregn mengde og sammensetninger av strømmene V (dampføde), D (topp-produkt) og B (bunnprodukt).

(b) Hvilken sammenheng er det driftslinjen uttrykker?
Utled ligningene for driftslinjene i kolonnen (med symboler).
Vis at driftslinjen i topp går gjennom punktet (x_D, x_D) og i bunn gjennom punktet (x_B, 0)

(c) Bestem antall teoretiske trinn og fødetrinn når føden er optimalt plassert.

(d) Hva er kolonnediameteren dersom gasshastigheten er 1 m/s (anta V=100 kmol/h hvis du ikke fant den i delspørsmål a)?

(e) Hva er minimum dampmengde V_{min} (med uendelig antall trinn)? Hvor mye høyere er den virkelige dampmengden V?
Solution Oppgave/Oppgave 3- Destillasjon (35%)

Additional assumptions (2 points for any two of these):
- Constant molar flows.
- Ideal equilibrium stages (not a single student mentioned this important assumption for use of McCabe-Thiele….)
- Ideal gas (for part d)
- Temperature in bottom is 100 C (boiling point for water at 1 atm) (for part d)

(a) (10 points: 4 points for correctly understanding the problem (see flowsheet) and 6 points for setting up the balances given your understanding)

Mass balance methanol
1. \(F \cdot z_F = D \cdot x_D + B \cdot x_B \)

Total mass balance (methanol+water)
2. \(F + V = D + B \)

Given (3) \(F = 100 \text{ kmol/h}, \quad z_F = 0.2, \quad x_D = 0.98 \)
3. \(B \cdot x_B = 0.001 \cdot F \cdot z_F = 0.02 \text{ kmol/h} \) (**A in bottom is 0.1% of A in feed**)
4. \(L \cdot D = 2 \)

(1) and (4) gives: \(20 = D \cdot 0.98 \) 20-0.02 [kmol/h] ->
\(D = 20.388 \text{ kmol/h} \)

The reflux ratio is 2, i.e., \(L = 2D = 40.78 \) and the vapour at the top of the column is
\(V_T = L + D = 3D = 61.16 \text{ kmol/h} \)

Since we assume constant molar flows and the feed is saturated liquid we then have:
\(V = V_T = 61.16 \text{ kmol/h} \).

The total balance (2) gives:
\(B = F + V - D = 100 + 61.16 - 20.39 = 140.78 \text{ kmol/h} \)

and from (4):
\(x_B = 0.001 \cdot 20/140.78 = 0.000142 \)
(b) (5 points) The operating lines give the vapor composition \(y \) as a function liquid composition \(x \) between the stages.

Top of column. Let \(x \) and \(y \) be mole fraction of A between two stages (actually, it should be \(x_n \) and \(y_{n+1} \), but I have dropped the subscripts).

Mass balance over the top (lower operating line):

\[V_y = L x + D x_D, \text{ i.e., } y = \frac{L}{V} x + \frac{D}{V} x_D \]

where \(L \) og \(V \) are flows in the top part.

Inserting \(x=x_D \) gives: \(y = \frac{L+D}{V} x_D = x_D \) since \(L+D=V \)

Bottom part. Let \(x \) and \(y \) be mole fraction of A between two stages (actually, it should be \(x_m \) and \(y_{m+1} \), but I have dropped the subscripts).

Mass balance over the top (upper operating line):

\[L x = V y + B x_B, \text{ i.e., } y = \frac{L}{V} x - \frac{B}{V} x_B \]

where \(L \) og \(V \) are flows in the top part.

Inserting \(x=x_B \) gives \(y = \frac{L-B}{V} x_B = 0 \) since \(L=B \) in our case with direct steam injection.
(c) (10 points) Number of stages.
We use a graphical solution (McCabe-Thiele diagram) of the mass balance and equilibrium expressions on each stage. We make an enlarged diagram for the bottom of the column \((x<0.02)\) and assume that the equilibrium line is straight in this region (we could have used the Kremser formula instead for the enlarged part and this would give the same result).

1. Draw equilibrium line
2. Draw upper operating line: Goes through (0.98,0.98) and has slope \(L/V = L/(L+D) = 2/3\)

3. Draw lower operating line: goes through (0.000142,0) and through crossing with feed line (vertical feed line for liquid feed) and upper operating line. For the enlarged plot it is useful to know the slope for the bottom operating line; \(L/V = 140.78/61.16 = 2.30\)

4. Count stages using staircase (the staircase corresponds to a graphical solution of the mass balance (operating line) and equilibrium on each stage. The staircase changes between the operating line when they cross the feed line because this gives the fewest number of stages.

From the McCabe Thiele diagram we need 14 equilibrium stages and the feed stage is on stage 7 counted from the top. In summary, the column consists of (note: no reboiler):

7 stages bottom + 7 stages top + Total condenser (does not count as stage)

Note: You would get almost the same solution with a regular column (with reboiler) if it had the same value of V. The only difference is that in our case (with direct steam injection) the bottom operating line is shifted slightly down, so direct injection requires fewer stages (but in our case the difference is very small since it is only shifted down by \(x_B = 0.000142\)).

(d) (4 points) Want to find the column diameter given that we know \(v = 1\) m/s. We have that
\[
v \text{ [m/s]} = q \text{ [m}^3/\text{s}] / S \text{ [m}^2]\]
where \(S\) is the cross section area and \(q\) is the volumetric flow. Here
\[
q \text{ [m}^3/\text{s}] = n \text{ [mol/s]} * Vm \text{ [m}^3/\text{mol}]
\]
where
\[
n = V = 61.16 \text{ kmol/h} = 17.0 \text{ mol/s}
\]
and \(Vm\) is the molar volume which for an ideal gas is
\[
Vm = RT/p \text{ [m}^3/\text{mol}]
\]
where \(p\) is 1 atm. What temperature \(T\) should we use? Note that \(V [\text{mol/s}]\) is assumed constant through the column (constant molar flows), but the volumetric vapor flow \(q\) is larger at the bottom where the temperature is highest, so to be “safe” we use the highest temperature. Since we have almost pure water in the bottom, we can assume that the temperature is 100°C (boiling point of water).

\[
T = 373 \text{ K}
\]
We then get:
\[
Vm = RT/p = 8.31*373 / 1.013e5 = 0.030 \text{ m}^3/\text{mol}.
\]
\[
q = V*Vm = 17*0.03 = 0.52 \text{ m}^3/\text{s}.
\]
\[
S = q \text{ [m}^3/\text{s}] / v \text{ [m/s]} = 0.52 \text{ m}^3/\text{s} (1 \text{ m/s} = 0.52 \text{ m}^2).
\]
Diameter: \(d = \sqrt{S*4/\pi} = 0.81 \text{ m}\)

(e) (4 points) Minimum vapor needed.

Note: The amount and purity of D is not changed as we change the amount of V (Vi is pure water and it will go up the column and come back again and change the amount and purity of B).

The minimum reflux corresponds to the operating lines crossing the equilibrium line at \(x_F = 0.2\). The corresponding slope of the operating line is
\[
(L/V)_{\text{min}} = (0.98-0.579)/(0.98-0.2) = 0.514.
\]
which corresponds to
\[
R_{\text{min}} = L_{\text{min}}/D = L_{\text{min}}/(V_{\text{min}}-L) = (L/V)_{\text{min}}/(1-(L/V)_{\text{min}}) = 0.514/(1-0.514) = 1.058
\]
So \(L_{\text{min}} = D*1.058\) and the minimum vapor flow at the top is
\[V_{\text{min}} = L_{\text{min}} + D = (1.058+1)D = 2.058 \times 20.39 \text{ kmol/h} = 41.95 \text{ kmol/h} \]
which is equal to the minimum vapor feed (at the bottom) since the feed is liquid. The actual vapor feed is 61.16 \text{ kmol/h}, which is 46\% higher than the minimum.
Oppgave 4. Ekstraksjon (15%)

(a) Vi har en blanding med 500 g vann og 500 g bensin som danner to væskefaser (se trekantdiagram). Hvor mye metanol må tilsettes for at vi skal få kun en væskefase?

(b) Vi har en blanding ($V_0=10$ t/h) av 50 vekt% metanol og 50% bensin som vi ønsker å separere for å få renere bensin. Noen har foreslått å tilsette vann ($L_0=1$ t/h) og bruke en ett-trinns ekstraksjonsprosess (mixer-settler). Tegn inn plasseringen på fødene L_0 og V_0 på trekantdiagrammet og bestem mengden og sammensetningen av produktene (L_1, V_1).

(c) Tegn flytskjema for en multi-trinns ekstraksjonsprosess. Vil du anbefale å vurdere multi-trinns ekstraksjon i dette tilfellet?

English text
(a) We have a mixture of 500 g water and 500 g gasoline that forms two liquid phases. How much methanol do you need to add to get only one liquid phase (use the diagram)?

(b) We have a mixture ($V_0=10$ t/h) of 50 wt% methanol and 50 wt% gasoline that we want to separate to make purer gasoline. It has been suggested to add water ($L_0=1$ t/h) and use a one-stage extraction process (mixer-settler). Plot in the feeds L_0 and V_0 on the diagram and find the amounts and compositions of the products (L_1, V_1).

(c) Make a flow sheet of a multi-stage extraction process. Would you recommend considering multi-stage extraction in this case?
Solution. Oppgave 4. Ekstraksjon (15%)

(a) (4 points) The original mixture of water/gasoline is shown as point L_{a0} in the diagram. We want to add methanol (V_{a0}) so that we get into the single-phase region “a”. From the diagram we see that the desired mixture point M_a contains about 80 wt% methanol. We then have

$$V_{a0} / (L_{a0} + V_{a0}) = 0.8$$

and since $L_{a0}=1$ kg we get that the amount of methanol we must add to just be just on the phase boundary is $V_{a0} = 0.8/0.2 = 4$ kg.

(b) (8 points) The two feeds in this case are V_0 and L_0. We identify the mixing point M which contains 9% water (=1/11) (I found it from the 9% line on the diagram, but one could alternatively use the lever arm rule). The products (L_1, V_1) are at the end of the tie line through the point M (since M is not on one of the given tie lines, we need to estimate where the tie line through M goes).

From the diagram it seems that the gasoline product V_1 is almost pure gasoline while the other product (L_1) is about 78% methanol (read from point L_1 in the diagram).

Material balance for methanol: 0.78 $L_1 = 5$ gives $L_1 = 6.41$ t/h
Total mass balance: $V_1 = 1 + 10 - 6.41 = 4.59$ t/h

Could alternatively have used the lever arm rule:

$L_1/V_1 = V_1M/L_1M = 5.4\text{cm}/3.85\text{cm} = 1.40$
Total mass balance: $L_1+V_1 = L_0+V_0 = 11$ t/h -> 2.40 $V_1 = 11$ t/h -> $V_1 = 4.58$ t/h

The amount of gasoline in L_1 (which can be a bit difficult to read exactly) can be found from the mass balances:

Mass balance gasoline: $V_1 + x_g L_1 = 5$ gives $x_g = 0.0296$ (i.e. 3% gasoline in L_1)
The amount of water in L_1 is then $100\%-78\%-3\%=19\%$.
(c) (3 points) Multi-stage extraction.

The figure shows countercurrent multi-stage extraction, which is generally the preferred solution.

In single-stage extraction, the products (V₁, L₁=Lₙ) must lie on the two-phase boundary and on a tie line through M. In multi-stage extraction the products (V₁, Lₙ) must lie on the two-phase boundary on a line (not necessarily a tie line) through M.

It is better with multistage countercurrent extraction, but in our case, the gasoline product V₁ is already quite pure so with a given overall feed (V₀+L₀) there is really not much possibility for shifting Lₙ (because it lies on a line between the fixed point M and V₁ which is almost fixed).

Conclusion: Not much point in multistage extraction.

Comment: If we had another cases where we added much less water (L₀) there would be some benefit because the gasoline product V₁ from single-stage extraction would then not be very pure. However, adding a small amount of water (move M closer to V₀) is not very smart, because the products (V₁ and Lₙ) must lie on the tie line through M, so we see from the diagram that the product Lₙ then would contain more gasoline which is not desirable.