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Summary

The chemical process industries are forced by the ever increasing global market com-
petition to improve their efficiency of operation. Because of the large investment
needed to build new plants it is of great interest to change the way existing plants
are operated. It is therefore desirable that a plant produces a wider variety of prod-
ucts or that it can be switched faster between different product specifications or
operation modes. To meet the requirements of the market, research and develop-
ment are a necessity to innovate products, production processes and operational
strategies. In almost all cases, plant and process models of varying complexity play
an important role in analysis of technological problems and synthesis of solutions.
Models formalize the current status of our system knowledge, point out weaknesses
during validation, direct new research, are good carriers of knowledge over large time
spans and they alow multi-disciplinary teamwork between engineers and scientists
far beyond individual capabilities.

Model predictive control (MPC) has proved to be a successful example of model use
for improvement of process operation. Typically it provides the ability for multi-
variable process control in which many process constraints can be included. The
large number of technology vendors and successful implementations of MPC over
the last twenty years points out that MPC has matured from an engineering point
of view, however, the lack of predictability of the closed-loop behavior shows that it
is far from theoretical maturity. The main structural limitation of MPC is that it is
an open-loop predictive control method with the paradoxical property that neither
future disturbances nor future measurements are considered. The implicit feedback
derived from receding horizon control is typically hard to analyze and makes system-
atic tuning of inequality constrained MPC impossible without extensive simulation
efforts. It is unknown how to choose controller parameters to influence the pro-
cess sensitivity, which is a basic characteristic of any systematic feedback design
method. Hence, there are no simple handles to design a predictive controller for
desired closed-loop performance, to find optimal safeguarding from constraint vio-
lation or to construct optimal constraint pushing schemes. The reality of modern
advanced process control, where inequality constraints and stochastic disturbances
play a central role, points out that there is a fundamental need to reformulate the
MPC problem to include these constraints and disturbances at the same time while
optimizing the dynamic plant economy.

In this thesis a novel framework for advanced process control is presented. The
aim is to develop a strategy for advanced process control in which predictive con-
trollers are systematically designed without extensive simulations. This means that
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the use of a receding horizon approach to generate feedback control is completely
abandoned and a direct feedback control method is employed. This removes all the
typical complications in the analysis and synthesis of predictive controllers and en-
ables control design for guaranteed performance. Furthermore, techniques in high
performance sensitivity-based control design are merged with the economic drive and
constraint handling capabilities of advanced process control. This synergy provides
a new powerful framework that exceeds the possibilities of methods in either field.

A number of steps must be taken in the development of an efficient set-up that sat-
isfies these requirements. Crucial is the inclusion of future disturbances and future
process measurements in addition to the traditional manipulated and controlled vari-
ables. The availability of future process measurements and manipulated variables
allows us to define an explicit feedback control law yielding a parameterization of all
realizable process sensitivity functions. Because of the unboundedness of Gaussian
stochastic disturbances, the inequality constraints are enforced with a pre-defined
level of certainty. The necessary amount of back-off to the. constraints is then de-
termined by the choice of the feedback controller and the second-order disturbance
statistics. On top of this feedback structure, a feedforward is used for all determin-
istic tasks including transitions to optimal steady-states, grade and load changes
and basically all economic tasks. Subtraction of the back-off from the inequality
constraints reduces the search for a feedforward to a deterministic dynamic opti-
mization problem that is simultaneously implemented with the feedback controller
such that on-line feasibility is guaranteed.

Two possible predictive controllers are introduced that use this strategy. A full
solution is given by the so-called closed-loop MPC problem in which the feedback
controller, the back-off and the feedforward trajectory are simultaneously optimized
for the global optimum. A predictive formulation of the Youla-Kuéera parameter-
ization of the closed-loop renders this problem convex such that it can be solved
by modern optimization algorithms. A simplification to this procedure is obtained
by the inequality constrained finite horizon LQG problem. In this case, the prob-
lem is split in two. In the first step a fixed suitably chosen feedback controller is
computed that fixes the back-off, followed by a second step in which the feedfor-
ward is optimized for these fixed back-offs. The advantage of this latter approach is
that its computational complexity equals that of standard open-loop MPC such that
this approach can be applied to similar problems. Both problems are put in a re-
ceding horizon implementation (without any feedback functionality) for application
to continuous processes. The optimal implementation is obtained as a predictive
state-feedback in addition to the output feedback control law such that the over-
all optimization problem is of fixed complexity at all times. Both techniques are
based on linear time-varying systems and can therefore be applied to both linear
and nonlinear dynamical systems. Application of the proposed control strategy to a
simulated non-linear industrial polymerization reactor shows very promising results
motivating future applied and theoretic research to closed-loop predictive control
methods.
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1 Introduction

In the chemical process industries there is a need to operate plants within tight spec-
ifications on product quality and environmental indicators while maintaining a de-
sired production level at a least possible realizable operational cost. Advanced process
control can play an important role in optimizing chemical process operation if fun-
damental innovations are made in both control theoretic solutions as well as the
technology. This thesis presents new developments that open the way to robust ad-
vanced model-based control guaranteeing economic profitable operation. This chapter
defines the requirements on these solutions.

1.1 A knowledge-based chemical industry

The chemical process industry is a rapidly changing business that has always reacted
to the changing political and market conditions. After the change from coal to oil
as major source of chemicals and energy carrier to support the immense increase in
transport energy needs, many chemical intermediates such as ethylene and propylene
became available in large quaritities and at low ¢ost (Heaton, 1996). Combined with
the advances in catalyst technology, this gave a boost in polymer production with
endless demand at low production cost. After the drastic increase of energy prices
in the 1970’s, there has been a search for efficient production techniques reducing
energy use and material loss. The chemical market place has become increasingly a
global one where developing countries with large quantities of natural resources are
nowadays producing large quantities of basic petrochemicals. This forces the chem-
ical industry in western Europe and the US to improve the efficiency of the produc-
tion processes for chemical products that require higher standards of research and
technology. Increasing the product complexity leads to a larger diversity in prod-
ucts and smaller product volumes supplied to the market at demand and it then
becomes increasingly important to react efficiently to market changes. Due to the
large investment costs needed to build new industrial plants, it is of great interest
to change the way existing (or new) plants are operated. The same plant should
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produce a wider variety of products or be switched faster between different prod-
uct specifications or operation modes. Tighter product quality specifications attract
new customers and if these tighter specs can be met using better operational tools,
a chemical business can acquire the advantage over its competitors. Furthermore,
there is an increasing scrutiny of the general public due to increasing global commu-
nication possibilities and media coverage that have resulted in increased legislation
concerning pollution and other environmental issues. Summarizing, a chemical busi-
ness must be increasingly innovative, future minded and cost effective in order not
loose its market position to those who do.

1.2 Model-based research and operation

To meet the requirements of the market, research and development is a necessity
to innovate products, production processes and operational strategies. To facilitate
the necessary innovation in process operation, a chemical business must rise above
the current way of plant operation using human operators to steer and control a
plant. Although these operators will never be obsolete due to their importance in
exceptional case handling for which automation is not cost effective, they should be
relieved from their task of continuously making control decisions. Mental models
of the plant physics are often incomplete and based on scalar steady state transfer
models. By letting automata take over the multivariable dynamical control tasks
from operators, better and more consistent performance in transition control, con-
straint handling and flexible response to the market can and should be achieved.
In doing so, these computers must provide information on their control actions to
operators supervising the plant in the understandable physical domain.

Research has in the last decennia provided us with much detailed technology that
has led to high standards in performance requirements. With the sharp increase of
computer power, computations far beyond the reach of any hand written calculations
have become possible and consequently the possible field of applications in engineer-
ing have become increasingly wide. The result of this increased luxury in computing
power has however also lead to increasingly detailed knowledge on complex systems
using modern software environments such as computational fluid dynamics, finite
element methods, generic chemical modelling languages and so on. In almost all
cases, these models play an important role in analysis of technological problems and
synthesis of solutions. An important aspect that makes the development of models
worthwhile is that they are good carriers of knowledge over long time periods. They
formalize the current status of our understanding of physical systems and during val-
idation they reveal their weaknesses and point to directions in which more research
is needed. They allow distribution of knowledge and enhance the communication
between engineers with different backgrounds enabling multi-disciplinary teamwork
now and increasingly in the future beyond the expertise of individuals.

Summarizing, building models of physical and chemical processes is generally worth
the effort, however, the use of models is by no means a trivial task from a techno-
logical point of view. Applications require a versatility of knowledge ranging over
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many areas such as mathematics, physics, chemistry, chemical engineering, control
and so on and depending on the application, models must be reliable, stable, robust,
fast, small, detailed or efficient. To make balanced decisions regarding these issues,
research covering these many aspects is needed.

1.3 Robust and optimal process operation

The main topic in this thesis is the development and solution of closed-loop model
predictive control. This problem has to a large extent remained unsolved ever since
standard open-loop model predictive control (MPC) emerged in the late 1970’s and
this has limited the progress in predictive control tools and theory considerably. The
main distinction between open-loop and closed-loop MPC is that closed-loop MPC
makes use of closed-loop model predictions in which the future control action of the
MPC itself is taken into account, as opposed to open-loop MPC that does not. Of
course, once the open-loop calculations are set in a receding horizon control scheme
we do have feedback but the resulting control law is difficult to analyze in the case
of inequality constraints due to its implicit nature.

In a sense, MPC theory has not matured theoretically, although from a practical
perspective it has given the current status of the theory. MPC has the inherent
problem that it is an open-loop control method and consequently even after 20 years
of its existence, it is still impossible to estimate the performance of the closed-loop
system without extensive simulations. It is impossible to measure its robustness
despite the fact that it can indeed be made robust after tuning and there is no
way of extrapolating this robustness to widen its operating range beyond the use
around local set-points. These limitations are key problems that must be solved
for application in the chemical process industries. Contrary to the petrochemical
process industries, where the investment costs of usually sufficient linear MPC are
low compared to the annual pay-back, control design in chemical industries are more
specific, making it risky to invest in these advanced technologies. What is needed is
a method to estimate the possible benefit of control solutions before a controller is
actually implemented and before extensive research hours have been spent on tuning,
which can be particularly hard for nonlinear processes as encountered in this area.
In the next three sections three important requirements on control solutions are
discussed. Namely, control solutions should provide the ability:

e to compute the guaranteed closed-loop economic performance of a control sys-
tem, thereby letting the control system justify itself (or not),

¢ to control nonlinear process systems on the basis of first principle models,

¢ to handle disturbances and plant uncertainty in the presence of inequality
constraints unconservatively.

These three aspects will now be discussed in more detail.
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1.3.1 Guaranteed closed-loop economic performance

A key issue is that a process control engineer must be able to estimate the effec-
tiveness of a control design with respect to the desired goals that go beyond the
traditional robust stability requirements of base layer control systems. Before im-
plementation of these solutions, the benefits should be clear and pre-computed at
a reasonable level of certainty. The constraints set by environmental regulation
are satisfied (or its violations economically assessed) and/or the desired increase of
profit or flexibility is realized. These estimates should not only be extrapolated from
past experience in comparable process applications or extensive simulation studies,
but should be guaranteed by theoretical foundations. In a sense, these founda-
tions should be as strong as the conservation laws and their consequences equally
predictable. The current state-of-the-art in theory as in practise is in this respect
deemed inadequate.

First of all, predictive methods applied to process operation problems, including
dynamic optimization and model predictive control, are open-loop methods. In the
disturbance free case, there is no difference between open- and closed-loop perfor-
mance as nominal systems are considered. In fact, no feedback control is needed
since the future is predictable with infinite accuracy. In the disturbance case, the
open-loop and closed-loop methods differ substantially as was already analyzed for
some dynamic optimization problems without constraints by Dreyfus (1962) when
explicit formulas for the resulting feedback laws exist. In the constrained case, no
such simple analysis is generally possible and due to the implicit nature of the reced-
ing horizon control mechanism it is difficult to compute the closed-loop performance
using current open-loop predictive control techniques. As a consequence, determin-
istic optimization scenarios are usually considered in chemical process industries.
Trajectories optimized on a deterministic basis often lie on the boundary of the
feasible set defined by constraints on the process variables and any disturbance to
the plant pushes the trajectories out of the feasible region. In the case of input
saturation, performance may be lost beyond a minimal acceptable level from which
it cannot be recovered (imagine a batch process that half way down the run cannot
be recovered to meet the product specification at the final time). The goal of robust
dynamic optimization is to prevent such scenarios from happening by optimizing -
transitions while keeping the process feasible with respect to the constraints for a
variety of disturbance cases.

Second, chemical processes are usually fairly complex and can exhibit difficult non-
linear dynamics for which the use of linear time invariant system theory alone is
not sufficient. The question in modelling a complex chemical plant is how much
detail in the model or detail of the input-output behavior is really needed for con-
trol and/or optimization purposes. A control engineer is often faced with a large
model, in most cases of unnecessary complexity and impractical for use in con-
trol system design. For nonlinear systems, the concepts of a minimal realization, a
Kalman decomposition or balanced and reduced models that capture the relevant
input-output behavior of a dynamical system exist, (Sussmann, 1972), but these
techniques are not as accessible and numerically tractable as for linear systems, see
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(Gilbert, 1963; Kalman, 1963; Moore, 1981) and there seems little hope for applica-
tion to large scale process models in the near future.

Third, not many publications on control theory are concerned with the direct eco-
nomic impact of control; much theory is concerned with derived objectives such
as disturbance rejection and regulation in some optimal sense. Control theory can
in some cases be used in dynamic optimization as was discussed in Bryson (1996),
Breakwell et al. (1962) or Athans (1971). In those contributions, unconstrained non-
linear dynamic optimization problems are approximated using linear time varying
dynamics and a quadratic performance index with some properly chosen weights.
The strong point in such closed-loop approaches is that disturbances around nomi-
nal trajectories are considered. However, linear terms in objectives in combination
with inequality constraints on process variables are not considered in these classical
methods. In fact, linear optimization problems without these inequality constraints
usually produce unbounded solutions and are for that reason not very attractive.
The quadratic control approach is therefore a bit arbitrary and direct methods are
needed that include inequality constraints on the process variables an linear terms
in the objective function.

1.3.2 Nonlinear model-based process operation

In many applications in the process industries, linear dynamical models are quite
sufficient for control purposes due to the large volumes of a single product that
needs to be produced in a single economically optimal operating point. Such an
operating point is often determined by means of steady state optimization using
a static nonlinear process model or flowsheet. A linear model obtained via step
response identification and a linear MPC is then often sufficient to keep the process
in place. In other areas of processing such as in small volume fine chemicals and
batch processes, the process is always in a transient and its behavior is dominated
by large-scale nonlinear dynamics. Profit margins may be very tight and in that
case mastering nonlinear dynamics can be of prime importance to guarantee flexible
operation, for instance to respond to changing market conditions. In that case,
many engineers must cope with these nonlinearities in their design of the process
operational strategy.

Process operation is the whole of activities employed to operate a process plant
through the entire economically interesting part of the operating window in an opti-
mal fashion, while disturbances are continuously rejected. Hence, it is inherently a
dynamic problem, whether or not static methods are used to solve it. As argued in
the previous section, tools to facilitate robust optimization are scarce and determin-
istic dynamic optimization is therefore considered as the prime tool for optimizing
operation. Typically load and/or grade changes are optimized for minimal off-spec
production, energy consumption and so on. In a basic sequential optimization set-up,
one needs a process modelling tool/simulator and a nonlinear optimization routine,
such as a Sequential Quadratic Programming routine. A classical idea to cope with
disturbances (Athans, 1971) is to consider a variational, or delta-mode control scheme
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Figure 1.1: Constructive view on optimization and control.

that is very suitable for advanced process control and optimization. In this concept,
dynamic optimization is used to generate optimized trajectories for the nonlinear
system while feedback is used to reject all disturbances, see Figure 1.1. Then, the
squared distance between the actual system trajectories and the optimized reference
signals are minimized by the feedback controller. Perhaps suboptimal in its set-up,
it does have the particular feature that it is easy to understand and to implement. It
is the time-varying equivalent to linear control around an operating condition with
that difference that the operating condition, and the linear controller may be varied
in time. In advanced process control (APC), the time-varying LQG controller is
generally replaced by an extended Kalman filter and a model predictive controller,
as for instance discussed by Lee and Ricker (1994). Although this is a very straight-
forward way of controlling a plant, sub-optimality of this approach can be detected
at several levels.

The first limitation in the control set-up of an extended Kalman filter and a MPC
is that one falsely relies on the certainty equivalence property known from un-
constrained linear control. The certainty equivalence property (Kwakernaak and
Sivan, 1972) roughly states that disturbances need not be considered in determi-
nation of the optimal control law. This may appear harmless, but the result is
that quite some performance may be lost either due to overly conservative back-off
to constraints, (assuming that this was already subtracted from the feasible set of
control solutions), or to insufficient back-off in which case many alarms and plant
trips can be expected. Either way, valuable resources are lost limiting the achievable
profit of the plant.

A second limitation is that in (nonlinear) dynamic optimization it is difficult to
incorporate control objectives such as disturbance suppression and consequently no
consideration is given to the realizability of the optimal trajectory on a real plant.

6



Without a doubt, one has to be conservative with respect to constraints to avoid
infeasibility at a control level and it is preferable to restrict excessive movements
already on a dynamic optimization level. One must somehow account for the inherent
uncertainty in the model equations before the solution of the optimization problem
is injected in the control scheme, Figure 1.1.

Besides considering control objectives on an optimization level, one can also consider
economics on a controller level. Basically, one may separate disturbances in classes
with high and low frequency spectra, but in advanced process control it is preferable
to make a distinction between disturbances with and without economic impact on
plant operation. The sample frequencies of the controller, (minute scale), or of
dynamic re-optimization, (hour scale), then determines which part of the economics
is transferred to which level of optimization. A consistent decomposition is far from
trivial as was shown by Tousain (2002). Note that adding economics in a model
predictive controller is not necessarily hard since linear terms can be added to the
objective functions to account for the cost of for instance flows of steam, catalyst,
feeds etc., since inequality constraints bounding the control moves arc present in the
problem formulation.

It is important to integrate dynamic optimization and control for nonlinear processes
to maximize the benefit of implementation. In this thesis, this integration will
be pursued to a high level by considering both problems to be one and solving
them simultaneously. Admittedly, some process plants may be too large to use such
an integrated scheme, on the other hand it will be illustrated that quite realistic
applications are possible.

1.3.3 An historical perspective on high performance control

During the second World War, control theory and technology has experienced im-
portant steps forward. New feedback control design techniques were introduced by
Ziegler and Nichols (1942) and Bode (1945). Although their results are still used
in PID control design, these methods are limited in use for complex multivariable
systems and do not give high performance control. After the war, there has been a
continuous effort in finding systematic techniques to compute filters and controllers.
Historically, quadratic objectives in filter and control design have received much at-
tention , because the solution to least squares problems is easily obtained and in the
case of Gaussian disturbances on systems and signals the least squares solution gives
the smallest variance. In the early 1940’s the continuous time optimal filtering prob-
lem was solved by Wiener by showing that the solution satisfies the Wiener-Hopf
integral equation of which the solution was found a decade earlier. The Wiener-Hopf
equation is of the convolution type and therefore the unknown linear dynamical sys-
tem is directly recovered from the spectral densities of the signals involved. The ex-
tensions by Bode and Shannon in 1950 provided a solution to construct the optimal
causal filter by pre-whitening the data using spectral factorization, (Lewis, 1986).

By 1960, the frequency domain solutions were complemented by Kalman (1960) who
solved the discrete time filtering problem recursively in state-space (continuous time
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Figure 1.2: Time line in estimation and control design methods for performance

solution was given later (Kalman and Bucy, 1961)) leading to the celebrated Kalman
filter. Although the solution is limited to systems that have a state-space represen-
tation, the result is comprehensive and numerically efficient. In the same papers, the
solution to the noiseless regulator problem is given as a dual result strongly popular-
izing the concept of state-feedback. From that moment onwards, Linear Quadratic
control dominated literature for nearly 15 years. Stochastic disturbance models are
widely adopted and stochastic control solutions combine the Kalman filter and LQ
state-feedback. LQG control is by then the most important systematic tool for mul-
tivariable control. Kailath (1968) reintroduced the pre-whitening form of the filter
known as the innovations sequence approach as extension of Bode and Shannon’s
work and at the same time Willems (1971) related extremal solutions of the Riccati
equations to storage functions and explicitly introduced Linear Matrix Inequalities.
Despite the successes in LQ theoretical developments, LQG control was not widely
adopted in engineering areas. The state is generally not fully accessible and the
observer needed to reconstruct the state complicates control design procedures. At
this stage, there is a rupture in control theory for constrained and unconstrained sys-
tems. On the one hand are the design methods for linear high performance control
systems for mechanical and electrical systems and on the other advanced control de-
sign methods for petrochemical processes most significantly marked by the presence
of inequality constraints.

For unconstrained systems, there is a revival of multi-variable frequency domain
design techniques around 1975 with the papers by Youla et al. (1976b) on modern
Wiener-Hopf design with guaranteed stability of the closed-loop. Still, a quadratic
optimization problem is considered, but it is in a sense non-stochastic by considering
frequency domain disturbance spectra marking the transition to Hs control design.
Similar results were obtained in parallel by Kuéera (1974). The basic idea is to
parameterize all controllers that stabilize a given plant once an initial controller is
found. However, while the LQ regulator has very good robustness properties with
respect to gain and phase margin, the LQG design can have zero robustness margins
(Doyle, 1978; Doyle and Stein, 1979; Safonov and Athans, 1977). Another problem
is that the optimal observer is designed for one fixed disturbance spectrum only
which is usually a strong limitation. This was recognized by Zames (1981) who
introduced the alternative H, control design problem considering sensitivity of the
closed-loop to plant uncertainty embedded in the frequency domain. Then, instead
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of finding all controllers that stabilize a single plant, it is more important to find a
controller that stabilizes a whole family of plants. In that same paper and a next
(Zames and Francis, 1983) the Q-parameterization is introduced that is related to
the works of Youla and Kucera. The affine parameterization of the closed-loop in
the state-space is at that time the way to find a solution via a model-matching
procedure (Maciejowski, 1994), using results of Desoer et al. (1980) and Nett et al.
(1984). The direct algebraic state-space solution (not using the Q-parameterization)
is given by Doyle et al. (1989), by solving two coupled Riccati equations. Although
less important to our storyline, LMI solutions became available as well which are in
turn related to the frequency domain by the Kalman-Yakubovitch-Popov lemma.

For constrained systems, or process systems in general, a different approach was
taken. The lack of inherent robustness in LQG control, the presence of constraints,
process nonlinearities, the fact that the plant economy is not given by quadratic
performance criteria and cultural reasons are the main reasons for being inadequate
for process control (Garcia et al., 1989). Essentially, similar objections hold for
high performance control systems, although in this case, the choice of H,, control
is arbitrary. Instead, model predictive control arose in industry as a generic tool to
control multivariable, time delayed and strongly coupled process systems with many
inputs and outputs. It was pionecred by Richalet et al. (1978) as Model Predictive
Heuristic Control (MPHC) and Cutler and Ramaker (1980) as Dynamic Matrix
Control (DMC) during the 1970’s though not published until the end of the decade.
An attractive property of the MPC approach is that it allows physical interpretation
of the controller predictions in the time domain. An interesting point is that around
the same time as Zames (1981), Garcia and Morari (1982) published their work on
the Q-parameterization as Internal Model Control (IMC) in application to MPC..
The important observation is that the controller consist of a plant model put in
parallel to the process. Another strong point of MPC is that inequality constraints
on process variables can be included in the problem formulation leading to extensions
such as QDMC (Garcia et al., 1986). Furthermore, the same concept can be extended
easily to nonlinear process systems (Gattu and Zafiriou, 1992; Lee and Ricker, 1994).
Nevertheless, once inequality constraints are considered directly in design, stability
of the receding horizon control strategy is difficult to analyze because of the finite
horizon and the unpredictability of the active set of constraints. Some results on
infinite horizons are available in literature by assuming the constraints to be inactive
after the prediction horizon (Chmielewski and Manousiouthakis, 1996; Scokaert and
Rawlings, 1998). This assumption is not unreasonable in regulation problems, but
it makes little sense in the case of constraint pushing strategies.

1.3.4 From open-loop to closed-loop MPC

In a recent survey paper by Mayne et al. (2000) and a tutorial paper by Rawlings
(2000) it was concluded that robustness remains a problem due to the indirect na-
ture of receding horizon feedback. Further, MPC does not provide a systematic way

of dealing with (stochastic) disturbances. Lee and Ricker (1994) and Robertson et
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al. (1996) propose to decompose the problem into an optimal Gaussian estimation
problem and a deterministic prediction problem. This view has become a main
line of MPC research which considers stochastics in the past but not in the future.
Consequently, this approach does not provide a solution for the situation that the
process variables are close to the constraints. The MPC will force the system to
violate its constraints due to its ignorance towards disturbances. A receding horizon
implementation cannot prevent this as its corrective action is always one step late.
Secondly, standard model predictive control suffers from the limitation of any open-
loop strategy, namely that the possibility of shaping the (process) sensitivity, a basic
characteristic of feedback design methods, is completely absent. As a consequence,
robustness is and always has been a problem with MPC, (Rawlings, 2000; Campo
and Morari, 1987; Bemporad and Morari, 1999). Hence, standard MPC is no so-
lution in the long run if one aims at systematic methods in process control where
disturbances are large and plant model mismatch not so easily identified as for
linear systems. A consistent way of dealing with disturbances is to consider feed-
back in the prediction. Shaping the sensitivity of the system trajectories to future
disturbances is particularly important when the states and inputs are near their
constraints. A few contributions to formulate closed-loop MPC’s that exist in lit-
erature relate to this problem. Scokaert and Mayne (1998) and Lee and Yu (1997)
propose a worst-case state feedback control law (min-max MPC) proceeding via dy-
namic programming. Although this would, in absence of stochastic disturbances,
lead to the desired properties of closed-loop MPC, the computational burden origi-
nating from the combinatorial explosion of the optimization problem after gridding
the state and disturbance spaces prevents application to real systems. Bemporad
(1998;1999) proposes an alternative by using a scheduled fixed state-feedback, how-
ever, the structural choices in this nonlinear programming formulation to achieve
feedback are considerable concessions on the achievable performance but still at a
high computational burden. Batina et al. (2002) takes a truly stochastic approach to
closed-loop MPC in which constraint violations are exponentially penalized. How-
ever, because no explicit parameterization of the feedback control law is chosen, their
solution is based on a direct optimization over (an approximation of) the nested set
of conditional éxpectations.” This leads to a computationally demanding random-
ized programming approach in which no simple relation between the closed-loop
performance and the controller parameters can be given.

The research presented in this thesis aims at unifying high performance control the-
ory for constrained and unconstrained systems. To achieve this goal, the closed-loop
MPC problem is solved in which a number of crucial aspects are identified (boldfaced
below) and integrated to give a concise result. The future effect of disturbances are
directly controlled using future feedback via closed-loop prediction which pro-
vides necessary robustness and directly links design to closed-loop performance
by avoiding receding horizon control. Feedforward aims at optimizing the plant
economy in analogy to a real time optimizer commanding a regulatory advanced
controller for constraint pushing. This allows us to separate and differently tune
the two important tasks namely transition control (for grade and load changes)
and regulatory control resulting in a two degrees of freedom control design
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strategy. Another important issue is that stochastic disturbances are treated
in the presence of inequality constraints in a systematic way. Back-off to the
constraints is one of the main concepts that gives the closed-loop system its linearity
such that a meaningful closed-loop process sensitivity is defined. The sensitivity
then enables to choose a feedback controller to minimize that same back-off to the
constraints as in a bootstrap method, such that feedforward can be used for con-
straint pushing. It will be shown that this simultaneous feedback/feedforward
optimization problem is convex such that it can efficiently be solved for the
global optimum. Furthermore, the solution can be constructed recursively lead-
ing automatically to a receding horizon implementation of fixed complexity for
continuous processes. Finally, the whole framework is developed for a linear time-
varying generalized plant that can be applied to nonlinear processes using a
model in the form of differential algebraic equations.
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2 Problem Formulation

In this chapter, the discussion in the introduction of this thesis is formalized in a
research objective. This objective is then divided in seven smaller research questions
each related to steps in the control design trajectory.

2.1 The research objective

The research is aimed at applications in the field of chemical process operation.
In this field, there is a need for advanced control solutions that allow to operate
process plants in a very flexible way, facilitating fast ‘tracking’ response to market
conditions. As argued in Chapter 1, fundamental requirements on such technological
solutions are that a process control engineer is able to compute the benefits of an
advanced control system, is able to deal in a model-based fashion with nonlinear
dynamical systems and has the availability of robust control tools that can han-
dle model uncertainties and disturbances while keeping the process well within its
operational constraints at all times. The objective of this research is as follows:

Develop a generic control theory that supports model-based integration of dynamic
economic optimization and feedback control for chemical process applications.

Let us highlight several crucial elements in this objective. First of all, “a generic con-
trol theory” reflects the need for control; the plant is not behaving according to some
nominal model but is instead driven by exogenous disturbances while plant-model
mismatch is complicating the computation of optimal control moves. Secondly, con-
trol design is model-based and not achieved by extensive simulation efforts. Inte-
gration of “dynamic economic optimization” and “feedback control” underlines the
fact that dynamic economic optimization needs some form of feedback control and
reflects the desire to create control solutions that justify their implementation eco-
nomically. Last but not least, “chemical process application” reflects the necessity
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to deal with nonlinear systems dominated by inequality constraints for which there
exist nonlinear possibly first-principles models!.

2.2 Available tools of online process operation

Model predictive control (MPC) is by all means a well established way of advanced
process control as can be seen from a recent survey of industrial MPC technol-
ogy (Qin and Badgewell, 2003) and a tutorial overview (Rawlings, 2000). Its roots
lie in industry, where people developed their own control algorithms now known
by the collective name model predictive control (Richalet et al., 1978; Cutler and
Ramaker, 1980). The strong point of MPC is that physical interpretation of the
variables is possible, it previews future process behavior, it handles multi-input
multi-output systems as easily as single-input single output systems, it automatically
generates feedforward, it handles time delays and includes inequality constraints in
its quadratic programming structure. No other control technology in the process in-
dustries had such versatile qualities and its popularity was immediate. The downside
was also obvious. There was no theory for the closed-loop behavior of the controller
in the case of inequality constraints and contrary to normal design techniques no
systematic approaches were available for tuning. As a consequence, within 10 years
a large number of different versions of MPC arose such as GPC, DMC, MAC, PCA
and so on, all with their little differences and based on different rules of thumb
and sets of tuning parameters (Soeterbeek, 1990; Qin and Badgewell, 2003). Sys-
tems and control theory found its way into MPC research by comparisons with
state-space LQG theory as discussed by Robertson (1995,1996) and Muske (1995).
Closely related were the studies on infinite horizon strategies (Chmielewski and
Manousiouthakis, 1996; Scokaert and Rawlings, 1998) which allow to investigate sta-
bility properties of the receding horizon control laws, see also the review by Mayne
et al. (2000). Related to these infinite horizon controller schemes are the dual mode
controllers, however these approaches still consider open-loop prediction despite a
feedback law on the terminal set (Michalska and Mayne, 1995). Furthermore, most
studies above mainly consider nominal cases and leave the true robust studies largely
open. Robust MPC formulations have quite a history already, however, these tech-
niques are based also on open-loop prediction (Campo and Morari, 1987). More
related to our interest are the worst-case solutions solved via dynamic programming
techniques (Lee and Yu, 1997) and (Scokaert and Mayne, 1998). However, these
approaches suffer from the curse of dimensionality after the necessary gridding of
the state and disturbance spaces and are therefore not applicable to our process op-
eration objective. The alternative is the the concept of closed-loop prediction which
was studied by Bemporad (1998;1999). However, the resulting synthesis technique
is a complex set of nested non-convex optimization problem leading to a feedback
control structure that seems hard to analyze using system theoretic ideas. Sum-

1The term first-principles model is ambiguous but here we mean models based on (approxima-
tions of) generally accepted conservation laws, which may very well contain empirical relations of
any kind.
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marizing, let us wrap up the discussion up with the recent conclusion of Rawlings
(2000) that “the difficulty that MPC introduces into the robustness question is the
open-loop nature of the optimal control problem and the implicit feedback produced by
the receding horizon implementation” and of Mayne et al. (2000) “while the problem
has been studied, the outcome of the research are conceptual controllers that work in
principle but are hard to employ”. These observations lead to the conclusion that
this area has not matured in the sense that robust tools are available for real appli-
cation and therefore this issue is considered to be the main technical difficulty to be
removed.

2.3 Scope of the research

Process operation is a wide and multi-disciplinary area of engineering and it is im-
possible to cover the whole range of knowledge and expertise needed in real applica-
tions. We balance the need for realistic ready-to-apply tools for model-based process
operation and the need for fully generic theory by assuming the following.

o The model and its structure. A process model is available that contains smooth
nonlinearities only and is regular with respect to its index in the case of DAE
systems, which allows to use perturbation analysis at any process state. We
will make use of linear time-varying dynamics along trajectories of the non-
linear model and therefore we assume the approximation to be sufficiently
accurate for control purposes. Then, the updates on the feedforward trajec-
tory and the feedback controller are based on the same dynamics. Hence, if
there are inequality constraints present in the model, these are either removed
and enforced on a dynamic optimization level or arc otherwise approximated
using smooth interpolation. It is often not directly clear whether this is re-
strictive or not from open-loop simulations with the model, the adequacy must
be established in closed-loop.

e The optimization problem formulation. The objective function and the con-
straints are convex. It is assumed that all non-convex functions needed to
describe the objective and constraints are taken up in the model as additional
algebraic variables. This might conflict with the smoothness issue above de-
pending on the application at hand.

e The process/model complexity. The process complexity is restricted by the
currently available computing power. This applies to the number of states and
algebraic variables as well as the number of constraints. The model “size”
we aim at is characterized by approximately 5000 variables of which 100 to
200 are states variables. Ill-conditioning of the model equations will be left
undiscussed and is assumed to be manageable. From an operational point of
view one is therefore committed to model a process with a bounded level of
detail in which only important input-output dynamics are accounted for. This
modelling problem is highly non-trivial and usually requires model reduction
and physical insight.
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Once we have arrived at this point, we have a smooth nonlinear DAE model and
optimization problem of moderate size. Qur aim is to give a framework that allows
to formulate process operational problems in terms of feedforward and feedback in
a dynamic optimization setting. Analysis and synthesis of these two basic forms of
control is central in this thesis. There are many other feedback mechanisms includ-
ing adaptive strategies, feedback linearization, neural-net MPC and other typical
aspects in process control such as inter-sample behavior, multi-rate and delayed es-
timation, supervisory interaction, safeguarding against loop-failure and so on, but
these specific topics lie outside the scope of this research. The set-up discussed in
this thesis provides a broad enough framework for new research in those directions.

2.4 A decomposition in research questions

In this section the overall research objective is decomposed in several smaller goals by
formulating a number of research questions fundamental to the underlying problem.

Question 1: Formulating an advanced process control problem

Q1 What is a suitable framework for model predictive control problems that con-
siders the plant economy, constraints on state and input variables, exogenous
disturbances and model uncertainty?

What we are aiming at is to present generalized plant framework for inequality
constrained systems. This framework is highly appreciated in many application areas
of linear unconstrained control but in literature on inequality constrained MPC, the
generalized plant framework is used less extensively. This is mainly due the complex
implicit feedback mechanism of receding horizon control and the fact that future
disturbances and measured outputs are not explicitly considered. We will argue
that the alternative view on model predictive control in this thesis removes these
limitations and does fit in the generalized plant framework.

‘Question 2: Integration of optimization and control

Q2 How can economic optimization and control be integrated such that the design
and implementation of advanced control technology can be justified on economic
grounds without extensive simulation investments?

Feedback control and dynamic optimization are generally considered as separate
tasks originating from a decomposed supervisory integrated optimization problem.
Clearly, better control leads to the possibility of implementing more complex dy-
namic optimization results, but it is hard to quantify the exact relation between
controller tunings and the feasible set in the dynamic optimization problem. The
closed-loop properties of MPC are not that well understood and they cannot imme-
diately be translated into constraint relaxations, especially in the case of (stochastic)
disturbances.
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Question 3: Feedback, sensitivity and constraint handling

Q3 How can inequality constraints be enforced, having a meaningful process sensi-
tivity function that is optimally shaped in a numerically efficient way?

In MPC literature either 1) the process sensitivity function is considered for tuning,
but in that case inequality constraints are not (added in a final stage after the tuning
parameters are chosen), or 2) one considers inequality constraints directly in the
problem formulation and no process sensitivity function is available for design. This
is why MPC is fundamentally a poor control strategy from a theoretic point of view
and there has hardly been any unifying improvement in this area. Our viewpoint is
that a control problem either has inequality constraints or not; if there are inequality
constraints they should be considered explicitly in the design procedure for which a
meaningful sensitivity function is then needed. If there are no inequality constraints
then other design methods than MPC should be employed not based on receding
horizon control. This point lies at the core of this thesis and we will show that
indeed a very meaningful integration is possible.

Question 4: Feedforward trajectory design

Q4 What is the role of feedforward in enhancing performance of the control sys-
tem and how can feedforward trajectories be designed in line with the feedback
control structure?

The key idea is to use feedforward trajectories to optimize the economic behavior of
the plant, while feedback is used to suppress disturbances. Better feedback control
action reduces back-off to the constraints and enlarges the feasible set of trajectories
in the feedforward optimization problem. The mathematical difficulty is the simulta-
neous optimization - of feedforward and feedback control to find the global optimum.
This is a largely unexplored territory of classical and predictive control because clas-
sical schemes do not explicitly consider inequality constraints while model predictive
control is an open-loop control method. As a major contribution of this thesis it
is shown how to construct these optimal controllers and feedforward trajectories by
numerically efficient methods.

Question 5: Convergence and stationary behavior

Q5 What is the stationary behavior of the control law and how can it be computed?

In modern model predictive control theory, the prediction horizon is extended to
infinity by assuming that the constraints are no longer active from a certain point
onwards (Chmielewski and Manousiouthakis, 1996; Scokaert and Rawlings, 1998)
which allows to compute a state end-point weighting to account for the quadratic
cost beyond the prediction horizon. In the closed-loop predictive control problem
considered in this thesis, inequality constraints are an integral part of the control
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problem formulation and they can never be assumed inactive because of constraint
pushing. Therefore, inequality constraints must also be considered in the stationary
problem. In this stationary problem, we seek the linear time invariant controller
that allows us to shift the optimal set-point as close as possible to the constraints.
The finite time solution cannot be used to solve this problem and the stationary
solution must therefore be solved directly in terms of a time-invariant controller and
optimal steady state.

Question 6: Receding horizon implementation

Q6 How can the control solution of the closed-loop predictive problem be put in a
receding horizon implementation?

To apply the results to continuous processes, the control law is implemented in a
receding horizon fashion because any finite horizon depletes as time proceeds. To
do so, a separation theory is needed which decomposes the stochastic optimization
problem into a prediction part and an estimation part. Then, measurement data
is processed recursively and the size of the predictive control problem in terms of
the number of free optimization variables remains bounded by a fixed number for
all time. Although the receding horizon implementation does not generate feedback
itself, as in open-loop MPC, there are some non-trivial aspects to generate a sequence
of feedback controllers and feedforward trajectories. By showing equivalence to some
LQG controller, we can indeed construct a sequence of solutions that satisfy the
optimality conditions of the finite horizon problem at each time instant without
having to use dynamic programming. As it turns out, a predictive state-feedback
is necessary and sufficient to compactly represent the contribution of the process
history to the optimal control corrections.

Question 7: Application to nonlinear process systems

Q7 How can the control strategy be applied to chemical processes for which there
exist smooth nonlinear dynamical differential algebraic models based on the
laws of conservation?

Chemical process systems are generally described by nonlinear dynamics based on
a description of the conservation laws because nonlinear system identification is
still a very difficult and a largely unsolved problem (Ljung, 2003). The dominant
part of the dynamics implied by the conservation laws are often smooth for which
linear time varying perturbation models can be derived. Then, nonlinear control
is setup by exploiting ideas from sequential dynamic optimization to give iterative
improvements as the horizon is shifting through time. A moderately sized model of
a gas-phase polyethylene polymerization reactor is used for demonstration of these
techniques.
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2.5 Structure of this thesis

In open-loop MPC, the future predictions are in essence deterministic such that back-
off is a non-existing issue in the problem formulation. Once future disturbances are
taken into account, the problem shifts from deterministic to stochastic dynamic opti-
mization under inequality constraints. Then, the necessary amount of back-off to the
constraints that is needed to avoid violation becomes a key issue. In Chapter 3, it is
shown how to use the first- and second-order statistic properties of the disturbances
and the open-loop plant dynamics to systematically compute the back-off that is
needed in the uncontrolled situation. In open-loop this is of course a very conser-
vative approach but it immediately reveals an important property namely that due
to the back-off, the constraints are inactive with respect to the actual trajectories
or sample paths of the system. The crucial issue here is that the process dynamics
then remain linear and the analysis is not based on switching dynamics. In Chapter
4, the open-loop system is put in a feedback loop with a controller and the linearity
introduced by the back-off is exploited to define a meaningful sensitivity function.
Then, by using a (sort of) bootstrap technique, the back-off can be minimized by the
proper choice of controller parameters to reduce the conservatism in the feedforward
optimization. The key observation in Chapter 4 is that the Youla-Kuéera parame-
terization of the closed-loop renders this optimization convex such that the global
optimum can be found by numerically efficient techniques. In Chapter 5, insight in
the structural properties of the control law is obtained by relating the optimality
conditions of the resulting closed-loop MPC problem to the familiar finite horizon
LQG problem. This reveals the intuitive notion that reduction of variance in the di-
rection of important constraints increases the profit rate of the plant. In Chapter 6,
the optimal steady-state and linear time-invariant controller are computed by using
asymptotic methods that lead to semi-definite optimization problems. In Chapter 7,
a recursive solution is given which makes it possible to apply the results to contin-
uous processes. The fundamental solution that transforms the snapshot solution of
Chapter 4 into a recursive solution, is the introduction of a state feedback in addition
to the output feedback controller. The proof proceeds via the optimality conditions
derived in Chapter 5 and the known properties of LQG control. The importance of
this result is that the optimization problem is of fixed complexity independent of the
total number amount of measurement data. In Chapter 8, the theory is applied to a
simulation of an industrial polymerization reactor. The performance in compared to
straightforward application of an extended Kalman filter and a linear time-varying
MPC. Chapter 9 gives the conclusions and recommendations.

The chapters are roughly related to the research questions as follows: Q1,Q2 are
discussed in Chapter 3, Q3,Q4 are discussed in Chapters 4 and 5, Q5 is discussed
in Chapter 6, Q6 is discussed in Chapter 7 and finally Q8 is discussed in Chapter
4 and 8.
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2.6 A brief guideline on notation

Throughout the thesis, the following basic notation will be used. Any vector valued
variable such as inputs, states and outputs will be assigned a letter

Uk, Tk Yky 2k

with a subscript k related to a specific time instant ;. These variables are related
to linear time-variant or time-invariant systems usually derived locally or along tra-
jectories of an underlying nonlinear dynamic system. The variables in the original
nonlinear system are denoted using an overbar

Rk,zkagkazk'
Stochastic variables are always denoted with their argument £

uk(g), zk(é.)a yk(€)1 zk(ﬁ)

to distinguish them from deterministic variables. This should not be confused with
the realization of these stochastic processes which are given by ug, zx, yx without £.
Estimates of a random variable is denoted with a hat
T-
The feedforward or reference signals are denoted by a superscript "
UL, Ty Yios 2k

A superscript ¢ is used to denote tracking errors which are defined as the difference
between the actual process and the reference trajectory

ug(§) = uk(§) — ug.

A signal is a variable considered over a time horizon of n samples and they are
stacked in long vectors and are printed in boldface. For technical reasons, we will
often consider shrinking horizons which have a fixed final time ¢,. Subscripts on
signals will then mean the remaining part of the samples that are left in the horizon.

Uk, Ik Yk 2k
Uk+1 Tk+1 Yk+1 Zk+1
u; = y Xk = . yYE = : y L = : 9
Un In Yn Zn

Mappings between signals are systems and are denoted by G and have subscripts
related to the specific input and output signals of the system. In some cases it
is necessary to give G a superscript k to reference a specific time instant ¢;. For
instance

Gk,
is the system mapping u to yx. Mappings from parameters or initial conditions to
signals are called impulse response systems and are denoted in similar fashion.
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3 The Generalized Plant for
Constrained Predictive Control

The generalized plant framework enables a control engineer to formulate advanced
control problems directly in terms of control inputs, disturbance inputs, measured
outputs and performance outputs. This generic set-up is discussed in this chapter
in relation to stochastic systems, inequality constraints and open-loop dynamic op-
timization. As shown in later chapters, there are efficient methods for predictive
controller synthesis in the generalized plant framework that build on the foundations
given here.

3.1 Introduction

Modern control technology for chemical processes uses mathematical representations
or dynamic models to describe the input-output behavior between the manipulated
and controlled variables. In current state-of-the-art industrial applications, linear
dynamical models are used for which very reliable black-box identification meth-
ods exist using experimental step response data. Whether the final model is given
as a pulse/step response model or in state space is completely irrelevant to this
input-output behavior. The key issue is that the behavior is assumed to be linear
time-invariant and therefore inherently limited to set-point regulation tasks in the
case of nonlinear dynamics. The up-side is that, as long as the controller is active,
the process remains in the vicinity of its origin and thereby the controller ensures
the validity of its own internal model representation of the plant dynamics. How-
ever, to make substantial progress in transition and batch control, new robust and
efficient nonlinear model-based predictive control techniques must be developed. As
mentioned before, we assume that such a nonlinear first principles model is available,
possibly after extensive engineering effort in modelling, validation and size reduction.

A typical requirement on these control methods is that the process is operated highly
autonomously, while dealing with disturbances, plant-model mismatch, inequality
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constraints and a wide range of operating conditions. The nonlinear model is used
to cover this large operating window in the background, however, full nonlinear op-
timization based MPC is generally infeasible and often unnecessary. In the end,
control is always based on perturbation or sensitivity analysis and not on nonlinear
simulation and the computed solution trajectory itself does not give information on
the sensitivity of the solution. Therefore, in pursuit of efficient methods, iterative
application of linear time-varying (LTV) models is used as in sequential dynamic
optimization. To overcome the mismatch between the nonlinear model and its lo-
cal LTV approximation, robust rather than exact control is used. Inevitably, even
nonlinear models are approximations of reality, due to limited process knowledge,
purposely limited modelling of the physics/chemistry and partly because there are
exogenous forces continuously acting on the system. Let us now set-up this LTV
control framework in a fairly general way.

In robust linear control, the generalized plant framework is popular because it pro-
vides a unifying framework for control problems but also because there exist many
solutions for numerous control problems formulated in this framework giving guar-
anteed closed-loop performance, and there exist powerful numerical tools for solving
Linear Matrix Inequalities or algebraic equations involved in the synthesis. This is
an important issue because in advanced process control the number of systematic
solutions for many interesting control problems are either absent or not matured.
For instance, typical questions such as

e what is the minimal model accuracy or complexity needed to guarantee some
level of closed-loop performance?

o what is the actual robustness of the controlled plant or how much uncerté,inty
can be allowed before loosing performance or even stability?

e how much will the closed-loop performance increase by adding a new sen-
sor/actuator and does the increase in economic benefit justify the extra cost?

cannot be answered by simple design calculations with the existing control solutions
and even standard model predictive control is in this respect lacking. However, the
controller synthesis tools in linear theory are not immediately suited for process
control because the control problems themselves differ substantially. For instance
in linear systems theory, inequality constraints are generally not explicitly included
in the problem formulation. In contributions where these inequality constraints are
considered such as the works by Boyd and Vandenberghe (2002) and Gokcek et
al. (2001), regulator control problems are considered in which desirable economic
aspects such as constraint pushing are not discussed.

3.2 The generalized plant

In this section we will discuss the generalized plant framework as the starting point
for the central control problem discussed in this thesis. In general, the starting point
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for the control problems in the chemical process industries is a nonlinear dynamic
process so these will be discussed first. Because we will use linear time-varying
dynamics linearized along the feedforward trajectories to compute search directions
in the nonlinear optimization problem, LTV models are discussed next. In the case
the process linear time-varying itself, the control problem is convex as will be shown
in Chapter 4 such that we can find the global optimum.

3.2.1 The nonlinear case

In robust linear control, the generalized plant framework is the set-up to formulate
control problems in a precise manner. Despite this success, it has not achieved a
broad support in the advanced process control community, because future measured
outputs and future disturbances are not used directly in the standard MPC control
design methods. To overcome these limitations an formulation is given that explicitly
considers constraints. We start from the nonlinear dynamic system described by a
set of differential-algebraic equations generally referred to as a DAE model

0 = f(z,2,9,u,w,d) )
*T + Cyv + Dyt + D¥w + Did (3.1)

d(t) € R™ model parameters

a(t) € R™ input variables

o(t) € R™ algebraic variables

w(t) € R disturbance variables
Z(t) e R state variables

z(t) € R time derivatives of states
g(t) € R™ measured outputs

zZ(t) € R performance outputs

It is customary to use the term assigned variables for the set of control inputs ,
disturbance inputs @ and the model parameters d and the term algebraic variables
for the variables © that appear in the model equations f, are not assigned variables
and do not appear as time derivatives as opposed to state-variables. The state
variables together with the algebraic variables form the set of latent variables. The
measured outputs § and Z are linear transformations of the variables appearing in
the model equations f.

Then, we want the performance output Z to satisfy a set of linear inequality con-
straints

P = {hT2(t) < gj, G =1,...,m} (3.2)

for each time instant ¢ in the interval ¢ € [0, T for some matrix h; € R™: and vector
g; € R. Both H; and g; are allowed to be time-varying. It may appear if nonlinear
constraints are not allowed here, but in fact one can use the freedom in the DAE
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model f to move nonlinearities from the constraints to the model via introduction
of additional algebraic variables v. How we will enforce these constraints and for
which types of disturbances is discussed later on in this chapter.

The basic scheme of a generalized plant is given in figure 3.1, where the plant G is
shown with two multivariable inputs @, @ and two multivariable outputs 3,z. The

@ _ w: disturbances inputs

z
—" G — zZ:  performance outputs/controlled variables
...ﬂ___, ..___.y_,. @ control inputs/manipulated variables

§:  measured outputs/process variables

Figure 3.1: The input-output structure of a generalized plant.

generalized plant is the dynamic system mapping all inputs to all outputs mentioned
above. The measured outputs or process variables (PV’s) are denoted by §(t) €
R™ and the performance outputs or controlled variables (CV’s) are denoted by
Z(t) € R"™=. The control inputs or manipulated variables (MV’s) is denoted by
%(t) € R™ and are generated by the controller. The disturbance input w(t) € R™
is generally used to define transfer functions to the controlled variables z, but @
can be given a physical disturbance interpretation. Then w contains any exogenous
signal determined outside of the system boundary not under the influence of the
controller. For ease of presentation d is included in the signal . It is customary
not to show the latent variables (LV’s) of the system explicitly.

For this system we shall aim at finding some optimal reference trajectory %" for the
control inputs for a given reference trajectory w™ of the disturbances (disturbance
feedforward). Suppose we are given an initial guess 4j, wj] for the input trajec-
tories. These reference values induce reference values g, zf for the measured and
performance outputs if we let these trajectories satisfy the model equations
0= f(iﬁ,fﬁ,ﬁﬁ,ﬁﬁ,w(g)a "EB(O) =1Ij

¥p = Cyp + Cyvg + Dyug + Dywg (3.3)

zZy = Cizg + CYog + Diug + DY wg
for some trajectories Zg, v5. These reference signals are of course very natural candi-
dates for the basic trajectories along which we derive the linear time-varying model
of the system (which we will do in the next section). The actual trajectories @, @, §, Z
are given by their reference trajectories plus additional variational terms @¢, w¢, §°, z¢
as shown in Figure 3.2
@t + @, W
=9" 4+ =z
=747, z=

+
+
+

Q@ S |
I

NI Hl

8 Hl EI

The differences observed in the actual and reference values of the measured and
performance outputs ¢ and z° respectively are caused by the unpredictable error w*
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Figure 3.2: Adding reference signals to the generalized plant set-up.

and are called tracking errors in the remainder of this thesis. An obvious choice to
reduce the tracking error is to use a feedback controller to compensate these errors
by means of an additive control input @¢. Therefore, to define a closed-loop system,
we introduce the linear time-varying controller K

,a(’. — Kgc

where K is assumed to have zero initial conditions. This produces a closed-loop
interconnection between the nonlinear system G and the linear controller K as shown

in Figure 3.3.
,lDC
e

r G

UT K | Yy

Figure 3.3: Interconnecting the generalized plant with the controller.

<
g

The goal will eventually be to efficiently compute the optimal feedback controller K
as well as the optimal feedforward 4" maximizing some objective function J(z").

3.2.2 The linear time-varying case

To find the optimal reference input and feedback controller, we need two types of
sensitivities, namely:

1) the sensitivity of the system response (7, Z) with respect to the disturbance signal
¢ and the controller response i€ in order to quantify the controller performance,

2) the sensitivity of the system trajectories (§",Z") with respect to perturbations in
the reference trajectories 4" and (optionally) @w".
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Suppose the system would have been linear frg_m the start, then we would have found
in the same way as for the nonlinear system G the signals for the linear generalized
plant as

u=u"+u’, w=w" +wS
z=z"+2° v=0v"+0° . (3.4)
y=y"+y5 z2=2"+2°

The relation of these signals to their nonlinear counterparts are given as follows.
The perturbation of the disturbance signal ¢ is determined outside of the system
boundary and is therefore equal to the one appearing in the linear case

¢ = w°.

Our aim is here to find an update on the reference signal 4" for the control input
that improves the response of the performance output 27 in some (to be defined)
sense. Assume that we are given an initial guess 4§ and that we seek an update u"
on the control inputs and for a given update w” on the reference of the disturbance.
This leads to the update laws
@ =ah+u, @ =ah+w.
Let the trajectories x”,v",y", z" satisfy the linear time-varying dynamics along the
reference trajectories of the nonlinear system
0= 85fl0z' + Bgfloa:' + Bﬁflov'+ 3,;f[0ur +3,,—,f|0w", .’L‘T(O) =$6
y" =Cyz" + Cyv" + Dyu" + Dyw"
2" =C%x" + CYv" + D¥u" + D¥w"

The notation -|, denotes the derivation along the given reference trajectory, that is
6*f|0 = ('Lf(:i:g, 7_)(‘;’&6"‘1_)6)'

Then, the effect of the perturbations u”,w” on the outputs is given, in a first order
approximation, by : | ) )
T ~go+y, =~z +z2"

leading to a change in the objective function of approximately
. 1
J(Z") =~ J(Z5) + 8. J(25)=" + 5erafJ(zg)zr

where for ease of presentation we assume J to be twice differentiable.
. In precisely the same way we can analyze the effect of perturbations u¢, w® by letting
z€,v°, y°, z¢ satisfy the same linearized dynamics
0= Oiflo €+ 65f’0 €+ 8,—,f10 v+ (%flo u¢ +6i,f|0 ’U]c, ZC(O) =0
y° = Cyz® + Cyv® + Dyu® + Dywe
2¢ = CIz + CYv® + D¥u® + D¥w*
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Figure 3.4: Interconnecting the generalized plant with the controller.

and as before we find the first-order effects on the variables in the nonlinear system
as

C

gy, oy

(5

because the initial guesses 7§, Z§ for these signals are zero. For the linear system we
also define the control law

c

u® = Ky°

such that the effect of the disturbance input @°® on the input 4 is approximated as
¢ = Ky° ~ Ky =u°

Finally, from the definition (3.4) and by linearity it follows that the trajectories

u,v, W, T, Y, 2 also satisfy the linearized dynamics and as such we also find approxi-
mations of the actual process variables

=9+ >2qp+y +y°, z=2 +2 = +2" +2°
such that we end up with the generalized plant for the linearized dynamics as shown
in Figure 3.4. Throughout the thesis we will therefore largely be focussed on the
problem of finding an update u” on an existing initial guess @ and a controller K.
We will be very explicit on how to do this in this Chapter 3 which is mainly concerned
with the open-loop case and Chapter 4 which is focussed on the closed-loop case.
Finally, the inequality constraints are given by
hTz(t) < gj, i=1,...,m, Vt€[0,T]
which are (iteratively) approximated by

hYz(t) < g; — k] Z(t), 5=1,...,m, t € [0, T]

In the remaining sections of this chapter we will be concerned on how to explicitly
deal with such constraints that depend on the disturbances.
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3.2.3 The discrete time case

In this thesis we are only looking at discrete time controllers. To do so, we will
consider the process only on discrete time instances

ty = to + kT, kGNg-

where T is the sampling time. This allows us not only to give very simple rep-
resentations of the LTV dynamics G, mapping the perturbation of the inputs into
perturbations on the outputs, and the controller K, mapping perturbations in out-
puts back into perturbations on the inputs. To do so, we will parameterize the
control inputs « using a zero-order hold mechanism such that

up = u(te), Vte€ tk,thr1)

and we discretise the disturbances in a similar fashion. This is achieved by sampling
the stochastic process and adapting the stochastic properties (Lewis, 1986). Then,
the latent variables and outputs will only be considered on the sample times ¢

Te=2(tk), ve=v(), wk=y(tr), 2x=2(tx)

The last step in getting a generalized plant for predictive control is to introduce the
lifted signals

Uk Wi Yk 2k
Uk+1 Wi+1 Yr+1 Zk+1
U = . yWg = . Yk = . y Tk =
Uk+n Wk4n Yk+n Zk+n

in which the variables at each time instant are stacked in long vectors denoted by
bold faced letters. The inequality constraints will only be enforced during on these
sample time instances that is, we will consider the following inequality constraints

Pr = {2z : H 21, < g}

The model or system G is then a mapping between these stacked vectors and since
linear discrete time-varying systems are considered, the representation of the dy-
namic system or impulse response function G is a large structured matrix

Yo = ny$0 + Gyuu() + GwaO
Zy = sz-'zO + qullo + szwo-

where we use the subscripts of G to identify which signal or initial condition is
mapped to which. There are two main ways to arrive at these system matrices, 1)
in a control oriented approach via local discretisation of the system dynamics or 2)
in a dynamic optimization oriented approach via sensitivity integration. These two
techniques are briefly discussed below.
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3.2.4 The control approach

The algebraic representation of a dynamical system can be obtained in several ways.
In the case that the dynamical system is linear time invariant this representation
is obtained by standard, well defined operations. In the nonlinear case, the lifted
sensitivity systems can be derived in several ways and a computationally cheap
method (and strong competitor to full sensitivity integration in the next example),
exploits the exact time discretization of linear models derived from the continuous
time nonlinear system along a trajectory. For ease of presentation, assume that our
DAE model has the following structure

= f(z,0,0), fu(Z,0,2)=0, Z(ty)=Zo (3.5)
Then, along a solution (Z, @, 7) of (3.5), the linear time-varying dynamical system is
derived as
‘T - a f-’l'(j‘ v ﬁ).’l}' + a‘!)fl("za 1_}! ?._I.)'l.’ + Buf.t(:ia 73’ ﬂ)u
0= 8wfv(iv U, )33 + ava(i'v v, ﬁ)’U + a‘ll—f’u(‘iy v, ﬁ)“

leading to the description

z(t) = A(t)z(t) + B(t)u(t)
v(t) = C(t)z(t) + D(t)u(t)

where the continuous time system matrices are related to the dynamical system (3.5)
as

A =0, fo(Z,1,0) — 0, fo(Z,0,0)0, fo(Z,7,2) 10, fo(Z, D, &)
B = 0, f:(%,1,7) — 0, f-(Z,0,0)0, (x 7,7) 718, fo(Z,0 )
C = —08,f,(%,0,%) 0, fo(F, T, )
D = ~8,f,(%,7,2) 10, f0(Z,7,8)
where 9, f.,(Z,, u) is assumed to be invertible such that any perturbation pair (z, u)

uniquely defines a perturbation in the algebraic variables v. Suppose the rate of
change in the open-loop dynamics is small over one sample instant, then

(A(t), B(t), C(t), D(t)) = (A(tx), B(tx), C(tx), D(tk)) ¥Vt € [tk th+1)
such that the discrete time dynamics are obtained in standard fashion using a zero-
order hold circuit on the control input (Astrom and Wittenmark, 1990)
trt1
Ay = eA(tk)(tk+l°tk), B = / eA(tk)(tk+1_3)B(tk)ds’ Cr = C(tx), Dy = D(t).
ti

We assume that the dynamics do not change very fast in the sense that we will
only allow very small changes in the system dynamics at each time instant. This
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is usually a requirement on the closed-loop system such that high frequent closed-
loop behavior is avoided to enhance robustness against inter-sample behavior and
plant-model mismatch. This procedure is easily extended to include the performance
outputs and disturbance inputs, then leading to the recursive dynamical system

Th+1 Ax By Bx Tk
2k =| C¢ Ei D;i W (3.6)
Yk Ck D}c" 0] Uk

and suppose we lift this system over n samples, see for instance Furuta (1993,1995),
then we obtain the desired algebraic LTV description

Co (0] (0] O
. C1®1.0 C1Bo 10) 6]
Gya: = : ) yu — : : (37)
C;‘l{@n)o C’nQn,lBO Cn‘anBl e O
DY o 0
o C1Go DY - O
Gyw=1| . : o (3.8)
Cn¢n,1G0 CnQn,QGl e D::)
where the transition matrices are given by, see (Rhodes, 1971)
(I>k,,- = Ak—lAk—-2 s Aj, q)j,j =1. (39)

The systems transfer matrices Gz, Gy, Gz are obtained in similar fashion.

3.2.5 The dynamic optimization approach

If the approximate procedure above leads to unsatisfactory closed-loop performance
due to strong nonlinearities, then an alternative is to compute the exact sensitiv-
ity equations. This increased accuracy comes at a cost of a higher computational
complexity and this means that the length of the prediction horizon is significantly
smaller, possibly leading to loss of stability or control performance.

Consider the case in which we want to find a scalar optimal input trajectory param-
eterized using a vector p € R" as follows

a=u"+) piti, Vi€ lto,t] (3.10)

2

where 4" is some reference signal and the signals ¢; are suitably chosen to generate
an interesting control space. In the case of zero-order hold sampled inputs

a; :=a(t;) = pi, V[ti, tir1)
one makes the specific choice for ¢

80 = Lai®={ o 15 l0pr 311
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Consider the nonlinear dynamical system again
0= f(z,z,0,u,0)

of which the solution depends on the parameter p via the input #. Due to the
simple structure of the discontinuities in the control input, the solution of the dif-
ferential equations is considered only on the separate open intervals (#;,t;,,). Then
let the sensitivities s; be trajectories that satisfy the linearized dynamics for zero
disturbances, input ¢; and some trajectory v;, then

0= 0;flg8i+ 0z flgsi+ O flovi + Ouflodi, s:(0)=0

Then s; is the sensitivity of the solution of the differential equation with respect
to the parameter p; in the sense that the the perturbed solution is in first-order
approximated by

T=2" 4+ >~z +z° wherex“=§ spi=Sp, S:=(s1, -, su).
i

Hence, in a lifted system representation using a impulse response matrix notation
Gp, the result is a sampled version of S times the perturbation p

z%(to) S(t1)
x€ 1 S

x¢ = (:t ) _ prp, Gzp . (t2)
2°(tn) S(tn)

which gives an alternative procedure to determine the matrices G,. The LTV model
obtained from the time discretized dynamics of the previous example is in fact a low
cost approximation of the sampled sensitivity matrix S. This last approach is the
more common view in nonlinear dynamic optimization and yields more accurate
predictions than the control approach. The control approach is on the other hand
cheaper in computational cost.

3.3 The stochastic generalized plant

In the preceding sections we have not yet specified the nature of the disturbances nor
the effect it would have on the system description. To include stochastic disturbances
in the standard plant, a stochastic framework is needed. The theory of probability,
random variables and stochastic processes has well developed in a very general and
abstract way heavily building on measure and integration theory, (Doob, 1953). It
is a fact that full rigor is needed to define the concepts in probability in a precise
and concise way, nevertheless, only a very small portion of the machinery is needed
for our set-up. In this thesis all, random variables arc linear or affine functions
on R", with a Gaussian probability density function. For the class of problems
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in this category, the treatment of stochastic in discrete time systems leads to very
compact and easy to understand results, see for instance the treatise on LQG control
in (Tse, 1971). The approach to set up our stochastic problem follows that found in
(Papoulis, 1965), a good reference for applied probability calculations in connection
to dynamical systems.

3.3.1 Stochastic disturbance models

In the generalized plant framework, it is necessary to build a disturbance model
besides the model of the physical system based on the conservation laws. This
disturbance model captures the interaction of the system with the world outside the
system boundary not under our control. These disturbance systems are obtained by
identification on process data as in (Ljung, 1987) or by modelling in which case one
chooses simple structures such as steps and ramps. Disturbance modelling is the
action of specifying 1) how disturbances w enter a dynamical system and 2) the set
W of possible disturbances w. The basic model for the stochastic disturbances are
given by the following definition.

Definition 1 Stochastic disturbances. Let & be a zero mean unit variance Gaussian
random vector with ¢ components. A stochastic disturbances w is an affine function
defined on the random vector £ parameterized as

w(E) = w" + Fwé

for some vector w™ € RVN™v and some matrix Fiy € RN™wXne, 0O
Then, the mean of w(¢) is given by

Ew(t)=w"
and the covariance matrix is given by
E(w(§) —wN)(w(&) ~w")T = FwFy, =W

Note that the class of affine random variables considered here is quite large and
sufficient to model quite relevant disturbance scenarios for process control purposes.
The stochastic disturbances w(£) originate from a Gaussian distribution in the sense
that each component wy(£) of w(€) lies in the space Wi = span {v}},vk € RN

we () = wf + Y _ vhek
J

Consequently, w(£) — w” lies in the Cartesian product W := II;Wi. Note in par-
ticular that one can also model persistent disturbances or biases of which the actual
value is distributed normally, one can consider ramps of which the slope is a random
variable or even day-night temperature fluctuations with unknown amplitude and so
on. Then, the stochastic disturbance would be the sum of a bias b(¢), a ramp r(£),
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and a sine s(§) (with fixed frequency) where £ € R3 is the outcome of an experiment
with a Gaussian density function

w(&) =b() +r(§) +s(&), &= (&,62,83).

Along the same lines we let the initial condition be given by
vo(§) =25 + Fp€, &0 =15, E(zo(€) — xp)(w0(§) — z5)T = FpFf = P.

It is emphasized here that Fp and Fy are fixed a priori or otherwise assumed to
be known beforehand. Furthermore, we will generally assume that the disturbances
wi(€) on the different time instances are independent random variables and the
initial condition xo(€) and disturbance w(£) are uncorrelated. In the computations
that lie ahead, we need the Gaussian probability density function which is defined
by
@) = 1 R )
(2m)™ det(R)

where R™" 3 R = RT > 0 and p € R™. For a given vector z € R" the event
(=00, ] = (—00, 1] X ... X (—00,Zy]

then defines the distribution function of a random vector x(¢£) via
Fy(z) = [ fx(zx)dz.
(_007:':]

This bring us to the stochastic generalized plant, where from hereon we will include
the argument ¢ explicitly in the system description. This leads to notation of the
form ’ ‘ ‘ ’

Yo (5) = nyl‘o(f) + Gyqu(f) + GwaO(g)
20(6_) = G.zxo(€) + quuo‘(f) + GLwWo(§)

It is emphasized that this notation including £ is used to identify random variables
among other deterministic signals. We assume that there is no feedthrough from
the inputs u(£) to the measured outputs y(£) to avoid algebraic loops in the closed-
loop system (but the results can be extended to this case). Further note that u(¢)
depends in a causal fashion on the future disturbances. Next to these equations, we
define the deterministic reference signals

Yo = GyoZg + Gyug + Gy Wi (3.12)
zg = G2l + Gouug + Gy Wi (3.13)
The reference trajectories defined for the measured and outputs y” and the controlled

variables z" by (3.12),(3.13) are to be optimized in the sense that the objective and
constraints are defined using 2", while u” is a vector of free manipulated variables.
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3.3.2 Conditional expectation and estimation

Although the set of all possible outcomes is known beforehand, it generally impossi-
ble to actually measure the outcome . Instead, one may have access to some other
measurement y that is known to depend on £ via some relation y

y(€) =y~

In estimation problems in control one is faced with the problem that (a linear com-
bination of) the state of a dynamical system £ € R™ is only measured through a
limited number of sensors y(§) = C¢, C € R¥*" y(£) € R*. If £ were the outcome
of a stochastic process, the function y would be a random variable with realization
y = ¥(£). An estimation problem amounts to finding the best estimate £ for £ given
the measurement y(§) = y.

Conditional expectation of a random variable x with respect to another random
variable y plays a crucial role in estimation problems. Consider the following esti-
mation problem. Let x :  — R” be a random variable with second-order moment
matrix

P = Ex(&)x(¢)",

let g : R® — R* a linear function g(x) = Lz and let y be the composite function
defined by y = g o x. Then y is the random variable defined by

y(€) = g(x(&)) = Lx(¢)

If a measurement or realization y of y is available, the estimation problem amounts
to finding an approximation %(£) of x(£) in some optimal sense. To be specific, of
all such approximations we seek the best linear one

X(§) = Ny(§)-

parameterized by some matrix N, (Kalman, 1960; Lewis, 1986), such that the ap-
proximation is in fact a random variable itself. Let us formulate this optimization
problem to find the optimal estimate as

min  tr B(x(€) — %())(x(§) — %(£)"
st y(§) = Lx(£), X(§) = Ny(§)

An alternative problem formulation is that we seek the estimate maximizing the
conditional probability density function subject to the constraint that any allowable
estimate must reproduce the measured output, thus y(§) = L%(§), which implies
LN =1, (Cox, 1964). Either way, by substitution of the model one directly finds

x(§) —%(§) = (I - NL)x(¢)

and it is well known and easily shown that the optimal solution satisfies the matrix
equation

N(LPLYy=PLY or N=PLT(LPLT)™!
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if the inverse (LPLT)~! exists. Therefore, the best estimate is given as
x(€) = PLT(LPLT) 'y(¢)
which happens to be the conditional expectation of z

x(§) = E{x(©Iy(©)}.

Then, as the actual measurements or realization y of the stochastic process y(£)
becomes available, the conditional expectation is evaluated to obtain the realization
of the estimate

x = E(x(§)|y(§) =y) = Ny.

The power of this result is its simplicity and generality. For instance one can use
this result for recursive estimation, a popular choice for numerical efficiency, but the
solution may just as well be used for horizon estimation.

3.4 Standard MPC in the generalized plant framework

It is interesting to put the standard MPC formulation in the generalized plant frame-
work to see the development needed to give a closed-loop MPC formulation. In the
vast amount of MPC literature one considers the following standard open-loop MPC
control problem (Garcia et al., 1989; Rawlings, 2000; Morari and Lee, 1997). Given
a discrete time LTI system

Trt1 = AxZr + Brug, k>0,
and an initial condition zg, find the control sequence {uk}ﬁ’zo minimizing some

quadratic cost function for some horizon length N € N, @Q, P > 0, while satisfying
the linear inequality constraints on the states and inputs for all k > 0

N-1 T
J(u) = 2N Pxy + E ($k> (Q" Q’”‘) (zk) , HY (mk) < gk.
=0 U wr  Quu Uk Uk

In practice, many alternative MPC formulations are given mostly in the following
form. Given a linear step response model H (impulse response models are treated
similar)

z=%2+HAu+w, Z=T=3%, .Aur=up— ur_1
where the outputs, inputs and disturbances z, Au, w are stacked vectors over multi-

ple samples. The disturbance w is chosen as a constant bias on the future prediction
equal to the last mismatch between the predicted and measured outputs. Then the
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open-loop control problem amounts to finding the control sequence {uk}}cvzo mini-
mizing the quadratic cost functional for some horizon length N € N, Q > 0, while
satisfying the linear inequality constraints on the outputs and inputs for all k£ > 0

T = = (= (@ Q) (B-A) g a0 .
@ =2 (Tau’) (@ @) Uawc’) ' {au,) <

The prediction 2 = T#o is used to account for the past or the memory of the
system and whether this future prediction is obtained via an optimal state-estimate
or suboptimal as in dynamic matrix control (DMC) is irrelevant (Lundstrém et
al., 1995).

If we choose zx = (z, ux), we can readily see that the whole problem can be for-
mulated with the open-loop framework of figure 3.5: we have a control input v and
a performance output z and no future disturbances nor future measurements are
considered explicitly in the optimization problem. Because the disturbances and
measured outputs are only considered in the past, their continuation into the future
is deterministic. Many variants on the above two MPC formulations exist, but they
are fundamentally the same: the unknown future disturbances and measurements
are not considered contrary to the control inputs u and the controlled variables 2.
The weakness in model predictive control and the paradox in its use become clear.

¥4
-

u G

—_—

Figure 3.5: Standard open-loop MPC in a predictive generalized plant framework.

The problem formulation in model predictive controller does not explicitly contain
future disturbances or measurements that are available for estimation. Although a
Kalman filter uses the disturbance statistics and available measurements, it considers
these signals only in the past. It is evident that estimation and control must be un-
separated into a true stochastic control problem if the true solution to the stochastic
closed-loop MPC problem must be found.

w z
-———— ——
G _ u G
past present future

I
r >

Figure 3.6: The classical decomposition of LQG control. The estimation problem
considers disturbances and measured outputs only in past (dotted); the control law
considers deterministic inputs and performance outputs only in future (solid).
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3.5 Conic optimization

Convex optimization has a long history and there is a wéalth of theory both for finite
dimensional problems (Rockafellar, 1970) as well as infinite dimensional problems
(Luenberger, 1969). Since the rediscovery of the interior point method in linear
programming, (Karmarkar, 1984; Roos et al., 1997), there has been a tremendous
boost in optimization software that has decimated the gap between algorithms treat-
ing gencralized inequalities (defined using nonstandard convex cones) and standard
solvers for linear and quadratic programs defined on the standard positive cone R7
in the R™. Although one can dispute whether interior point methods are the best
choice for linear programs, for generalized linear programming the primal-dual inte-
rior point approach seems to be the best alternative to find a solution in polynomial
time. Due to the development of powerful algorithms on the products of convex
cones (Wright, 1997; Sturm, 1999) the theory of generalized linear optimization has
come to life to produce a vivid environment for modelling and optimization.

3.5.1 Conic programming

Conic programming is a collective term for a family of optimization problems of the
form
min (¢, z)

z>0 3.14
Az =1b ( )

where the generalized inequality > gives a (partial) ordering in X by means of a
convex cone K. Despite the possible nonlinearity of the inequality constraints in-
duced by this cone, the conic program (3.14) has the appearance of a linear program
and it shares many duality properties. These generalized inequalities introduce a
large versatility in constraint modelling and enable the numerical treatment of a
large amount of convex nonlinear problems, and it will soon be clear how they can
be used in the predictive control problem. The most important aspects of conic op-
timization are summarized below, largely taken from the reference text by Ben-Tal
and Nemirovski (2001). In what follows, K will be a closed, convex, pointed cone
with a nonempty interior in some finite dimensional real Hilbert space X. Such
cones define generalized inequalities denoted by > for non-strict inequalities

rryer—y-0sr—yekK
and > for strict inequalities
r-yer—y>-0&z—ycin(K).
Next to the cone K, a dual cone K* is defined as the set
K*:={seX:{(s,z) >0forall z € K} (3.15)

where (-,.) denotes the inner product on X. K* is again a pointed cone with a
nonempty interior.
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Definition 2 Conic Optimization Problem (Nesterov and Todd, 1998). Let K be a
closed nonempty convex pointed cone in a finite dimensional real Hilbert space X

and let K* be the dual cone. The primal and dual conic optimization problem are
defined as

(Primal) p* =  inf (e, ) (Dual) d* = sup (b, )
zeK yeY,se K*
Az =b A*'y+s=c
(3.16)

where A* : Y — X is the adjoint of the linear operator of A : X — Y, b€ Y and
ceX. O

The basic relation between the primal and dual problem are summarized in the
following theorem.

Theorem 3 Strong duality, (Nesterov and Todd, 1998). Suppose the feasible sets of
the primal and dual optimization problems

F?f .= {z ¢ int(K) : Ar = b} and (3.17)
FP:={(y,s) €Y xint(K*): A'y +s=c} (3.18)

are both non-empty. Then there exists solutions z* and (y*,s*) to both (Primal)
and (Dual) respectively and their optimal values p* and d* are equal (zero duality
gap) '

p* = (cz*) = (by") =d".

For any primal feasible x and dual feasible (y, s) the duality gap equals

(C, fl?) - <b’ y) = (S, 37)
and at the optimum complementary slackness holds

(s*,z*) =0.

3.5.2 Examples of conic linear programs

Important conic programs defined on three different cones are linear and quadratic
programming, second-order cone programming and semi-definite programming. A
large number of applications using these optimization models are given in Ben-Tal
and Nemirovski (2001) and Lobo et al. (1998). Linear and quadratic programming
is used for feedforward optimization, second-order cone programming is used in the
simultaneous feedforward/feedback optimization and semi-definite programming is
used for the stationary solution all to be discussed in the subsequent chapters. A
number of examples of these optimization problems are given below.
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Linear programming. For LP’s X = R", ¢ € R™ and {(c,z) = cT, the standard
inner product on R"™. If the standard positive cone is chosen

Rl ={z€R":z>20}={zcR":x; >0 foralli=1,.,n},

one obtains the ordinary primal and dual linear programs

(P-LP) inf Tz (D-LP) sup bTy
x e R} yeER™ se R}
Ar=b ATy +s=c¢

where A € R™*™ b € R™.

Second-Order Cone Programming. For SOCP’s X = R", ¢ € R", and {c,z) = ¢Tz.
The second-order cone (sometimes referred to as the Lorentz or ice-cream cone) is
given as

L" ={(y,2) e R xR 1y > 2|}
={zeR":zy > /2% + ---+22_;}

which is self-dual L™ = (L™)4. The equality constraints are given by 4 : R® — R™,
and b € R™ and is, as for LP’s, identified with a matrix A € R™*". This gives the
primal and dual problems

(P-SOCP) inf ¢z  (D-SOCP) sup bTy
zel® yeR™ sel™ (3.19)
Az =0 ATy +s=c¢

Second-order cone programs can be used to model a variety of important problems,
see for instance the many examples in (Labo et al., 1998; Ben-Tal and Nemirovski,
2001). Second-order cone constraints are often encountered in the following format.
Consider (D-SOCP) and partition the problem as in the cone constraint

s:=1(s1,82) €EL" & s1.> |Is3l|, e= €1 , A=(a; Ay . (3.20
c2

where s; :=¢; —afyen sy :=c; — ATy and y € R™,51,¢1,€ R,cp € R* 1 a €
R"™, Ay € R™*("~1)| Then the constraint (3.20) reads as
llez = AZyllz < e1 —afy
which is of the structural form (primal notation)
|Az — bl|]z < Tz —d. (3.21)

Another small but useful trick is the transformation of an objective function given
by the squared Euclidean norm to a second order cone constraint. Let the objective
be given as

f(x) =2z, zeR™
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Introduce a scalar variable 7 such that the objective can be converted into constraint
f(x) <~ by replacing the objective f of the optimization with 4 to be minimized.
For any scalar v we have ' ’
_(+1)* (v-1)?
1T 1
and from this rule, the following second-order cone constraint can be constructed

(-1 (r+1)?
4 - 4
By letting the new set of optimization variables include v € R and setting the

new objective f'(y,z) = v, we observe that the Euclidean norm constraint (3.22) is
indeed in the format given by (3.21) and hence a cone constraint.

T
y—1
2

waS*y@xTx-%

& < -(7;—1) (3.22)

Semi-Definite Programming. For SDP’s, X = S, let the space of square symmetric
matrices in R®*™ by

S§":={MecRY™: M=MT}

and let the objective be given by the (Frobenius) inner-product (C, X) =trCX, C €
S™, the inner product on S§™. The cone is chosen as the set of positive definite
symmetric matrices

ST={MeS":M=MT, 2TMz >0 for all z € R"}
which is again self-dual, ST = (S7)*. Let Y =R™, b€ R™ and A: §" - R™ is
given as
AX = (trA41X - trAnX )T €eR™
where each matrix A; € S™. The dual mapping A* : R™ — S™ of A is given by
Ay = A1 + -+ + Anym

Then, a semi-definite optimization primal and dual problems are defined as

(P-SDP) inf tr CX  (D-SDP) sup bTy
X est i yeR™ Se8 (3.23)
(trA1 X -+ trd,X) =b Aip+--+Anyn +S5=C

In Chapter 6 we will extensively use SDP’s for LTI controller design. Another
important aspect of SDP’s is that they include SOCP’s. Suppose x € L™, then

21 > ||za|| ¢ 23 > ||22]* & 2} — 232 2 0.

Exploiting the Schur complement, (Horn and Johnson, 1999; Zhou et al., 1996) one
can directly show that this latter inequality is given in S7} as

Tl l‘g -0
i) .’l?lI -
which shows that any SOCP constraint is also a SDP constraint. In turn, one can

embed these in other SDP problems if this provides more freedom in modelling the
control problem.
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3.6 Stochastic constraint handling

Let us now assume that the controlled variables z;(¢) are subject to bounds that
can be modelled as linear inequalities. This gives the ability to capture actuator
saturation, model validity ranges, rate constraints, product specification ranges and
the ability to leave out undesired operating regions from the feasible set of operation.
More concretely, the output z(£) should be contained in the polytope defined by m
linear inequality constraints

P={Ce RNn- . hJTC <gj, forallj=1,..,m}

with probability larger than some user-chosen level a. Since the Gaussian distur-
bances are unbounded there is no guarantee that z(£) € P for all £ € . Hence, one
is forced to take a decision on how the constraints are to be satisfied. Two common
probability constraints over the set P in stochastic programming are

1) individual chance constraints in which each individual constraint must be
met separately with a user-specified level of certainty o

P{¢eQ:hlz(f)<gj} >a;forallj=1,.m (3.24)

2) joint chance constraints in which all constraints have to be met simultane-
ously with a user-specified level of certainty o

P{ecQ:hTz(¢) <g;jforall j=1,.,m} >a (3.25)

Both types of constraints are important constraint models for engineering systems,
yet joint chance constraints seem to be more applicable to the model predictive
control problem as shown in the next example.

Example 4 Difference between individual and joint chance constraints. Consider
the following constraint on a stochastic scalar control input u(¢) of some process
system

u” <wu(é) <ut.

Let us enforce these constraints in terms of an equivalent deterministic joint change
constraint
P(u” <u(§) <ut)>a

such that these constraints can be added to an optimization program and alterna-
tively by the individual chance constraints

Pu() <u*)>a, Pu <u)) >

The control input has a scalar Gaussian distribution function u(€) ~ N(4,0) and
we choose the variance 0% and mean 4 such that both individual chance constraints
are satisfied. Then, for & = 0.95 this implies that the joint chance constraint

P(u_gu(§)§u+)22a—1
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gives the certainty level 2 — 1 = 0.9. Hence, the certainty level of the separate
constraints do not give guarantee the simultaneous satisfaction of both constraints.
When the number of individual constraints is large and the random vector is of a
high dimension (typically the case for process systems), this analysis is very tedious
and therefore not very attractive. This phenomenon does not occur when the joint
chance constraints are enforced. The following relation between the constraint sets

(€€ u <ul@)<ut}c{€eN : —co<ul)<ut}

implies that

P(u™ <u(é) <u') <P(-o0<u() <ut).
and the same holds for the upper bounds. Hence, the simultaneous chance con-
straints are necessarily satisfied when the simultaneous chance constraint is thereby
ensuring a safe operation. O

Joint chance constraints are used throughout this thesis instead of individual ones,
but there are in principle no limitations on choosing either of them, or clustering
sets of joint chance constraints in parallel with individual chance constraints and
so on. Unfortunately, joint chance constraints are hard to take into account in
optimization problems, let alone in controller synthesis, where the probability density
function depends on the actual choice of controller. Calculation of the probability
content of some structured set is usually possible for nice geometric bodies such
as half-spaces and ellipsoids, see for instance Ruben (1960). In the analysis part,
numerical integration techniques can be deployed to compute the probability mass
of a polytope. In such computations it is assumed that the covariance matrix Z
and the expected value of the controlled variables Z are known. However, because a
general closed formula does not exist for the integral of a normal distribution over
general polytopes, it is unknown how to proceed in solving the control synthesis
problem. In the next two sections, it is revealed how to exploit a relaxation keep
the computations efficient and meaningful in controller design.

3.6.1 Enforcing individual chance constraints

Contrary to joint chance constraints, handling individual chance constraints is straight-
forward due to the scalar nature of the probability density function under considera-
tion. Enforcing such a bound is equivalent to adding a second-order cone constraint
on the optimization problem. In Lobo et al. (1998) the authors explain how such
a translation is performed and this procedure is repeated below for completeness.
Individual chance constraints are constraints of the type

P(hlz()<gj)>a

which means that the probability that the random variable z(£) takes its value in
the negative half-space is larger than a. For sufficiently large o, this constraint is a
second-order cone constraint. Let Z be the covariance matrix of z(¢)

Z = E(a(§) - 2)(=(§) - 2)7.
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and suppose a > % Define
p(€) = hiz(€) € R

which has a scalar normal probability density with average hfi and variance

a? = E(p(€) — p)(p(§) — p)" = h E(2(&) — 2)(=(€) — 2)Th; = h] Zh;.  (3.26)

To make the back-off computations easier, it is convenient to normalize the stochastic
process p(¢) by introducing
p§) —p
Pa(§) == ——,
o
then p,(€) is Gaussian with unit variance and zero mean. Then

©=p 4P, <%

b
<g; &
p(§) > g5 e p =

Therefore the constraint is replaced by

Fo(P—F) > a

k]

where I is the standard one-dimensional Gaussian distribution function

1 [* i
FG((E) = g e 2 dt.
-0

The constraint is satisfied if

9 —P - . A
—]U——— > Fg'(a) orequivalently p+ Fg'(a)\/hTZh; < g;. (3.27)
Equation (3.27) explains the simple idea for keeping back-off to the constraints. For
instance, let & = .99 then the constraint is satisfied if one takes approximately

Fil(a)~3

back-off to the constraint. The standard deviation of the process follows from equa-
tion (3.26) by factorizing the covariance matrix Z = FzF¥

p+Fg () /hT Zh; = p+ FG (@) ||k Fzl2 < g; (3.28)

which is a linear constraint on the variable p for any fixed matrix Fz. But, if Z is
allowed to vary in an optimization problem (which will be the case in the following
chapters on closed-loop optimization), the constraint is a convex second order cone
constraint for & > 1, (that is F5'(a) > 0).

Remark 5 The lower bound a > % to keep the constraints convex is no limitation
in application. Let us allow o = %, then mathematically the expected value of

the stochastic process p(£) is allowed to be on the constraints. The half-spaces
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defined by h]Tz(f) < g; then divide the Gaussian probability density function in
two symmetrical parts (50% certainty). Consequently, no back-off is taken to the
constraints as in standard MPC, that is

hj2<g;, j=1,...,m. (3.29)

If the bound « is chosen even lower, o < %, then for fixed standard deviation o it
follows that F'(a)o < 0. This leads to a constraint relaxation

P < g +|Fg' ()0l

where the expected value is even allowed to lie outside of the original constraint
region which is not sensible. O

3.6.2 An ellipsoidal relaxation of joint chance constraints

A similar set up exists in the multidimensional case but, as mentioned earlier, a
clever relaxation is used such that we can efficiently deal with several constraints
simultaneously. For sound engineering reasons an ellipsoidal technique is introduced
to solve the problem at hand. The mathematical advantage in using ellipsoids is the
regular shape and its natural occurrence in the shape of high dimensional confidence
intervals of the Gaussian probability density function and, as will soon be clear, it
makes the discussion of remark 5 obsolete. The probability constraint (3.25) is
equivalent to the following integral constraint

‘%(C—i)rz'l(C-i)dg > o, (3.30)

1
V(2m)n= det(Z) /’p °

where z = Fz(£) is the mathematical expectation of the performance variable and
Z is the covariance matrix of the stochastic process z(€)

Z = E(z(€) — 2)(2(§) - )7,

and P := {¢ : HT({ < g} C R™ the polytope as above. Let us continue from
the integral constraint (3.30) and introduce the ellipsoidal relaxation. Using the
ellipsoidal approximation technique one proceed as follows, define the ellipsoid

&={¢: ¢Tz7'¢<r?}
with some radius r still to be chosen. If we can make sure that
z+ €&, CP, (3.31)
we infer that P(z € P) > « is implied by

L= _____..._/ e~ FC-DTZTIC-B) o >
(2m)"= det(Z) Jzte, B
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Given a € [0, 1], the smallest 7 can be computed such that this latter inequality is
satisfied as follows. Observe that the integral I. can be simplified by bringing it to
standard form by the substitution

v=2"%(C - 2)
such that y/det(Z) is cancelled. This leaves us with the condition
11 / e~ zlIvl? gy > .
(2m)7s Jfvjir<r?

As it turns out, this integral can be reduced to a one-dimensional integral by standard
techniques, (Papoulis, 1965), leading to the condition

2
1 4 ng 1 _x
I= ——— Fle idy > a.
2nz/21"(nz/2)/0 XE e tix=a

Hence, r is chosen such that I = «. Note that for a given probability «, the necessary
confidence radius r increases with output dimension n,. For fixed r it remains to
replace the constraint P(z € P) > « in our optimization problem by the stronger
constraint z + &, C P.

Ellipsoidal techniques in literature Applications of ellipsoidal approximation tech-
niques to control problems and their stochastic interpretations in the research field
on actuator saturation exist in literature, (Boyd and Vandenberghe, 2002; Hindi
and Boyd, 1998; Gokcek et al., 2001). However, these results are focussed on either
finding the optimal shape of the ellipsoid for a fized center, or finding the optimal
center of the ellipsoid for a fired shape. We want to stress here that the simul-
taneous optimization over the shape as well as the center of the ellipsoid is not a
standard problem. The optimal reference trajectory depends on our ability to shape
the variance of the performance output vector z.

Practical justification of the ellipsoidal relaxation. One might question the justifica-
tion of an ellipsoidal relaxation on mathematical grounds only but there are good
engineering arguments as well. We have assumed the second-order statistics of the
disturbances to be known, but in practise they must be estimated from data. Then,
the part of the density function that can be determined with reliability is the central
region of the distribution, while the ‘tails’ of the distribution may be quite inaccu-
rate due to the low frequency of occurrence in measurement data. From a practical
perspective, using an ellipsoidal relaxation means that the certainty of constraint
satisfaction needs to be ensured by the region of the probability density function
centered around the mathematical expectation. Hence, it seems fair to use the first
two moments of the density function only and leave all higher order information
outside the problem formulation. Future variants of the procedure mentioned here
might be to consider robust versions of the chance constraints in which the mean and
covariance matrix of the disturbances are allowed to vary in a whole set containing
more than just a single point or one could include the problem of identifying the
second-order statistics.
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3.6.3 Enforcing joint chance constraints

There is a very elegant way to ensure that the ellipsoid £ is contained in the polytope
P by reducing the infinite dimensional constraint (that each point on the border €
of £ is feasible) to a finite number of constraints no larger than the original number
of constraints m. The trick is to compute the worst-case vectors in a stochastic
sense and then to enforce these worst-case vectors to be feasible with respect to the
constraints. The calculation of the back-off to the constraints is computed via the
solution of a basic optimization problem. The solution to this specific problem is
the major building block for the remainder of this thesis and therefore the solution
is given explicitly below.

Theorem 6 Consider the following nonlinear optimization problem consisting of
a linear objective and an ellipsoidal feasible set

max Tz | 2Tx lz<1, X>0. (3.32)

The solution to this optimization problem is given in closed form by

Xc

= and cTz* = VT Xe 3.33
veTXe (3.33)
Proof. (Ben-Tal and Nemirovski, 2001). a

A geometric interpretation is given in figure 3.7. The hyperplane defined by cTz = ¢
is translated over the vector z* € 8€ := {z : 27X !z = 1} such that it coincides
with the tangent plane to the ellipsoid €. The optimal objective value v* then equals

cTz*.

Tr=vVcTXe

Figure 3.7: Geometric interpretation of Theorem 6.

By making the following substitutions in Theorem 6

X =122, c=hj, x = bz,
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the use in the back-off calculation becomes clear. The worst-case vectors 5zj*- and

minimal amount of back-off v} are given for each separate hyperplane with normal
hj by

Th
oz = 7‘# and v} = h,;‘-rdz; = r,/h}‘Zhj.
A / h}“Zh]‘
Condition (3.31) above is ensured by obeying the following conditions

hjz* =hla+hloz* =r\[WTZh; +hT2<g; Vi=1,...,m.

The geometric interpretation of these conditions is that the distance of the center of
the ellipsoid % to the j** constraint is larger than the minimal required back-off vy,
see Figure 3.8 where the situation is sketched for the half-spaces H;, Ha. 62; is the
‘worst-case’ vector such that z” + 4z} is contained in the hyperplane defining the
half-space H;. The important observation here is that condition (3.31) is equivalent
to requiring that the ellipsoid lies in the intersection of the half-spaces defined by

H;:={¢: h}ﬂg <gi}

Figure 3.8: Ellipsoid in intersection half-spaces

Example 7 Circle in box problem. In this example we will illustrate the relax-
ation technique by computing the back-off or safety margins to a set of inequality
constraints for a stochastic variable with unit variance. Consider the following op-
timization problem

max y1+y2 | y+&CP.
yER?

where the ellipsoid £ and the box P are defined as
E={zeR?: 2z <1} and P:={z € R? : ||z]0o <1}

The || - ||oc constraint is reformulated using linear inequality constraints and the
columns h; of the corresponding constraint matrix are given by

met(o) (7). () (%)
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The covariance matriz of the ellipsoid X = %I such that the back-offs follow from

. N 1 1
v = lehj“% = 3lhill =5

for j = 1,..,4. The righthand side of the inequality constraints is given by g; = 1
for all j, hence the inequalities with back-off are given by

1
vi+hly<g; & ||5h,-||2 +hTy<g;

Notice in particular the second-order cone structure of the constraint: norm-linear.
After reduction with the back-off, the reduced righthand side is obtained as g; = 3
for all j

N 1
hly < g;:=g; — ”§hj||2

Hence the optimization problem reduces to

1

max y1+y2 | [yl <3

y 2
which has the optimal solution (y*)7 = (3, 3). See figure 3.9 for a sketch of the
solution. a

¥y +oy el =(1,1)

vs /
1!* I dl!*
y*
0\ /
[ ]
v3 vi
vj

Figure 3.9: Optimal solution for circle in box problem

Remark 8 Singularity of the variance matriz Z. In general, it may happen that
the variance matrix Z is singular in which case the components of the stochastic
vector z(£) are correlated. Below it is shown that this has no consequence for the
computation of the back-off. Indeed, suppose that Z is singular, then the description
using the inverse of Z is then not applicable, instead, one should factor Z = FzFZ,
(which is well defined since Z is positive semi-definite) and use the description

E:=A{2"+FzC : |2 <1}
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Then, £ is contained in the linear manifold V := z" 4+ im Fz. The factors of the
matrix Z are computed via a singular value decomposition

0 vl
zZ=(U Ug)(o O)<U;T>=U12U1T.

U, is used to compute a parameter transformation such that the transformed process
has orthogonal elements

y(©) = TEHUT2(E), By(©y(©)T = 55 0T Ba@a(©) VS = L1 >0
The inequality constraint is given then by
5+rUSIEY C P, where &Y :={¢ : (T¢<1}
and the technical requirement amounts to adding the constraints
;16123‘( hfi + 7‘h;-rU12%y <g;
hjZ+ max rhTU, Sy < g;.

to the optimization problem. The back-off to the constraint then follow from

v; = max rhIUSy = \[rhTU SR UT hyr = vy KT Zh,.

yTy<1

Hence, v; is computed as if Z were nonsingular, therefore it is not necessary to make
a distinction between the singular and nonsingular case. O

3.7 Adding bounded disturbances

Another important class of disturbances is the class of bounded disturbances. The
interest in dealing with (persistent) bounded disturbances originates from our signal-
based view on robust control for uncertain nonlinear dynamical systems. Consider
again the nonlinear dynamical system

0= f(2,%,9,4,d) (3.34)

depending on an unknown scalar parameter d € [d" — d*,d"” + d*] C R and consider
the corresponding reference trajectories satisfying

0= f(z",z",0",a",d").

The sensitivity s is defined as usual as the trajectory that satisfies the linearized
dynamics along the reference trajectory

0= 8;flgs+ Daflys+ Doflgv+ Baflyu+ dzflyd, s(0) =0
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Then, the model uncertainty manifests itself, in a first order approximation, as a
persistent and bounded disturbance

Z=Z"+3° ~F +z°, where 2° = sd = s(d + d")

When we sample the solution s at the time instants £t = ¢;, ¢ = 1, .., N we obtain the
transfer matrices mapping the bounded disturbances to the state vector

GT = (s(t)T -+ s(ta)7T).

Bounded disturbances are attractive because it is easier to analyze whether there
there exists a control law that keeps the process feasible with respect to the con-
straints than in the stochastic case. The problem of handling constraints for bounded
disturbances is very well defined by requiring that there exist feasible control se-
quences for all disturbances in the bounded set that keep the process within its
constriants. This mathematical convenience is inspiring, yet in real systems one is
confronted with both bounded and stochastic disturbances, hence stochastic distur-
bances cannot be ignored, especially not in inequality constrained systems. Because
a systematic approach to constraint handling in the Gaussian stochastic case was
given in the previous subsection, the worst-case approach to bounded disturbances
can easily be incorporated to handle the combination of both.

Definition 9 Bounded disturbances. A bounded disturbance d € R} is an affine
function of an unknown vector v that takes its value in a convex set V which is
generated by finitely many n, extreme points v}, that is

d=d + Av (3.35)

for some reference vector d” and matrix A of appropriate dimensions where v is any
member of V

veco{vy, -+, vh}=V (3.36)

a

Alternatively, it may be convenient to work with the image of V under A instead
of the set V itself. It is not difficult to see if that if the (extreme) points dj are

defined as d} := Av;-‘ and the set D := co {d{, s d;v} then any v € V defines
a bounded disturbance

Ty Ty Ty,
d—d' =Av=AY Nv;=) MNAv; =) X\djeD
Jj=1 Jj=1 J=1
and conversely for any d — d" € D one has
Ny Ny Ny
d—d" =) MNdi =Y NAv; =AY A} = Av
j=1 j=1 j=1
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for some v € V. Hence one can directly work with the set D = A(V). Note that the
bounded disturbances d have not been given a stochastic interpretation by taking a
uniform distribution over D. This is undesirable in the definition of the probability
constraints which were introduced above. Namely, in absence of stochastic distur-
bances, we want the probability constraints to drop out of the problem formulation
and deal with bounded disturbances in a worst-case setting. Secondly, one may have
good modelling reasons to choose a nominal value of the parameter vector unequal
to its mathematical expectation d, for instance d” = d? for some i.

Handling bounded and stochastic disturbances simultaneously.

The definition of the bounded and stochastic disturbances and the way they are
handled separately, do not reveal how the constraints are to be enforced when both
type of disturbances are encountered simultaneously. First consider the way in which
the disturbances enter the dynamical system

y(§ d) = Gyzzo(§) + Gyuu(§) + Gyuww(§) + Gyad
Z(f, d) = Gzzzﬂ(g) + quu(é) + szw(g) + szd- (337)

Then, (at least) two alternatives to constraint handling can be identified

1) the set of disturbance realizations £ for which the process z(£,d) remains fea-
sible for all parameters d € D has a probability larger than o

P({¢:H"z(¢,d) < g,Vd € D}) > o (3.38)

2) for each d € D, the set of disturbance realizations £ for which z(£, d) remains
feasible has a probability larger than «

P({¢:HT2(¢,d) < g}) >a, Vde D (3.39)

It is clear that the second option is less conservative than the first one. There is
no need to require that there exists a single set of disturbance realizations with
sufficient probability mass for all values of the bounded parameter d. Consequently,
from an applied perspective, the second option provides the same level of safety to
constraint violation with less constraints on the reference trajectory and feedback
map to be optimized. Therefore option 2) is preferred for our framework. For this
option, the following result has been obtained which reduces the infinite number of
constraints in (3.39) to a finite number.

Theorem 10 Bounded and stochastic disturbances. Let d be a vector taking values
in D := co{dj,....,d}.} € R™. Let z: D — R"™ be an affine function. Let
H e R"%=*"e geR™, Z € R*=*": Z > 0. Then, the following two constraints are
equivalent.

i) r/hTZh; + hTa(d) < g; Vd € D,j = 1,...,nc
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i) r/hTZh; + hT2(d}) < g; Vi=1,..,n¢, 5 = 1, me

where h; is the j* column of H and g; is the j** element of g.

Proof. (i) = (ii) is immediate. (i) = (¢). Pick any d € D, then d =) "=, A d} for
some A; >0, >0, A = 1. As A; > 0, multiplication of (i) with A; and summation
over t = 1,...,n, gives

i AiTy/ hthj + i )\zhg‘ﬁ(d:) < i /\igj
=1 i=1 i=1

Vi=1,...,ne,7=1,..,n¢

As 3 7¢, \; = 1 and 2(d) is affine we end up with

r/RTZh; + ha(Y " Nid}) < g5 Vi =1,y me

=1

n,

Together with the relation d = Y.<, A:d} this implies

r\/hf Zh; + h]4(d) < g; Vd € D,j = 1,..,nc

which completes the proof. O

The important observation from theorem 10 is that the original constraint
P({w:HTz(w,d)<g}) >a, Vde D
is implied by the finite! number of constraints
T /h]TZhj +hTa(d}) <gjVi=1,.,ne,j=1,..,n

which allows us to handle these constraints using a numerical solver.

3.8 Chapter summary

In this chapter the generalized plant framework has been adapted to predictive
control including stochastic disturbances and dynamic optimization, which provides
a generic set-up for advanced control problems. The main aspects in the generalized
plant are the inputs and outputs which relate directly to the problem formulation:
performance outputs (or controlled variables) are used for the objective function
and the inequality constraints, exogenous disturbances are a robustness measure
for the back-off to the constraints and control inputs (or manipulated variables)
and measured outputs (or process variables) determine the possibility for feedback
control. Future disturbances and measured outputs are explicitly introduced in
the dynamic optimization basic to predictive controllers. To deal with inequality
constraints in a stochastic process environment, a safety margin to the constraints is
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required which is often referred to as back-off. Several ways of stochastic constraint
handling in open-loop were discussed, in particular, to enforce simultaneous chance
constraints, an ellipsoidal relaxation technique was shown to give convex second-
order cone constraints. It was also shown how the combination of stochastic and
bounded disturbances can be handled.
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4 Stochastic Closed-loop Model
Predictive Control

In this chapter the generalized plant is embedded in a feedforward/feedback control
structure. The feedforward and feedback control actions are optimized simultaneously
and it is shown that this problem is conver provided that the control problem is trans-
formed by one of two separate techniques. The technical contribution of this chapter
18 to provide these transformation techniques in relation to the control structure.

4.1 Introduction

In many control strategies, input feedforward and disturbance feedforward enable

high performance in terms of reference tracking and disturbance rejection. Both

types of feedforward trajectories can be injected into our generalized plant, because
of the entries for reference trajectories on both the control and disturbance input
(Figure 3.2). Disturbance feedforward is dictated from outside the system boundary
(for instance by a supervisory control system) and is therefore assumed to be given.
This leaves the input feedforward to be determined by the control system by means
of dynamic optimization. These reference trajectories for the manipulated variables
fix the reference trajectories for the controlled variables and the measured outputs
as well and it seems natural to compare these reference trajectories to the actual
output measurements that become available in time.

This brings us to the second task of the control system, namely feedback control
which is indispensable to provide the closed-loop system robustness against unpre-
dicted disturbances and model uncertainties. Feedback control is even more nec-
essary in process systems because the inequality constraints need to be satisfied.
The key issue is to keep back-off to constraints based on the closed-loop worst-case
trajectories which are significantly less conservative than the open-loop counterparts
as for instance discussed by Campo and Morari (1987). In open-loop dynamic pre-
diction, the uncertainty with respect to the system evolution tends to grow, which
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yields large or even unbounded trajectory envelopes that fail to be feasible from a
certain time onwards. It is clear that if the full envelope of possible future trajec-
tories must be kept in the feasible region, the room for optimization is small, and
therefore this approach is not very attractive. To keep this envelope as small as
possible, we should take into account that in the future measurements will become
available for corrective action. In this chapter, we will show how to compute the
best linear time-varying controller minimizing these safety margins. In the case of
Gaussian disturbances, the proper interpretation of worst-case disturbances is again
related to the confidence ellipsoids that are shaped by feedback control. The prob-
lem of finding the optimal feedforward and feedback control action simultaneously
will be called closed-loop model predictive control (CLMPC). The analysis problem
for a fixed controller is relatively simple, because it is an open-loop dynamic opti-
mization problem, but it does not reveal how to do actual synthesis of controllers.
How to solve this synthesis problem for its global optimal solution is revealed in this
chapter. Let us first explore why the use of feedback control to minimize back-off is
economically an appealing idea.

Example 11 The benefit of control for inequality constrained process systems. Con-
sider a discrete linear time invariant stochastic system

Ti4+1(§) A B* B zx(€)
z(€) |=|C* O D* wi(§)
Yk (§) ¢ D* O uk(§)

where z(€), y(£), u(§), w(£) ar the states, outputs, inputs and zero-mean white noise
sequence with covariance matrix W = Ewj(€)wi(€)T > 0. Then, the stationary
open-loop covariance matrices

P:= lim Exxz}, Z:= lim Ezz
k—o0 k—o0
are computed via the Lyapunov equation
P = APAT + B*wB*T, Z=cCPCT

which easily leads to unbounded solutions if the unstable part of A is controllable
from the disturbance input w. In that case, there is not much hope that the in-
equality constraints will be satisfied with success. If the system is pre-compensated
using static output feedback

up = Nyg, N € RPv*™
we have the following relations for the variance matrix of the performance outputs
Z = (C* 4+ D*NC)P(C* + D*NC)T + (D*ND*)W(D*ND*)T (4.1)
where P solves the matrix equation

P=(A+BNC)P(A+BNC)T + (B* + BND¥)W(B* + BND*)T.  (4.2)
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Because the variance matrix Z is a function of the feedback control law, the feedback
gain N can be used to shape this covariance matrix such that the constraints are
possibly easier to satisfy and that the constraints can be approached more closely
without increased risk of violation. Low variance normal to a constraint means that
the constraint can be approached more closely and more profit can be obtained from
the plant. How much a controller may increase the profit can locally be estimated
from a very simple dual calculation. Suppose one fixes a controller N in the problem
above. For this specific controller the variance matrix Z(N) is fixed and hence so
are the back-offs to the constraints

Then, a linear program in which we optimize some linear objective function (for

instance: maximal feed, minimal energy consumption) while keeping back-off to the
constraints

min T
Vj+hf$§gj, ji=1...,m
has the associated dual linear program
m
max Z Ai(v; —g)T
L= Ahi=c¢ 5=
A; >0

At the optimal solutions (z*, A*) of the primal and dual problems respectively, one
can estimate how much reduced variance will increase the economic profit. From
sensitivity theory it follows that under a regularity condition (Luenberger, 1973) a
small reduction in variance Av < 0 will increase the profit to the level of

Tz — M Av.

This shows in which direction the profit increase is relatively high by investigating
the dual solution and this brings the question of how N can be chosen to minimize
the variance in those directions. a

4.2 The closed-loop model predictive control problem

In this section the closed-loop MPC problem is formulated. The general idea is to
implement a controller on the generalized plant as shown schematically in figure 4.1.
This control architecture and its motivation is discussed in the tutorial overview by
Athans (1971) in relation to LQG control design. The structure itself is still very
useful if the LQG controller is replaced by a state estimator and a model predictive
controller. In process control community it is sometimes referred to as delta-mode
control emphasizing that it compensates deviations from optimized reference trajec-
tories by additive feedback. This feedback action is then determined by minimizing
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the quadratic open-loop objective function

Z(ﬁ —zNTQ@E -2").

b

The set-up that is followed here parallels this configuration in its feedforward and
additive feedback structure, but the technical form of the solution is completely
different. Contrary to the standard interpretation, we are optimizing the feedforward
reference signals (within the possibilities of feedback control) and hence not fixing
them a priori, and contrary to the MPC literature we use a closed-loop solution to
the error minimization.

w zZ
Plant G w: disturbance inputs
u y z: performance outputs
u control inputs
u¢ y©
+ @<+— Feedback K [—& - y: measured outputs
(-)¢: control error
u” y" (-)": reference value
Feedforward

Figure 4.1: The generalized plant for predictive control

4.2.1 Introducing the controller

Recall the generalized plant input-output structure with explicit entries for the ref-
erence signals presented in figure 4.2 The idea is to use the reference signal u” as
a feedforward signal to react to influences that relocate the economic optimum of
the plant, typically changes in the references for the disturbances, such as upstream
feed changes, scheduled grade changes, but also changes in the definition of the con-
straints and economic objectives etc. Feedback on the other hand is used to keep
the system feasible with respect to the constraints under stochastic disturbances.
For any stochastic process (signal) s(¢), the control error (subscript ¢) is defined as

c

g

z

e
T

3

r

& — G

s}

T

SRS

G y y

yC
Figure 4.2: Generalized plant with reference signals.

58




LTI«

A

Figure 4.3: The feedback map added to the plant.

the difference between the actual process and its reference value

s°(€) :=s(§) —s"(§).

The control error for the manipulated variables and the measured outputs are defined
as

u®(§) :=u(§) -u", ¥y =y -y

and the control input signal is computed via control law

u’(§) = Ky“(&).

Note that at this point, there is no knowledge on the actual initial condition since
no measurements have been processed yet. In the linear case this means that the
estimate of the initial condition is the origin, while in the nonlinear case, the best
estimate of the initial condition equals the reference value. Also note that as a
consequence, the controller to be chosen does not depend on the initial condition
itself. How to proceed once measurements become available is subject of Chapter
7. Schematically, this corresponds to adding the block depicted in figure 4.3, to the
plant set-up in figure 4.2. For any outcome &g, the realizations of the input process
u(&,) and output process y(£o) are vectors in R*+ and R™"v respectively where n
is the length of the horizon. The controller K € R™«*""v ig then a lower block
triangular matrix

K' o ... O

K* K2 ... 0O
K =

Knl Kn2 ... Knn

where each block K;; € R™*"v is a matrix of input-output dimension. Define the
set of all admissible controllers as

(n—k) i
Ki={Y Y EKYE]: K¢eR™*™}
=1 j=1
where each E; = (O,...,0,1,0,...,0)7T is a matrix vector with an identity matrix

on the it spot. Then, the controller constraint is formalized by adding
K e Ky (4.3)

to the optimization problem. This feedback map has the algebraic properties of
a static output feedback (as discussed in example 11), but it represents a linear
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time-varying system. Notice that no internal structure besides the lower block tri-
angularity is enforced; K may be any time-varying system. For control problems
with inequality constraints it is logical that the controller K is a time-varying sys-
tem because the active set of constraints varies with time in the prediction horizon
along specific feedforward trajectories. The structural constraint that K must be
lower block triangular follows from the requirement that the feedback law must be
non-anticipative to be realizable.

Definition 12 Non-anticipating, (Water and Willems, 1981). A control law K :
Y — U is non-anticipating if for all y,,y2 € Y satisfying y,(k) = y2(k), k < n
implies (Ky,)(k) = (Ky2)(k) for all k < n. O

It is immediate that K € Ky is non-anticipating because of its triangular structure.
At any future point ¢; in time, the controller is allowed to use measurements up to
time t; to compute the control values u(¢;).

4.2.2 The closed-loop plant-controller interconnection

With this definition of the control law and the set of admissible controllers we are
now ready to connect the controller to the generalized plant. Recall that the open-
loop dynamics are given by the equations

Y(f) = nyzo(«f) + Gyuu(g) + Gyww(g) (4'4)
z(é‘) = Gu:co(ﬁ) + quu(E) + szw(g) (4'5)

and that alongside the actual stochastic processes, the deterministic reference tra-
jectories were defined by
V' = Gyexy + Gyut” + Gy W' (4.6)
z" = Gy + Gt + Gy W' (4.7)
The system matrices lower block triangular by causality (just as the controller is)
and therefore the matrices Gy, G, Gyw, Gz are all lower block triangular matrices
in RriyXnne  RAn:XnNy - RANy XNML - RPN XN pegpectively.  Subtraction of the

stochastic processes and the deterministic reference signals give, by linearity, the
expression for the control errors

() = Gyzzg(g) -+ Gyuuc(é-) + Gywwc(g) (48)
2°(§) = Gr27G(E) + G1uu®(§) + Gy W (§)- (4.9)

Then, introduce the feedback law as defined in the previous subsection
u’(§) = Ky“(§) (4.10)
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to obtain for the tracking error in the future (measured) output

Y€)= Gyarg(§) + Guu Ky (€) + Gyuw(€) (4.11)
(- GyuK)yc(g) = nyfﬂﬁ(f) + Gywwc(g)

For now, (I -G, K) is assumed to be invertible (which is a well-posedness condition
on the closed-loop preventing algebraic loops) such that

Y€)=~ Gyuh’)-lcyr‘rg(f) +(I - Gyu}\")_lewWC(f). (4.12)

Consequently, substitution of (4.12) into the control law (4.10) leads to the pertur-
bation in the input

u’(€) = K(I = GyuK) ™ Gyea§(€) + K(I = GyuK) ™' Gyuyw?(§).

This then reveals that the measured and performance outputs obey the following
closed-loop system equations

Y(€) = (Gyo + GuuK (I = GyuK) 7' Gye )25 (€)+
+ (Gyw + Gy K(I — GyuK)leyw)wC(f)

zc(g) = (Gz:c + quK—(I - GyuK)—IGym)l'(C)(f)-f-
+ (Gow + Gzu K(I — GyuK)_lew)wc(f)

which are the standard linear fractional transformations. The problem amounts to
finding good values for this feedback K to reduce back-off to constraints that are
economically interesting as in the introductory example 11 in the beginning of this
chapter.. The terms

K(I-GyK)™

are typical in (complementary) sensitivity functions. This reveals how the closed-
loop sensitivity of the system to disturbances w®(£¢) and uncertain initial conditions
z§(€) can be shaped to our improve the stochastic response processes. As a technical
difficulty, we must deal with the nonlinearity in how the sensitivity functions depend
on the controller parameters as in any feedback design method. In frequency do-
main design techniques one aims at relating the desired properties of the sensitivity
functions

GyuK(I — Gy K)™' and (I — Gy K)7!
to the open-loop interconnection between the plant and the controller
Gy K

by means of graphical representations (Bode, Nyquist, Nichols). It seems to be dif-
ficult to extend such rules to deduce closed-loop properties of lifted systems. More-
over, an algorithm is needed to find globally optimal controller, such that engineering
insight on specific applications is not of any help in finding a the numerical value of
the solution.
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Figure 4.4: Classical 2 degrees-of-freedom feedback/feedforward design. G: open-
loop plant, F: feedforward filter K: controller, P,: pre-filter.

4.2.3 Feedforward and feedback in predictive control

The optimal controller is determined by the economy of the plant via the feedforward
trajectory and it turns out that the feedforward/feedback structure we have adopted
has a very favorable property. Simultaneous optimization of the feedforward signal
and the feedback controller generally leads to bilinear products of the optimization
parameters involved. As it turns out, these bilinear terms are eliminated by exploit-
ing the control structure of figure 4.1. Then, this leads to a convex parameterization
of the controls without any need for approximation. This is considered to be a pow-
erful aspect and an important cornerstone in our approach. In classical feedforward
design, a dynamical system F' is sought that filters the reference signal and adds this
to the plant input, (figure 4.4). A typical control objective is to minimize the control
error y°(£) in the measured output, which is given in terms of transfer matrices by

Y=y —y= (I+GK)_1(I -GF)y - (I+G'K)"1w

where for historical reasons a different sign convention is used for the tracking error.
If the feedforward filter F is chosen as a stable approximate inverse of the plant
dynamics G, for instance via solving a model matching problem
poin = GFll.

Full decoupling of disturbance rejection and reference tracking is achieved if a stable
proper inverse of G exists in which case the model matching error is zero. For strictly
proper physical systems this leads to unacceptable high gains in the high frequency
range and for systems with unstable zeros this leads to unstable inverses. In process
control practice, there is an alternative to find the input u" matching the output
y" because contrary to high bandwidth control systems, there is usually sufficient
time to select a reference trajectory for the measured output from the image of G
by means of dynamic optimization. That is, one optimizes u" and sets y"™ = Gu"
instead of filtering y™ with approximate inverse plant dynamics. In that case, direct
optimization over all possible reference trajectories for the input u” is possible as
the plant dynamics are not inverted. Because y" = Gu” it follows that

¢ = (I+ GK)"Yy" — (I + GK)"'Gu" — (I + GK)'w = —(I + GK) ™ w.
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The schematic picture that corresponds to this situation is depicted in figure 4.5 and
is equivalent to the variational control configuration of figure 4.1!

P, T,
G ur
w
" +1 U —f—_l
Y u

Figure 4.5: Predictive 2 degrees-of-freedom feedback/feedforward design. G: open-
loop plant, K: controller, P,: pre-filter (dynamic optimization).

Thus the variational control scheme decouples reference tracking from disturbance
rejection and thereby removes the bilinearity. As will soon be clear, this is one of
the crucial properties that allows us to solve for a reference trajectory u” and the
controller K in a single step.

4.2.4 The closed-loop model predictive control problem

All necessary ingredients to formulate the closed-loop MPC problem now available
and briefly summarized below to give a compact problem formulation. Let Kg be
the admissible set of control laws such that

n %
Ko={>_ Y EKYET: K' e R™>"}
=1 j=1

where the subscript 0 refers to the initial solution at time zero. Let U := RN™« ig
the admissible set of reference control signals for the dynamical system given by

Y(O = nyzo(@ + Gyuu(g) + Gyww(f)
Z(f) = Gza:xO(ﬁ) + qu(ﬁ) + szw(g)

where £ € § is the stochastic element with Gaussian distribution. The covariance
matrix of the uncertain initial condition and disturbances are

P = E(zo(§)-5)(z0(§)~25)" = FpFE, W := E(w(§)-w")(w(§)-w")" = Fw Fj,

which are assumed to be known and fixed a priori. Alongside the stochastic system
the reference system is defined as

Y = Gyexp + Gyut” + Gy W"
7z’ = szxg + Gu" + Goyw”
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The inequality constraints on the process variables are given by the polytope P
defined as

P:={C: H¢(<g}t={¢ : hj¢(<gjfori=1,...,m}.
and let for any K € K a feedback law be defined and implemented as
u(§) =u"+K(y() -y")
Let the performance output z({) have the expected value and covariance matrix
Ez(¢€)=12", suchthat Z = E(z(¢)~2z")(z(¢) —2z")7

where Z is factored as in (4.14). Define for notational convenience the closed-loop
transfer matrices

GK .= G,o + G K(I — GyuK) 'Gyy
GK = G0+ G.uK(I ~ GyuK) 'Gyu

then the covariance matrix Z is expressed in terms of the covariance matrices of the
disturbances w(¢) and initial conditions zo(£) as well as the controller parameters
via

C C T
20 = (65 6% )E(3)(F) (65 65)"

W
~(cx e5 (P O )(ex 6K )T (4.13)
o W

The back-off or safety margin to the constraints is given by

v;(K) = ro/RT Z(K)h;

where r is related to the confidence ellipsoids, see Section 3.6.3. This is the square
root of a nonlinear function of K which reveals the problem of optimizing the back-
off directly. Fortunately, the covariance matrix Z(K) is easily factored and therefore,
the square-root nonlinearity can immediately be removed as follows

vi(K) = r,/h?Z(K)hj

—r /W7 (GEFp GE,Fw )( GKFp GXFw )"
=r|( GEFr GE,Fw )7 hj|s. (4.14)

This reveals that the back-off term for each constraint is obtained as the 2-norm of a
vector and it remains to remove the non-convex way the controller parameters enter
this vector via Gﬁi. How to actually do so is part of the solution to the closed-loop
MPC problem defined below.
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Figure 4.6: Direct design in K vs. analytical design in Q.

Definition 13 Closed-loop stochastic model predictive control. With everything as
above, let f be a convex function. Then, the closed-loop model MPC problem is
defined as

CLMPC mi T
( ) ueR""u ,uglll"‘,KEKo fz")

z" = Gz:c-rg + quur + szwr (415)
rll ( GEFp GE,Fw )" hlla + hTz" < g,

4.3 A Q-parameterization approach

The closed-loop MPC problem can be rendered convex by using a parameter trans-
formation to remove the main nonlinearity in the back-off function. As discussed
above, the main issue is to parameterize the term

K(I - GK)™! (4.16)

in a convex way, such that an algorithm can find the global optimal controller pa-
rameters. The way to do so is to introduce the so-called Youla parameter @ which
renders the closed-loop system affine in these transformed controller parameter. This
direct approach is known by several names such as the Q-parameterization in control
literature, (Zames, 1981), Internal Model Control (IMC) in process control literature,
(Garcia and Morari, 1982), but it can be traced back to early analytical feedback
design methods, (Newton et al., 1957).

4.3.1 A Q-parameterization or Internal Model Control solution

The basic idea in the Q-parameterization is the following. Consider a basic single-
input single-output classical control set-up shown in 4.6. The transfer functions from
the reference signal y” and the disturbance input w to the measured output y(¢) are
given by

y(&) = (I +GK)'\GKy" + (I - (I + GK)"'GK)w(¢) (4.17)
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Figure 4.7: Internal Model Control.

where indeed the sensitivity and the complementary sensitivity functions
S=(I+GK)™, T=({+GK)'GK

depend nonlinearly on the controller parameters in K. The simple trick to get a
convenient parameterization of these functions is to exploit the parameter transfor-
mation

Q=K(I+GK)™! andconversely K =Q(I-GQ)™!

to renders the closed-loop system affine in the design parameter Q). Then by substi-
tution of @ for K, the closed-loop transfer functions are given by

y(€) = GQy" + (I - GR)w(§) (4.18)

leading to the block-diagram given in figure 4.6. If the original plant G is stable,
then searching the controller () over the set of stable dynamical systems guaran-
tees the closed-loop to be stable since then GQ is stable. Due to the specific use
of feedforward in the control set-up as discussed in subsection 4.2.3, the tracking
problem and the disturbance rejection problem are separated into a feedforward and
feedback problem. Then, the tracking term in the closed-loop systems (4.17), (4.18)
disappears and the Youla parameter @ is chosen only to reject the effect of the
disturbance w.

In process control, the analytical design method is known as internal model control,
(Garcia and Morari, 1982), where it is used to systematically tune model predictive
controllers for open-loop stable systems. The name follows from the observation that
the disturbance w in the scheme of Figure 4.7 is unknown but can be reconstructed by
substraction of the predicted output Gu from the measured output y, (w = y— Gu).
The resulting block diagram then contains the model of the plant in parallel to the
plant itself.

4.3.2 The Q-parameterization in LTV predictive control

It is not difficult to see how application of the Q-parameterization to the closed-
loop prediction problem leads to a convex optimization problem. In fact, the only
interpretation of the Youla parameter that is needed to arrive at the desired results
is that it is a transformation rendering the closed-loop system affine in the controller
parameters.
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Definition 14 The Youla parameter Q). Fix any non-anticipative controller K ¢
Ko, and let Gy, € R"v*"™ be the causal system matrix mapping the control
inputs to the measured outputs. The Youla parameter @ € R™*«*""v is defined as

Q=K -GyK) " (4.19)
a

In this definition, @ is simply a matrix with the property that it is lower-block
triangular. This follows from the fact that I, G, and K are all lower block triangular
and products and inverses of lower-block triangular matrices are again lower block
triangular. A key question is whether the above equation can be put in explicit
form such that a one-to-one mapping is obtained. Two structural requirements on
the controller that have to be met is that the K is non-anticipative and that the
closed-loop is well-posed. Enforcing the causality constraint on K is no technical
difficulty as K := (I + QGy,)7!Q is a lower block triangular matrix if and only
if @ := K(I — Gy, K)™! is lower block triangular matrix. Then, causality of K is
obtained by enforcing all upper diagonal blocks of @ to be zero

EXQE =0forall [ > k+12>1.

Secondly, the requirement that I + QGy, is non-singular a well-posedness condition
for the lifted system that prevents the closed-loop system from being ill-posed due
to algebraic loops. It is immediate that I + QG,, is non-singular if and only if all
diagonal blocks

ET(I - QG,.)E;

are non-singular, which follows from the fact that both the Youla parameter Q
and the plant G are lower-block triangular. From an optimization perspective, this
constrained can be enforced by requiring that

det(EF (I ~ QGyu)E;) #0, for all 4,

but this is a non-convex constraint on the optimization problem destroying all efforts
to render the CLMPC problem convex. An alternative solution may be to enforce
the constraint

ETQGy.E; =0, for all i,

leading to equality constraints on the optimization problem. In our set-up these
problems are circumvented by assuming that the plant has no feedthrough from the
inputs to the measured outputs.

4.3.3 A snapshot solution to the CLMPC problem

With the preparations made in the previous section, the CLMPC problem can now
be solved by rendering the optimization problem convex, which allows us to glob-
ally solve the problem efficiently in polynomial time using modern optimization
algorithms. The main result on the Q-parameterization is given in the following
theorem.
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Theorem 15 The closed-loop model predictive control problem is rendered convex
via the Q-parameterization.

Proof. The only part of CLMPC that is not convex is the way the covariance matrix
Z depends on the controller parameters. Recall that the back-off term is given by

vi(K) =1l ( GXFp GEFw )" hyla.
With the aid of the Youla parameter
Q = K(I - GyuK)_1
one obtains the affine parameterization of the closed-loop system
GK := Gz + G K(I — GyuK) 'Gyz = Goz + G1uQGys = G,
GK, := G+ G K(I — Gyu K) Gy = Gy + G2uQGyo == G,
Then, the equations describing the closed-loop
Y(€) = (Gyo + GuK(I — G K) 7' Gya)z5(6)+
zc(g) = (Gz:c + quK(I - GyuK)—lez)z(c)(f)'*'
+ (Gow + GouK(I — Gy K) 7' Gy )wE(§)
are returned in terms of Q as

yc(g) = (Gy:c + GyuQGyz)w(c)(f) + (Gyw + GyuQGyw)wc(g) (4‘20)
2°(8) = (Grz + GuQGyz)z§(€) + (Gaw + G2uQGyy)We(E) (4.21)

This renders the back-off terms convex and reveals that CLMPC is equivalent to the
following optimization problem
ureRnmu eR™, QEKo ")
Vj(Q) +h'{zr < 95 ] =1...,m
2" = Gpa]y + Got” + Gy W” : (4.22)
] (Q) = T"hf(Gzz + quQGya:)FP + h;‘r(sz + quQGyw)FW”2

where the norm-constraints are second-order cone constraints, (Lobo et al., 1998;
Nesterov and Todd, 1998), hence, both the objective and the constraints are all
convex. O

4.3.4 Adding bounded disturbances

An advantage as well as a disadvantage of the Q-parameterization approach is that
no internal structure is assumed or enforced, in the sense that it is observer based.
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The unknown structure is a disadvantage if the internal structure is needed to gen-
erate solutions recursively (as will be shown in Chapter 7). However, it does provide
a fairly general procedure that works for non-Gaussian disturbances as well. As an
illustration of this advantage, the case of bounded disturbances will be discussed.
In fact, a combination of Gaussian and bounded disturbances is considered which
yields a solution for bounded disturbances only as a special case. Consider the fol-
lowing extended system with bounded disturbances d € R™ as well as stochastic
disturbances

y('f’ d) = Gyme(g) + Gyuu(f) + Gyww(f) + Gydd
z(§,d) = szxo(g) + quu('f) +Gouww () +G.ad

where G4 is an impulse response function mapping the parameter d to a signal.
Alongside the stochastic system, the reference system is defined as

Y = Gyzxy + Gyut” + Gy W + Gyad”
z" = Gy + G + Gy W + Gogd".

By the definition of bounded disturbances (definition 9), there exists a reference
value d” such that D is generated by convex hull of the set of extreme points {d}};

d—d" € D:=co{d],...,d; }.
The feedback law is formally adapted to the bounded disturbance case as

u(§1 d) —u" = K(y(€7d) - y'r)

and one can directly write down the closed-loop performance outputs in analogy
with the previous results using the Youla parameter

2(§,d) — 2" = (Grz + GuQGys)(z0(§) — xp)
+ (Gzw + GouQG ) (W(E) — W) + (Gog + G QGyu)(d —d7).  (4.23)
This brings us to the point where we must define how the inequality constraints are
to be satisfied. The bounded disturbances are considered in a worst-case setting such
that in absence of stochastic disturbances, the performance output must be feasible

with respect to the inequality constraints for all values of d, see also the discussion
in section 4.3.4. The constraints on the performance variables are given by

P({¢: H'z(¢,d)<g}) >, Vd€D (4.24)

which by theorem 10 can be reduced to the finite number of constraints in the
optimization problem

r/hF Zh; + Bl a(d}) < g; Vi=1,..,ne,j = 1, ..., ne. (4.25)

The calculations on stochastics concerning variance, expected value etc. do not
change by the presence of the bounded disturbance d as d has no stochastic inter-
pretation, e.g. using a uniform probability density function.
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In practical terms, the change to the inequality constraints (4.25) means that each
constraint is repeated for each extreme point df. Suppose that ng deterministic
uncertainties d; are defined such that each parameter varies in some interval [d;, d;].
The uncertain parameter vector d then lies in a hypercube in R"¢ and the number of
extreme points (corners of the hypercube) grows exponentially as 24, so one must
be careful with its use. A way to circumvent this combinatorial explosion in the
number of constraints is to consider the different but perhaps alternative stochastic
formulation in which a bounded disturbance is modelled via step with stochastic
amplitude

Adding a number these stochastic step shaped disturbances has the desirable ef-
fect that the number of constraints grows linearly with the number of disturbances
instead of combinatorially.

4.3.5 A Kronecker implementation

Several algorithms can be devised to solve convex problems including cutting plane
algorithms, but the fastest method to solve second-order cone programs currently
appears to be the primal-dual interior point method, (Boyd and Vandenberghe,
2002). Both commercial software (Andersen et al., 2000) as well as non-commercial
packages (Sturm, 1999) are available to solve second-order cone programs, not to
mention all semi-definite programming codes. In order to use these methods, the
constraints must be formulated in the general second-order cone form as

Az —beL | (4.26)

where £ € R™ is some large vector. The formulation in (4.22) has both matrices
and vectors as free optimization variables and must therefore be translated into the
format of (4.26) for software implementation. The convex formulation of the closed-
loop MPC problem shows that the back-off v; is the norm of a vector y; where

Y = hf ( (Gaz + quQGyz)FP (Gzw + quQGyw)FW ) .
Introduce the following system related matrices

So = ( GuFp GuwFw ) , 81 =G,

Sy =( GyoFp GyuwFw ) (4.27)
then

y; = h] (S0 + $1QS:) = h] So + k] $1QS;

Using the following basic relation in Kronecker algebra (Brewer, 1978) for arbitrary
matrix products '
vec(AXB) = (BT @ A)vec(X)
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it follows from ¢ := vec(Q) that
vec(y;) = vec(h] So) + vec(h] 51QS:) = S5 hj + S3 ® (k] S1)q. (4.28)

To guarantee that the controller K is lower block triangular, it is necessary and
sufficient to constrain the Youla parameter to be lower block triangular. This is
achieved by constructing @ by placing full blocks Q% € R™*™ on the lower block
triangular spots

n i
Q=YY EQYEl = > EQYE] (4.29)
i=1 j=1 i>j>1
where Ef=(0O0 --- O I O - O ). Vectorization of equation (4.29) gives

the following expression for q

q =vec(Q) = vec( Y EQYE])=

i>5>1

= Z vec(EiQijE';Tr) = Z (Ej@Ei)Vec(Qij)

12521 i>5>1
Then define p;; = vec(QY),
U:=(E1®E1 E,®@FE, E;®FE; ),

and stack the free parameters in a long vector

PTZ(Pfl P1T2 pz?z )

such that
q=Up.
Substitution into (4.28) gives the vectorized back-off formula
vj(p) =7||S5 h; + 57 ® (hT S1)Upl2.

As a result, all variables appear as vectors in the optimization problem such that
the problem is in the right format

min f(z") )
p,z" (4.30)
r||Sghj+S27‘®(h}"51)Up||2+h]TzT <gj, j=1,...,m.

and conversion to (4.26) is immediately obtained. Problem (4.30) can be solved nu-
merically in the vectorized format. The translation to the format (4.26) is straight-
forward as was explained in section 3.5 and is not explicitly presented here.
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Performance outputs

z1 T Displacement
k z2 & Velocity

T Measured outputs
y z Displacement
Inputs
m lm’ w u F  Force
Disturbances
‘ w —  Process noise
F,d d —  Force disturbance
Miscellaneous
- k Stiffness spring
- m  Mass

Figure 4.8: The mass-damper-spring example

4.4 A mechanical example

In this section we aim at visualizing the solution to the closed-loop MPC problem.
The mechanical example consists of a mass-damper-spring system, (figure 4.8), cho-
sen intentionally for its 2nd order dynamics, which allows a full display of the system
behavior in the state space. Because of the linear dynamics, the problem is convex
such that the global optimum is found. The LTI dynamics of the system are given
by

9756 0965 |.0316 0 0 |.0489 \ [ ax(6)
(“f‘k+_(1§()€)) | —4825 9225 0 0316 0 |.9649 | [“w(®)
Y 1 o | 0 o .01 o ui(€)

This system is stable with eigenvalues 0.9490 + 0.2141: and it is both observable
and controllable. The constraints are formulated such that the displacement, the
velocity and the applied force are bounded in all directions. To be specific, let the
performance output contain all states and all inputs

z(§) = (ﬁgg) , Ewp(@wi(€) =1, Ezo(&)xzo(§)T =P

where Py = APy AT + B*B*T . Let the linear inequalities HT z < g be defined using

1 -1 0 00 O
H=|0 01 -1 0 0
0 00 01 -1

T p
g :(mmaz = Tmin Umaxr — UYmin Umaz —umin)

=(, -1, 1, -1, .5, —.5)
(4.31)

We wish to maximize the vertical deflection of the mass such that we choose a linear
objective defined by
F'=(-100).
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Further, we choose a certainty level @ = .97 corresponding to a radius r = 3 of
the certainty ellipsoid. The optimal transition from the origin to the steady state
is plotted in figure 4.9. In the upper two plots one sees the transition for the
position and velocity. In the lower left plot the force input is plotted with error bars
representing the projection of the uncertainty ellipsoids onto the input space. In
the lower right plot the result in plotted in the state space also with the projected
uncertainty ellipsoids. The thick solid lines represent the inequality constraints,
while the uncertainty ellipsoids visualize the back-off needed to avoid constraint
violation.

To illustrate the solution for the bounded disturbance case as discussed in section
4.3.4, we slightly change the problem formulation. The stochastic process distur-
bances on the position and the velocity are replaced by a deterministic but unknown
force bias d of £30% of the maximal force that can be exerted. For illustration
purposes, the covariance of the measurement noise are amplified by a factor 10 such
that the control system must make a sensible choice between cancellation of the
force bias and amplification of measurement noise. The system is given by

9756 .0965 | .0489 0 | .0489 w;

(_M) — [ —.4825 .9225|.9649 0 |.9649
w
Y 1 o | o o0032] o :
Uk

with d € [-0.15,0.15]. The result of the optimization is plotted in figure 4.10. The
top two plots show the transition in the position of the system. The marked line
shows the reference trajectory for the nominal value of the deterministic disturbance
while the solid lines represent the evolution of the system for the extreme points of
the bias. Notice the nice convergence of the envelope of extremal trajectories to
the reference trajectory. This integral action of the controller is seen in the middle
two plots where both the extremal trajectories of the inputs are plotted which differ
in the steady state exactly +0.15 from the reference value. Around these extremal
trajectories we have plotted the error bars that visualize the contribution of the
feedback of measurement noise to the uncertainty in the loop. In the lower two
plots, the extremal trajectories are plotted in the state space.

4.5 Feedback of the innovation sequence

The Q-parameterization approach has the flaw that if the open-loop system is un-
stable, the Youla parameter () must have unstable zeros on the precise location of
the open-loop unstable poles. In that case, stability of GQ is still necessary but
no longer sufficient. This may lead to an unstable zero in the resulting controller
K coinciding with an unstable plant pole rendering the design useless due to un-
stable hidden modes (Youla et al., 1976a; Youla et al., 1976b). To avoid these
hidden modes, internal stability of the closed-loop must be guaranteed (Zames and
Francis, 1983). Then, a necessary and sufficient conditions are that both GQ and
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Figure 4.9: Optimal result for the mechanical system.
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Figure 4.10: Optimal result for the bounded disturbance case with measurement
noise. ' '
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Figure 4.11: The Youla-Kuéera parameterization via state and innovations feedback.
A closed-loop predictive alternative to open-loop internal model control.

(I-GQ)G are stable. A constructive way to obtain such a controller @ is to stabilize
the system with an initial controller leading to a stable closed-loop system G. Then,
by replacing G by G, the original procedure can be applied again (Kucera, 1974).
This approach leads to a parameterization of all stabilizing controllers referred to
as the Youla-Kucera parameterization in the sense of (Desoer et al., 1980; Nett et
al., 1984; Maciejowski, 1994), see figure 4.11.

The standard state-space method to apply the Youla-Kuéera parameterization is to
stabilize the system with an observer and a state feedback gain. The output error v
is then used in an additive feedback loop through a controller K. Many structural
properties in linear time-invariant systems naturally extend to linear time-varying
systems, including possible stability problems in using the Youla parameterization.
In the forthcoming sections it will turn out that in the case of lifted systems, there
is no need to fully fix the initial controller contrary to the standard state-space
procedure. In fact, the observer is chosen fixed as a Kalman predictor in line with the
Gaussian disturbances, while the state feedback gain L is optimized simultaneously
with K. This seems to be a generalization of the parameterization and therefore the
scheme of figure 4.11 is addressed as state and innovations feedback. We will be very
explicit on how to design these state feedbacks in line with the Youla parameter.
The specifics will be discussed in detail in Chapters 6 and 7 on the stationary results
and the receding horizon implementation.

A second drawback of the Q-parameterization approach is that it is not clear what
the internal structure of the solutions is, in particular how the controller depends
on the problem data. In unconstrained stochastic control theory, the separation
theorem states that the optimal solution to the LQG problem is divided in an optimal
estimator and a separate control problem that depends only on the most recent state
estimate. This structure allows recursive treatment of measurement data, a property
of prime importance in the receding horizon implementation and for this reason
it is also important to shift from output feedback to innovations feedback. This
alternative solution is an observer-based controller leading to a separation principle
for constrained predictive control as will be shown in Chapter 7. This separation
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principle is best understood if the estimator is in its error dynamics form. Then, the
estimation error is independent of the control input. In the case of LQG control,
the estimator is a Kalman filter (Kwakernaak and Sivan, 1972) that pre-whitens
the output measurements such that the so-called innovations sequence is obtained
(Kailath, 1968). The innovations sequence is then used in the feedback control law
instead of the process measurements as in figure 4.11. Below, these steps will be
presented in detail.

45.1 Lifting an observer-based controllers

In what follows we will use lifted systems describing the behavior of the Kalman filter
over a future horizon. In this subsection we introduce the idea for the standard LQG
case. Consider the following discrete time LTI system

()= (& )o@+ (g )mo+(pu )me @3

where the disturbance w;, is a member of a discrete time white noise sequence and
let us start with the standard observer-based control structure as presented by Ma-
ciejowski (1994). The optimal stationary a priori estimator is given by the Kalman
predictor (Lewis, 1986). As explained in section 3.5, the optimal state estimator is
given by the conditional expectation of the state vector at time tj

() = E (2(8) | %0(£),- - - pe-1(8))

where the notation Zy)x—; is used to denote the estimate of the state z at time
k using all measurements up to time k — 1. The state estimate is the conditional
expectation evaluated at the partial realization yo,..., ¥y, of the stochastic process

y(é)
& = E(@k(8) | 9o(&) =0, -, uk(€) = yx) -
and this can be written as a recursive dynamical system as
Er+1(8) = (A — NC)2x(€) + Buy + Nyx(§) (4.33)

It is also well known that the LQG optimal control sequence in the case of par-
tial state measurements is given by state-feedback of the state estimate, where the
gain matrix is equivalent to its deterministic LQR counterpart (by the certainty
equivalence property of LQG control)

u(§) = Fix(§)- (4.34)
The LQG controller can therefore be written as
fi‘k+1(£) _ A. B jk(&)
(uM))"(Q m)(mm> (4:35)
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again starting from a zero initial condition. The controller parameters are given by

(AC|BC)=<A—NC+BF|N)

c. | D. F | o

(4.36)

In this stationary case, the feedback gains are computed via the solution of the
control and estimation Riccati equations. If the Kalman predictor is lifted over a
finite time horizon we obtain

£o(§) I 0 0 0O Yo(§)

#1(¢) Ac | . B. o o y1(8)
: I Zo(&) + | . : T :

j'n(f) A? A?_ch A?_2Bc e O yn(f)

and the controller output (control input) is then given by the sequence

| uo (&) C. D. o 0 yo(§)

i Ul (f) C:Ac N C.B. D. e 0 n (E)

’ : =1 Zo(€)+ : : .o :

| un (€) CLAT C.A™ B, C.A'™?B. ... D, un ()

[ : (4.37)

To observe the link with the closed-loop MPC problem, introduce the reference
signals for the control inputs and states

(ug, z%)
to which the system must be controlled by means of the state feedback
u(§) = F2x(€) = Fay + F(2x(8) ~ 2%) = uf + F(&x(€) — )
where the deterministic control law is defined as
uy = Faf,.

In general, the initial controller state is unknown, (sp = sj), such that the lifted
controller dynamics over n samples is given by

uo(€) — up D, o 0 yo(€) — ¥
U1 (é‘) —uj _ C.B. D, - 0 hn (E) - Y3
un(§) — uy, C.A?'B. C.A?™?B. --- D, yn(&) — yn

The controller state is the state estimate (minus the reference value) but it plays no
distinct role itself. If we let the dynamics in the observer-based controller be time-
varying, then it is a small step to generalize to the controller configuration given
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by

up(€) — uf Koo O - 0 Yo(&) — 4o
u1(€) — uf B Ky Kiui -+ O v1(§) — v5
un(§) — uy, kn() -.Knl T .I{nn yn(g) — Yn

which is then free of any predefined structure as in the observer-based controller,
(4.37).

4.5.2 From generic to observer-based controllers

The steps above can be reversed to obtain from a generic output feedback controller
in lifted form, an equivalent innovations feedback controller in lifted form that is by
construction observer-based. We now continue with the more general LTV case in
which we consider the system

Tk+1 _ Ak Bk B}:
(75 ) = (& )oee (G ) (5 )

derived along a reference trajectory which we can (without loss of generality) assume
to be zero because they are deterministic and do not enter the feedback path. In
a later stage we can then add these trajectories again. Contrary to the stationary
counterpart discussed above, we now turn to the finite horizon observer, (which
consists of time varying-feedback gains even if the original system is time-invariant,
(Rhodes, 1971)). As suggested above, the observer is put in its error dynamics form,
where the state of the observer is the error between the process state and its estimate

ex(€) == zx (&) — 2k (§).

This dynamical system is given in recursive form by
ex+1(€) = (Ak — NiCr)er(§) + (By — N Dy )wi(£)
= Agex(§) + Brw(£) (4.38)
where
i,j = Ai*1Ai—2 s A;, ‘I);TJ- = I, AZ = Ak - Nka, and Bz = B}: — NkD;:.
In its lifted form it has the representation
eo(f) = GeeeO(ﬁ) + GewWO(g)

or in terms of the system matrices (®5, ;, Bf)

eo(§) I o O o wo(§)
e1(§) @70 B 0 - 0 w1 (§)
. =1 . eo(§)+ | . : oo :
en(§) 7.0 @7 .B; ®..Bf -+ O wn(€)
(4.39)
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The innovation sequence, (Kailath, 1968), is by definition given by the expressions

vk (€) ==yx(§) — I (€)
=C (zx(§) — Tk(€)) + DY wi(§)
=Crex(§) + Dywi (). (4.40)

It should be noted here that we have two representations of the innovations sequence.
The definition expressed in terms of the measured and estimated outputs gives us
the actual numerical value for feedback, while the second representation using the
unknown estimation error and unknown process disturbance provides us with the
covariance matrix needed to compute the back-off. Putting the innovations sequence
in its lifted form we obtain

V()(g) = GveeO(g) + G-vww()(f) (441)

or in terms of the system matrices (®§ ;, B, Ck, D}’)

vo(§) Co Dy 0 e 0 wo(§)

v1(§) C197, C1B;§ 0 0 w1 (&)
: =1: eo(§)+ : .o :

vn(§) Cn®5,0 Cn®;, 1By Cn®,,Bf --- DY wn (&)

Then, instead of using an output feedback law as in the Q-parameterization ap-
proach, the control sequence is determined by feedback of the tracking error in the
innovations sequence: (4.41), that is

u5(§) = wo(€) — up = Ky(vo(§) — vp(8)) = Kuvi(€), Ko € Ko. (4.42)

One obtains expressions for e¢,v® by subtraction of the reference values from the
observer equations, such that by linearity we obtain

€5(8) = Geeej(€) + Gewwp(§)
V(C)(g) = Gvee(c)(g) + vaWS(E)

These equations represent an observer in error dynamics form for the variational
dynamical system with state vector x§(¢) = xo(¢) — x5. Then, the following result
shows that this would solve the CLMPC problem as well.

Theorem 16 Let us fix the observer gains equal to the Kalman filter gains Ng.
Then, the closed-loop MPC problem is convex in the innovations feedback controller
K.

Proof. Upon substitution of (4.41) into (4.42), we observe that the control sequence
is given by

ug(f) = Kvaeeg(g) + R’quwW(Cj(f)
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The crucial observation is that, contrary to the output feedback case, the input is
independent of itself since there is no transfer between the input u and the estimation
error e nor the innovations v. As as result, no inversion of the closed-loop dynamics
is needed and one immediately writes for the control error in the performance output

z5(€) = G1225(6) + Gzuug(€) + G2uwwi(6)-
The initial condition can be decomposed into its estimate and the estimation error
z5(£) = 25(€) + €5(6)
such that the performance output can equally be given by
2§(€) = G2 25(8) + Gawef(§) + Gauug(§) + G2uwi(§)-
Because no measurements are available yet, it follows that
(&) =0.
It is then immediate that the control error in the performance output is given by
ZS(E) = (Gzz + quKvae)C(c)(S) + (sz + quKvaw)w(c)(g)
The variance matrix of this performance output is given as

Ez5(6)25(6)T = ( Gao + G2uKoGre Gaw + GauKyGow ) X

E( 68(6) ) ( 68(6) )T( Gza:+quK'que sz"l'GlUKVG’UW )T

w§(¢) wg(£)
Po 0 T
= ( Gza: + quKvGue sz + quKuG'uw ) O W ( L )
which directly gives a factor that depends on the controller K, in an affine and hence
convex way. O

The importance of theorem 16 is that CLMPC is also rendered convex using inno-
vations feedback, however, this latter solution has the additional desirable property
that the solution has an observer structure, which is important in deriving the re-
ceding horizon implementation.

Remark 17 In the case that the state estimate is non-zero we cannot discard it.
As will be shown in Chapter 7, we must in that case include a state feedback term
in the input as

ug(§) = Log + Ko Guegj(§) + KyGouwwi(§)

where Ly € R"+«X"=_ Then the covariance matrix Z must be computed on the basis
of the following representation of the performance output

28(5) = (Gz:c + quLO)jo(E) + (Gza: + quKvae)eS(g) + (Gz'w + quKquw)WS(f)

which is a little more involved since the joint covariance matrix of &f,ef(€), w§(€)
must then be computed. Note however that this still produces a convex optimization
problem such that all conclusions carry over to the more general case. a
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4.5.3 Optimality of the innovations feedback approach

Switching from output feedback to innovations feedback enforces an observer based-
structure in the solution, and no performance is lost in doing so because every
controller that is found via output feedback can also be constructed from innovations
feedback. To show this, we return to the definition of the innovation sequence for
the variational system

v (€) = yi(§) — g (&) (4.43)
The observer system lifted over a future time horizon is given by
£5(8) I 0 o e 0 ug(§)
#(0) o | B, O - 0 || u
: i @)+ | : D : +
#5,(6) 7,0 ®..Bo @781 - O up(€)
o 0 e 0 ¥6(8)
N (0] - 0 ys§(€
Y . o i© (4.44)
\ 2gMo 23N - 0 )\ ()

where the transition matrix ®;, ; for the observer system mapping &; to 2 is given
for k > j by

k= Ak—1Af_o A5, @5, =1, where Af = Ay — NiCh.

The estimated outputs in (4.43) follow immediately from (4.44) by multiplying the
a priori state estimate with the sequence {Ck}

?)T(E) C’1 e13,0 we ClBO ) .-« 0 uiz(g)
. = . 370(5) + : . . . .
y’\rcz (5) qu)i’o qu),ileg qu);zBl o O ua(g)
9 9 AV
N - ye(€
+ : L it (4.45)
Cn‘I’z,lNO Co®p N1 - O ye(€)

Then, subtraction of the estimated output process (4.45) from the output process
y(£) leads to the alternative expression, (compare to (4.40)), for the innovations
sequence v(£). The lifted form is given by

V5(8) = Gual§(€) + Guuttg(§) + Guyyi(€) (4.46)
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where the individual transfer matrices are given by

Co 0] 0 - 0O
Co®% C1Bo 0 . 0
Gv:r, = - N Gvu = - . . . . (447)
CHQ%‘O C’n@%,lBO Cn(pfl,zBl tee 0
I 0] -ee O
—C1 Ny 1 .- O
Guy=| . . N (4.48)
_C’HQZ,INO _CRQZ,2N1 cer I

This brings us to the following simple observation on optimality of the structural
choice of feedback of the innovations sequence.

Theorem 18 For any output feedback controller
ug(§) = Kyy5(8)

there exists an equivalent innovations feedback controller
ug(§) = Kuvi(€)

and the converse also holds true.
Proof. The important observation is that the system transfer matrix

Guy

in (4.48) is invertible due to the lower block triangular structure and the identity
matrices on the block-diagonal. Fix any controller K, then from equation (4.46) it
follows after some manipulation

V5(6) = (I = GouKo) T Guy¥5(6)
Hence, the equivalent feedback is obtained by using the output feedback controller
Ky = Ky(I = GuuKy) ' Goy (4.49)

where (I —G,,, K)~! is guaranteed to be invertible. Conversely, fix any controller Ky,
then by comparable manipulations of (4.46) it follows that an equivalent feedback
is obtained by using the innovations feedback

Ky = Ky(Goy + GouKy) ™! (4.50)

where the inverse (Gyy + Gy Ky) ™! is also guaranteed to exist. O
From theorem 18, it follows that the output feedback controller can be interchanged
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with the innovations feedback controller using equations (4.49) or (4.50). The key
point is that the measured output sequence and the innovations sequence carry the
same information since either sequence can be constructed from the other as long
as all elements are stored (observe the subscript 0 on the signals). The continuation
of the solution in a receding horizon fashion is another matter that is discussed in
chapter 7.

Remark 19 Recursive disturbance models in estimation. The recursive procedure
to construct the observer implies that the disturbance models, as discussed in section
3.3.1, need to be in recursive format as well. We shall typically be concerned with
bias or persistent disturbance models that are modelled recursively by

di+1(8) = di(§), do(§) =&, wi(§) = d(€) (4.51)

with uncertain initial condition. The state-space is expanded to include the addi-
tional dynamics governed by the state vector dj

6 = (7468 (4.52)

Then, an observer is constructed for this augmented system with state vector % to
find the innovations sequence. O

4.6 The LTV approach to nonlinear dynamic optimization

The derivations of the closed-loop properties are all based on linear time-varying
dynamics. In this section, it is illustrated how the techniques are used for nonlinear
systems. The philosophy is simple, namely to apply the tools developed here directly
to smooth nonlinear systems. This approach is justified by stressing that feedback
has a linearizing effect, as it forces the system to stay close to the reference trajec-
tories (that do satisfy the nonlinear model equations), such that the LTV models
remain valid. The nonlinear process model itself is however still used for integration
of the model equations in open-loop prediction corresponding of the feedforward
control action and to construct the LTV models for feedback control along these
predicted trajectories.

4.6.1 The basic sequential optimization algorithm

The basic algorithm for sequential optimization that is used in this thesis is based
on linearization of the optimization problem to find search directions. There are
several possible extensions to this straightforward approach for improving on opti-
mality, accuracy and rate of convergence, but such inquiries fall outside the scope
of this thesis. In principle, our approach will be based on sequential quadratic pro-
gramming when it comes to optimizing nonlinear systems, but we will ignore the
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second order derivatives in the system dynamics. Luenberger (1973) has been used
as basic reference on general nonlinear optimization.

Consider a nonlinear optimization problem with twice differentiable real valued func-
tions f:R" =R, g;: R®" > Rand h;: R" - R

(NLP) min f(z)
x

hi(x)=0,i=1,...,p

g;() <0, j=1,...,m.

Given an initial guess z;, one solves the linearized version of (NLP)

(LNLP) min  Of(z;)d; + %d;‘rBldl
d
hi(z)) + Oh;(z))d; =0, i=1,...,p
g;j(z1) + 0g;(z1)d; <0, j=1,...,m.

for some properly chosen B; and we update the initial guess with
Ty =X+ di.

Define the Lagrangian corresponding to (NLP) as

p m
Lz, p, ) = f(z) + > pihs(@) + Y X;95(x)
i=1 j=1
where ;4 € R? and A € R™ are the Lagrange multipliers. The matrix B; in (LNLP)
is often set equal to the Hessian of the Lagrangian or an approximation thereof, that
is » m
By = 82L(z1, i, Ni) = 8 f (1) + Y m,i0ha(z) + Y M 50%g5(x)
i=1 j=1
where the Lagrange multipliers are set to the Lagrange multipliers of (LNLP). In
the basic algorithm used in this thesis we simply set

B, = 3% f(x)).
We motivate this by the fact that in our setup the functions g; are linear such that
d%gi(z) =0

while the equality constraints consist of the nonlinear dynamics for which we will
assume that the second-order effects do not dominate the solution of (LNLP). It is
emphasized that there is a clear opportunity for improvement here, but these im-
provements fall outside our scope. Summarizing, we will solve (NLP) by sequentially
solving the linearized problem

(LNLP) min of (x)d; + %leazf(ml)dl
d;
hi(x) + Ohi(z))dy =0, i =1,...,p
gi(x1) +0gj(z)dy <0, j=1,...,m.
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Note that the closed-loop MPC problem is actually a second-order cone problem in
which one must be careful in using derivatives. The general problem is of then of
the form

(NLP) min f(x)
x
hi(z) =0, i =1,.
g;(z) <0, j=1,...
Ile+b||<pr+qg,J—1

and (LNLP) is then defined as

1
(LNLP) min Of (x)d; + 5d,T O* f(z))d;
dy
hi(zy) + Ohi(x))d; =0, i=1,...,p
gj(:cl) + agj(.’l,'l)dl < 0, ] = 1, ce.,m
|Ajzi+ Ajdi + bsl| < play+pFdi+ g5, j=1,....,m

Remark 20 Consider the dynamic optimization problem

N
(DOP) i IeniﬁN éJk(xk)
h(z)=0
g(z) <0

where z is a discrete time signal, N is the length of the horizon and h(z) = 0
represents the constraint imposed by the discretized dynamics. If N is too large to
handle in a single optimization, we solve this problem in a receding horizon or sliding
window fashion using a reduced problem defined over a shorter horizon n < N.
Suppose we are given an initial solution z;,; for the time instances i = k,...,k + n.
Then solve the linearized problem

k+n
(LDOP), min > 0Ji(win)dig + d 102 Ji(i0)ds g
deR" imk

hz(.’l)g) + ahl(l‘[)dl =0
gi(z1) + Ogi(z1)dy < 0

where hy, g;, z; are the restrictions of A, g, z to the smaller horizon. Then we use the
update law

Thyid4l = Thrs 1+ dig, i=1,...,n

and shift the time horizon by one sample. O

Remark 21 In dynamic optimization with quadratic weighting matrices one often
encounters objectives of the type

f(@) =2(0)"Qz(w), (W) =h(u), Q=0.
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Then, since we assume that the second-order terms in the dynamics h are not dom-
inating the solution to (LNLP) it follows that the update

=W+
leads to the approximate update
Zir1 ~ 7 + Gy, Gpy = 0h(w).
It is immediate that the Hessian of the objective is approximately equal to
O f(1) ~ GT,QG.,

which is quite an accurate guess (accurate up to first order) and it could even be
used as initial guess in more profound quasi-Newton methods to update B;. d

4.6.2 Application to the closed-loop MPC problem

Consider the smooth nonlinear dynamical system as discussed earlier in Section 3.2
0= f(%,2,9,4,9,d), _ %(0) =%
§=C%z+ Clv+ D¥u+ DY¥w + Did
z=C%%+ CY5 + D*a+ D¥w + D4d

for which we want to solve a nonlinear dynamic optimization problem

. T 7.
mnin Jo c'Zrdt
s.t. 0= f(z",z",v",a",a"), Z"(0) = T

g =Cyz" + Cyv" + Dyu” + Dyjw"
' =C%z" + Cv" + D" + DYw"
(NDOP) vi+hfz(te) <g;, j=1,...,m, (4.53)
/BT Z(K)h; < v; j=1,...,m
Z=GEPGET + GE,WGK,™
GK .= Gp + G K(I — Gy K)1Gys
GK =G,y +GuK(I - GuK) 'Gyy
Notice that we already incorporate the discrete time linear dynamics to compute
the covariance matrix Z. We do so from the outset to avoid having to compute the

actual covariance matrix Z from the nonlinear dynamic system. It is important to
note that the covariance matrix in (NDOP) is computed using the following data

Z = Ez°(6)z°(¢)"

P =Ez§(&)§(€)”  (fixed)

W = Ew*(§)we(¢)" (fixed)

ye() = Gym-"*'(c)(g) + Gyuuc(g) + Gywwc(g)
2°(€) = Gooz§(€) + Gou®(€) + Gouww*(€)
ue(€) = Ky*°(¢)
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Hence, although the problem formulation contains stochastic elements, the actual
optimization is well defined in the sense that the actual realizations of the stochastic
processes that are involved are unimportant for the solution of the feedfoward trajec-
tory u” and feedback controller K. Secondly, we do not enforce the path constraints
on each time instant ¢t in the interval [0, T}, instead we will enforce them on the sam-
ple time instances ty = to +kTs, k =1,...,n only where nT; = T. A similar trick
is applied to the objective which is replaced by a Riemann sum. For the coexistence
of the discrete time and continuous time system, introduce the discretization of the
signals

z°(t, &) = 2(t,§) — 7/ (1),
ﬂc(k7§) = ’L_L(k,g) - ﬁ;‘(k)!
F°(tk, &) == 9(tk, &) — 7 (te)

where Z(¢, £) is a continuous time stochastic process, §(tx, £) is a sampled continuous
time stochastic process, and u(k,&) is a discrete time process applied to the plant
using a zero-order-hold sampling device.

Suppose we have an initial guess for the reference trajectories given in the [*h itera-
tion of some dynamic optimization algorithm that satisfies the nonlinear dynamics

0= f(3], 2,9, @, @), #(0) = 2,
gl = Cyai + Cyuy + Dyuy + Dywy (4.54)
z[ = C2x] + CYo] + D2uj + DY wy

The LTV feedback law is then used to control the error between the actual trajecto-
ries (Z(£), §(€)) and the reference (Z", §") after direct injection of the feedforward ")
(recall the original control architecture discussed in (Athans, 1971)). Let us stack
all signals as before and analyze the situation from a nonlinear programming per-
spective. Image that in the I*} iteration of some sequential optimization algorithm
iterating on problem (NDOP) the solutions

== =T o7 =T
4, W, Y, 2%

for the reference signals of the generalized plant have been found. We seek updates
on the trajectories to find the next improved trajectory one iteration later. For the
input this leads to the update law

7 =T T
0 =10, +u

where u” is the update computed via the (sub)optimization in the sequential opti-
mization algorithm and as before we are given the update on the reference signal
w”. In many cases, the update w” is zero, but it is kept here for generality. For
these updates, we seek trajectories =", v", y", 2" satisfying the linearized dynamics

0= 0:f|; 2" + Oz fl, 2" + Os f|,v" + Oaf|,u” +0afl,w", =7(0) =xp
y" = Cyz" + Cyv" + Dyu™ + Dyw"
2T =C%x" + CJv" + D¥u" + D¥w"
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where
a*fll = a*f("ilraq_);‘vﬁ;’wlr)'

As mentioned above, we discretize the problem formulation and only consider the
system on the sample times. To do so, we compute the discrete time approximation
as discussed in Section 3.2.2 via

¥ = Gy + Gy + Gy W’
z" = G2y + Gt + GoyW'.

Then, this leads to the first order approximations of the updates on the outputs

Vi1 =¥ +y (4.55)
Zi 7 +2" (4.56)

To compute these updates, we linearize the nonlinear optimization problem (4.53)
to arrive at the following linearized dynamic optimization problem

3 n T,r
wreRM K EKo To Xk € %
s.t. Y = Gyaxg + Gpat” + Gy W’
2" = Gpay + Gruu” + GoywW”
vi+hlz" < g; — hlz] i=1,...,m

LDOP
¢ ) ’I‘”( Gﬁ{sz GﬁvFW )Thjuzst/j i=lL....,m
Z=GKEPGKT + GK wGK T
GE = Gp + G K(I — GyuK) Gy
GE, =G+ G K(I — Gy K) Gy
(4.57)

Once this subproblem is solved, we can update the outputs via equations (4.56)
and (4.55). No sophisticated update mechanism are pursued at this point, but one
can image more elaborated schemes including line searches and checks on actual
optimality.

4.7 A distillation column under stochastic disturbances

The second example is a binary distillation column, sketched in figure 4.12, which is a
small variation on the distillation example in (Ingham et al., 1994). The column has
twenty trays, however, note that the number of states is irrelevant for the complexity
of the closed-loop model predictive control problem. The complexity is dominated
by the number of inputs, outputs, constraints and the horizon length. The model
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Performance outputs
21 c1 Top purity
29 cN Bottom impurity

Measured outputs

% c1 Top purity
— 1 £ D, e y2 cn  Bottom impurity
— Inputs
Fiep o uy L Reflux flow
> — uy Vv Boil-up rate
— Disturbances
—— dy F Feed flow
-1 v dy cE Feed composition
wy — Measurement noise
B, ey Miscellaneous

- D Distillate flow
— L Reflux flow
- B Bottom flow

Figure 4.12: Binary distillation example for load-change scenario

equations are given by

Mcéy = Vwva—(L+ D)o
Mé = L(Cl - C-2) + V(Ug - ’U2)
Ménf = Ll(cnf—l —Cnf)+V1(’Unf+1 —Unf)+

qF(CF _Cnf)+(1_Q)F(UF_Uﬂf)

Mgé, = Licp — Ben, — Vv,

M denotes the hold-up on the plates, Mg, Mc the hold-up in the reboiler and
condensor respectively, V, L the vapor and liquid flows in the enriching section, Vi, Ly
the vapor and liquid flows in the stripping section, D, B the product and bottom
flows respectively, ny denotes the feed tray. The fraction of the light component in
the vapor phase v to the fraction of the light component in the liquid phase ¢ by
thermodynamic equilibrium

wled) = ¢ - (4.58)

1+ (a - l)Ci)
The stationary mass balance is given by
D=V-L W=L+F-V, V=V+(1-¢qF, L =L+gF

where q is the thermal quality of the feed. It is customary to control the reflux-ratio
instead of the reflux flow, hence

L R 1
_— = ———— D:_ .
R=p5=Ll=g7" Rr1’
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The model parameters are given by F = 100,R =2, =2.2,V; = 140,¢ =09,n =
20,n¢ = 10, M = 2, Mg = 5. The disturbance model is given by

TEg = —Td+ W1, ¢=¢qo+Td

where 7 = 1.10%, and qo is the nominal value of g. This closely approximates a
drifting disturbance with the frequency content of step shaped disturbance.

4.7.1 The control problem

The column is in some arbitrary initial condition and we seek to maximize the
product flow D. In terms of the generalized plant setting, define the performance
output 2%, the control inputs u, the measured outputs yx and the disturbance inputs
Wg as

Z,}, = cl(tk)7 zl% = D(tk)a Zl% = czo(tk)7 Zl% = B(tk)7 ZI? = ullcv zlfc5 = Uz,
ul = Vi, u? = Ry, yi = ' (te) + wi, y2 = *(tx) + w
Both the control and disturbance inputs are assumed to be generated by a zero-

order hold sampling device, while the outputs are assumed to be sampled at the
time instances t;. The covariance matrix of the disturbances is given by

Wi = diag(1073, 2.1072,2.1073), P, = diag(1.107%z,,,1.107?)

where x,, is the steady-state of the process (excluding the disturbance state). The
constraints on the performance outputs are given by a set of upper and lower bounds
210 £ 2 < zyp Vk where

210 = (0.95,20,0.01,0,100,1),  24p = (1,100, 0.06, 200, 200, 4).

The constraint matrix H and vector of upper bounds g are given by

H=(1)0=(22)

After generating the lifted systems Gz, G w, Goz, Gow, Guz, Guw in the observer
format along the initial reference trajectory defined by zy, Gif, Wi one seeks the op-
timal update u” on this control trajectory such that after optimization the reference
trajectory is given as

4] =g +u”

and the controller u® = Kv°. This brings us to the (single stage) closed-loop MPC
problem for the column

(CP) min Yiaco STE(K) + 27 (k)
uweR"™ veR™" KeK
rv; + h}"u’" <gj— hfig
z" = G u”
K= ZiZjZI EiK,-jEJT
"h;r ( GuFp GiwFw ) + thzuK ( Gu:Fp GuuFw ) “ <vj
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where Fp, Fy, are the factors of Py, W respectively. The objective vector is given
byfT=(0 -1 0 O).

4.7.2 The closed-loop results

The result of the optimization problem is plotted in figure 4.13. In each of the plots
one of the performance outputs z; is plotted over the full horizon. The feedforward
exploits the relatively high top purity during the initial phase to generate a high
product flow. The vapor flow is fully used only during the first sample and is im-
mediately reduced in the second sample to avoid violation of the bottom impurity
constraint. At the same time, the reflux ratio is kept at its lowest possible level
(active constraint) for as long as possible without the top-purity violating its spec-
ification. Once the top purity and bottom impurity are at their constraints, the
reflux ratio is turned up, and the boil-up rate down to steady-state operation level,
D = 52. No more production is possible with the limitations on the specs and the
fixed feed.

The action of the feedback controller is represented via the confidence intervals in
the plots. The error bars represent the 95% certainty intervals, which give a visual
representation of the envelopes of most likely trajectories when applying the closed-
loop control law K. Notice that contrary to standard MPC, the future inputs are
also uncertain. This variance follows from the feedback of the measured outputs.
To visualize the effect of feedback control in terms of system trajectories 100 open-
and closed-loop simulations have been made. The open-loop results are plotted in
figure 4.14. It is clear that in the open-loop scenario the constraints both on the top
purity and bottom impurity are grossly violated. The closed-loop results are plotted
in figure 4.15 and then the realizations precisely lie within the feasible region as
predicted by the confidence intervals.

4.8 Chapter summary

In this chapter closed-loop model predictive control was introduced. Closed-loop
MPC is a technique in which feedforward control and feedback control are opti-
mized simultaneously in a variational or delta-mode control structure. Starting
from the generalized plant framework, a controller was introduced that maximizes
the process profit rate by minimizing the back-off to the constraints. The direct
formulation of this control problem is non-convex, but it can be rendered convex by
using either the Q-parameterization as in Internal Model Control or via an observer-
based innovations feedback controller as in the Youla-Kuéera parameterization of the
closed-loop. This allows to efficiently solve CLMPC for its global optimum by using
modern interior point primal dual algorithms. Sequential application of this convex
sub-optimization problem is used to control nonlinear dynamical systems. Two small
control examples were given to visualize the control and optimization techniques.
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top purity distillate flow

0.97

0.96

0.95

1] 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
bottom impurity bottom flow
0.03 T - .

0.025
0.02

0.015 ........

0.01 : : : : ‘
0 0.2 04 0.6 0. 1 0 0.2 0.4 06 0.8 1
boil-up (vapour flow) reflux flow
180 N N v

160

140

0 02 04 06 08 1 0 02 04 06 08 1
Figure 4.13: Optimal transition of column to new set-point. Solid-lines represent the

reference feedforward trajectory. Error-bars represent uncertainty in the transition
in closed-loop.
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top purity
0.97
0.96
0.95
0.94 .
0 0.2 04 0.6 0.8 1
bottom impurity
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0.02}1\"
0.015
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0.005 -
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distillate flow

0.2 0.4 0.6 08 1
bottom flow

0.2 0.4 0.6 0.8 1
reflux flow

0

0.2 0.4 0.6 0.8 1

Figure 4.14: 100 open-loop realizations.
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top purity distillate flow

0.97

0.96["

0.95 - . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

bottom impurity bottom flow
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0.02

0.015
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Figure 4.15: 100 closed-loop realizations.
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5 Inequality Constrained
Linear-Quadratic-Gaussian Control

The main contribution of this chapter is to define an inequality constrained finite
horizon Linear-Quadratic-Gaussian (LQG) problem as a computationally cheap al-
ternative to closed-loop MPC. As a by-product, it will be shown that the finite horizon
LQG problem is partially dual to the closed-loop MPC problem. This provides new
useful insights that can be exploited in numerical algorithms and is crucial in theo-
retical advances as well.

5.1 Introduction

The use of Kronecker algebra has the serious drawback that the dimension of the
matrices involved in multiplication with the Youla parameter Q can become quite
large, especially for real process systems which may have quite a number of inputs
and outputs. As a result, building the problem may take quite some calculation time
already, not to mention a possible huge computational burden in actually solving
the problem. Furthermore, each second-order cone constraint

rllh] So + k] S$1QS2|| + hiz < g;

introduces a vector valued Lagrange multiplier. A large number of constraints give
rise to many of these Lagrange multiplier vectors blowing up the dimension of the
optimization problem in primal-dual algorithms. Despite the efficiency of current
convex programming algorithms, even more efficient ways of calculating the solution
must be developed to deal with the possibly large dynamical process systems. Two
intuitive ideas are under consideration. The first idea is to reduce the number of
constraints in the problem by estimating the number of active constraints in each
iteration; another idea is to solve a suboptimal problem that is intimately related to
the original problem. As it turns out, the finite horizon LQG problem (FHLQG) is
a promising candidate for both ideas.
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The LQG problem and solution are well known for linear systems, which can be
exploited to derive properties of the CLMPC solution. The relation to the problem
at hand clearly is the class of Gaussian disturbances and the observer structure of
the LQG controller if the innovations approach in the solution of CLMPC is used.
This motivates to investigate whether FHLQG control can be used to approximate
the closed-loop MPC problem. The first step in this investigation is to derive the
LQG solution directly using a lifted systems approach to finite horizon control. This
idea is not new in literature, however, contrary to the existing contributions on
finite horizon LQG by Furuta et al.(1993,1994,1995), we do not seek to provide an
alternative derivation of the recursive Riccati/state-feedback solution, but instead
we seek to compute the optimal output feedback controller K directly from the
objective function and lifted system dynamics. Qur approach leads via the optimality
conditions to an alternative numerical solution and allows us to choose the quadratic
weighting matrices corresponding to the CLMPC problem.

5.2 From finite horizon quadratic control to CLMPC

To understand the differences and interrelations between open- and closed-loop
MPC, the Linear Quadratic Regulator (LQR) and the Linear Quadratic Gaussian
(LQG) controller, the LQR and LQG problems are briefly discussed in the general-
ized plant set-up below.

5.2.1 The finite horizon Linear Quadratic Regulator

The LQR problem is a deterministic regulation problem that provides the optimal
control sequence to steer the dynamic system from an arbitrary initial condition to
the origin. Given the dynamics

z = G,z10 + G.uu

and an initial condition zg, the LQR problems amounts to solving the following
optimization problem

(FHLQR) min (Sz — s)TR(Sz — s) (5.1)

where R is some positive definite matrix, S is a data matrix and s is a data vector
providing flexibility in modelling quadratic objective functions in the generalized
plant framework.

As an example, consider a tracking problem in which the output y of some dynamical
system must track some desired reference trajectory y”. To this end, the objective
function

(y =y Ry(y -¥")
is minimized. To avoid high frequent behavior of the inputs u, an additional penalty
is put on the rate of change of u, a common design approach in practical MPC
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applications (recall the discussion in Chapter 3). The use of relative weights provides
the controller with integral action, since it allows the inputs to drift freely from any
reference signal u” such that y — y” — 0. To be specific, the term

(Syu — su)TRu(Suu — S4)

is added to the objective function, where R, is any positive definite penalty matrix
for the rate of change of the inputs. It is often desirable to define weights on the rate
of change of the inputs instead of the absolute values of the inputs. It is not difficult
to see that S, and s, can be chosen to include such a scenario. Summarizing, let
the performance outputs z contain (y,u) again, then with

[y (R, O (I O |y
z“(u)’ R—(o Ru)’ SZ‘(O s, ) == s

the (FHLQR) (5.1) is obtained.

5.2.2 A lifted perspective on the LQG problem

A direct extension of the (FHLQR) problem is obtained by addition of stochastic
disturbances in the form of process and measurement noise, which brings us one step
closer to closed-loop MPC problem. As before, the measured outputs and controlled
variables are given by the following algebraic representation

¥(€) = Gyamo(§) + Gyuu(é) + Gyww(§)
z(§) = Gozxo(€) + Gauu(é) + Gruw(§) (5.2)

where all variables are now stochastic processes. Suppose we are given some reference
trajectories y” and z” and suppose we are also given an initial condition z} which
is an estimate of the state. The same quadratic form of the objective function can
be used by optimizing the mathematical expectation

E(S2(&) — s)TR(S=(€) — 5).

We adopt the following strategy to find a control sequence to minimize this objective.
Imagine the tracking error build up as

YO =y —y" = (7() —¥") + (¥ — y")
2°(€) = 2(€) — " = (a() - ) + (@ — 27)

containing a deterministic part z? — z” which we will reduce by feedforward and a,
stochastic part z(£) — z” which we will reduce with feedback. The predictions are
determined by the dynamics

Y? = Gyl + Gyt + Gy w?
2P = Gz + GouP + Gy WP
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and w? is a prediction of the future disturbances. Clearly, z? — z" is a deterministic
quantity and can be minimized by standard open-loop dynamic optimization. The
effect of the disturbance will be reduced with a a feedback controller K € Kj via
the feedback law

u(§) — v’ = K(y(§) - y")- (5.3)

Note that the difference to the closed-loop MPC problem is that the feedback con-
troller is defined on the future output prediction error y(¢) — y? instead of the
future tracking error y(¢) —y™ (the difference between reference and actual output).
Thus the controller is designed to suppress the unknown disturbances while the
newly introduced predictions uP,y? are used to track any desired reference u”,y"
via a feedforward optimization. The numerical values of uP,y? are related to the
expected value (as in standard open-loop MPC) via

Eu(§) =u?, Ey(§)=y" (5.4)

By combining equations (5.2),(5.3), (5.4) and with the aid of the Youla parameter
@ we arrive at

Z(g) —zf = (Gz:c + quQGyg;)(.T()(f) - 1'1(;) + (sz + quQGyUJ)(w(E) - wp)‘
With these definitions, we can define the following optimization problem

(FHLQG) milé2 E(Sz(¢) — s)TR(Sz(¢) — s)
u?,
zP = Gzzxg + Gauu? + szwp
2(€) — 2° = (Gzz + GuQGyz)(o(§) — x5)+
(sz + quQva)(W(ﬁ) - wp)_

To evaluate the objective function, we expand the quadratic term
E(Sz® + S(z(¢) — 2°) — s)T R(Sz” + S(z(€) — z°) — 5) = (5.5)
E(S(2(€) — 2z°))T R((Sz(€) - 27)) + 2(S2° — 5)T RSE(2(£) — 2°) + (S2” — s) " R(Sz" — s).
and the trivial fact E(z(£) — 2?) = 0 from (5.4) implies that
(SzP — s)TRSE(z(€) —2°) =0
drops out of the equation (5.5) and therefore the objective function simplifies to
E(S(a(¢) — 2°))T R(S(2(€) — 27)) + (S2¥ — 5)T R(S2” ~ )

and as a result, it splits up into two parts 1) a variance part that depends on the
controller Q only and 2) a deterministic part which depends on the control signal u?
only. As a consequence, the FHLQG problem is split into a finite horizon minimal
variance problem and a FHLQR problem

min  E(S(a() - 2)TR(S(a(€) ~2) + min, (52" —s)TR(S5" ~ s).
(5.6)
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which can be solved independently.

The second problem is equivalent to the FHLQR problem discussed in the previous
subsection which has the desirable property that it admits an open-loop as well as
a closed-loop state-feedback solution. The important property of the minimal vari-
ance solution is that the optimal controller @ has an internal observer/state-feedback
structure (separation property), where the state-feedback gain is independent of the
stochastic properties of the disturbances (Kwakernaak and Sivan, 1972). It depends
only on the quadratic objective function and it coincides with the deterministic
regulator solution (certainty equivalence property). Furthermore, the average solu-
tion is optimal for the specific sample paths of the stochastic state process as well.
This separation property has led in the model predictive control literature to the
approach in which the minimal variance problem is generally not considered and
only the second deterministic regulation problem is solved under the addition of
inequality constraints

min (SzP — s)TR(SzP - s) (5.7)
u?
zP = sz:tl'zoJ + Gou? + Gy WP
hfzp <gj,j=1...,m

where feedback is obtained by solving a similar problem every time sample. A better
problem formulation is obtained if the disturbances are not discarded but instead
used in the future the prediction. Then, the closed-loop problem is solved once for @
and u” to generate future control moves for the whole horizon at once. The difficulty
that we are facing is that the inequality constraints must be added to the problem
formulation. Solving this problem is discussed next with the introduction of the
constrained finite horizon LQG problem.

5.2.3 Inequality constrained FHLQG control

A logical extension to the finite horizon unconstrained LQR and LQG problems is
a quadratic regulation problem that includes linear inequality constraints on the
process variables

z()eP, P:={(: thng for j=1,...,m}.

One way of doing so is to simply add the inequality constraints to the FHLQG prob-
lem formulation and call this inequality constrained FHLQG. To converge towards
the closed-loop MPC problem, the innovations feedback solution is adopted and we
make the following substitutions

w—u, u—u, Yy, 2’2"

The difference begween the two approaches is that when there is a fixed reference
trajectory u”,y” we use u®P to minimize the error y” — y?, while we can also work
directly with a free (to be optimized) reference trajectory u”,y” in which u?,y?
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become obsolete. From a mathematical point of view, we only need to consider on
approach as the other approach is technically the same. From an application point
of view, one is free to choose either method, and changing from one formulation
to another is an easy task. As in the closed-loop MPC problem, the inequality
constraints are enforced in a probabilistic sense

P{¢€Q : hz(£) < g; for all j} > o

As before, it makes sense to approximate this constraint making use of an ellipsoidal
relaxation (Z can be assumed non-singular)

2"+ & CP, E={¢: (TZ7¢ <r?}
leading to the optimization problem is given by
min E(Sa(€) — s)T R(Sz(€) - s)
u”,
2" = Gprp + Gut” + Gy W'
T /h;—FZhj + hJTzT <gj
Z = Bz°(§)z°(€)"

z(§) = 2" +2°(8)
z°(§) = (Gazx + GouKGuz)z§(§) + (Gow + GruKGow)WE(E)

Unfortunately, this problem is structurally similar to a closed-loop MPC and there-
fore again a second-order cone problem with equal computational complexity. To
reduce this complexity, it makes sense to separate the constrained LQG problem
into a minimum variance controller and an inequality constrained deterministic pre-
diction problem. We start with the computation of the minimal variance controller
and then proceed to the computation of the optimal trajectory using a standard
open-loop MPC, where the back-off to the inequality constraints is determined by
the using the minimum variance feedback controller of the first step. This approach
will be called constrained finite horizon LQG or CFHLQG.

1) Subproblem CFHLQG#. The first step is to solve for given Fp and S the
minimal variance problem

II{nél% tr SFRFngFg‘ST
Fz = ((Gz:c + quKGva:)FP (sz + quKva)FW)

After this problem is solved for the optimal feedback controller K*, the cor-
responding variance matrix Z* follows from Fng and the back-off terms are
found using the ellipsoidal relaxation as

v =1/ KT Z*h;. (5.8)

2) Subproblem CFHLQGZ. In the second step, the optimal transition is com-
puted by solving a deterministic optimization problem. The back-off to the
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constraints follows from (5.8).

min (Sz" — s)TR(Sz" — s)
u'f‘
vi+ Rz <gjj=1,...,m
2" = Gzl + Gouu” + Gy W”

The computational complexity of this approach is relatively small. The subprob-
lem CFHLQG“ is a matrix valued unconstrained least-squares problem that can be
solved efficiently (see the next section). The subproblem CFHLQG? is a quadratic
program that can be solved using a standard QP solver and its computational cost
is equal to that of the standard open-loop MPC. Note that the specific choice of
controller in the first step, may lead to infeasibility of the second optimization prob-
lem is infeasible. In that case one resorts to constraint relaxation or softening as one
would do in the standard MPC case

5.3 The optimality conditions of FHLQG

The additional computational cost to solve the constrained FHLQG problem, on top
of open-loop MPC cost, consists of the numerical effort to solve the matrix valued
least-squares problem. This problem can be solved by a Riccati recursion, but that
would not shed any light on the structural relation to the CLMPC problem. The
relation between FHLQG and CLMPC is obtained via the optimality conditions of
both problems in the lifted domain, where, contrary to Furuta and Wongsaisuwan
(1993,1994,1995), a direct matrix solution is used to compute the controller pa-
rameters. Let R be a symmetric positive definite matrix in the FHLQG objective
function. Then R has a full rank Cholesky factorization FRFZ and the objective
function can be reformulated as

E(z°(¢)T STRS2°(€)) = tr SFrEz°(§)z°(¢)" FL ST
=tr SFRZFEST
= tr SFRFzFLFTST.

Because the tracking error dynamics are given by
2°(€) = (Giz + GeuKGua)aG(€) + (Gaw + Gou K Gow)WE(E),
the factor Fz of Z is given by
Fz = ((Giz + GouKGyp)Fp  (Gow + G.uKGyw)Fw)

where Fp, Fyy are the matrix factors of the variance matrices as before. Hence, the
minimal variance problem is of the structural form

min tr(AXB + C)(AXB + C)T
XeK
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or in Frobenius norm || - ||z notation
min ||[AXB +C|%
XeK

The data matrices A, B, C (not related to the state-space system matrices!) and the
free parameter X are defined as

A= SFpG.. B = (GysFp GyuwFw)
C=SFg(GwFp GuwFw) X=Q

when using the Q-parameterization and as
A= SFRqu B= (GveFP vaFw)
C = SFgr (G:eFp G.wFw) X=K

when using the innovations feedback approach. Note that both approaches are fully
exchangeable at this point. This problem can be solved after vectorization (us-
ing Kronecker algebra) by solving the corresponding normal equations numerically.
Again, this would lead to a very high dimension of the matrices involved and is there-
fore not efficient. This is avoided in a direct solution using matrix manipulations
without any vectorization.

5.3.1 The optimality conditions for unstructured controllers

In the first step to find a solution, the lower-block triangular structure of X is ignored
to arrive at the first-order optimality condition of the minimum variance problem.
The objective function has the following quadratic form

f(X) = tr(AXB + C)(AXB + C)T, f: R0y LR

and for the problem of minimizing f(X) we assume that A has full column rank
and B full row rank. These regularity conditions are not that restrictive in practise.
Then, since f is convex and differentiable we can set its gradient with respect to
X to zero to find the first order necessary and sufficient optimality condition. We
define the (Fréchet) derivative of f as in (Rudin, 1976; Luenberger, 1969). If there
exists a matrix M € R"™«X""y gych that for any perturbation X at X, we have

f(Xo + X) — f(Xo) = (M, X) + o(|| X||r)
then f is differentiable at X and one writes
Ox f(Xo) = M.
The inner product is given by (M, X) = tr MT X. Exploiting the definition we find
F(Xo+ X) =tr(A(Xo + X)B+ C)(A(Xo + X)B+C)T
= tr(AXoB + C + AXB)(AXoB + C + AXB)T
= tr(AXoB + C)(AXoB + C)T + tr(AXB)(AXoB + C)"+
+tr(AXyB + C)(AXB)T + tr AXB(AXB)T
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and hence after rearranging we find
£(Xo+ X) = £(Xo) = tr2(AT(AXoB + C)BT)TX + | AX B2
such that
M =2AT(AX,B + C)BT. (5.9)

In some old papers by Athans and Schweppe (1965) and Geering (1976) M is referred
to as the matriz gradient. The first-order optimality is condition is then formulated
as follows. If for a given X* we have that

(Ox f(X*),X) =0 for all X € R™™uxnmy (5.10)

then, by convexity of f, X* is a global minimizer of f. Condition (5.10) requires
that we must solve the matrix equation

AT(AX*B+C)BT =0

for the unstructured X*. Since the problem is convex in X, the solution to the
first-order optimality necessary condition is sufficient as well for finding the optimal
solution and the solution follows immediately

X*=—(ATA)'ATCcBT(BBT)™!.

The inverses exist due to the rank conditions on the data A, B.

5.3.2 The optimality conditions for structured controllers

The solution for the unstructured controller is unfortunately not very useful since
the controller anticipates future measurements thereby conflicting with physical re-
alizability. In this section the previous analysis is extended to restrict our controllers
to be lower-block triangular. Reconsider the objective function

F(X) =tr(C+ AXB)(C + AXB)T, f iRy R

and the problem of minimizing the f(X) by choosing a lower block triangular matrix
X constructed as

Xo = Z E,;XOUE;I, XOij € R *™y (511)
4
where we use the short hand }°, ; = Y0, Z;zl and ET = (0,...,0,1,0,...,0).

In this case, we seek the partial derivatives of f at X for the structured block
perturbations X;;

X =) EX;E], X;j € R™*", (5.12)
4,J
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Following the same steps as before one finds

f(Xo + X) — f(Xo) = (M, X) + o(| X||F)
= (M, Z E;Xi;E]) +o(| X))
= D (Mij, Xij) + o(| X )
0

where we have introduced
M;; = Ef ME,

and used the relations
(M,E;X;;E]) = tt MTE; X;;E] = tr E] MTE;dX;;
= tr(E] ME;)T Xi; = (Ef ME;, X;;) = (Mij, Xi;).
The partial derivatives of f at X, are then given by
Ox,; f(Xo) = M;;
and related to the derivative of f at Xy via
0x,,f(Xo) = M;; = El ME; = E] 9x f(Xo)E;.
Reusing our formula (5.9) for M we find for the partial derivatives
M;; = 2ETAT(A)_E.X;;E] B+ C)BTE;
4
and the first order optimality condition is then given as follows. If a structured
solution X* satisfies

EfAT(AY EXEFB+C)BTE;=0 for1<i<j<n,

%,J
then it is a global minimizer of f. These equations form a coupled set of linear
equations that has a more compact representation by observing that the condition
is equivalent to requiring that the matrix
AT(A) EX}E])B+C)B”

ij 45
i,j

is zero only on the lower block triangular. If we introduce the matrix A with an

upper-block triangular form that is zero on the diagonal we can compactly write the

first order optimality condition as follows. If there exists a A of the form

n
EiAj;ET (5.13)
+1
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such that
ATAX*BBT + ATCBT = A, (5.14)

then X* is a global minimizer of f. Summarizing, to find the solution to the op-
timization problem, the set of equations (5.11),(5.13) and (5.14) need to be solved
simultaneously.

5.3.3 A Cholesky solution

In this section we will solve equations (5.11),(5.13) and (5.14) for the structured
controller X and the Lagrange multiplier A. The crucial property of the problem
is that X is lower and A is upper block triangular, which suggest the following
decoupling procedure. Compute the following Cholesky factorizations, (Horn and
Johnson, 1999; Golub and van Loan, 1996), of the left and right factors of X

UUT = AT A
and
LL" = BBT

where U is upper triangular and L is lower triangular. Both factors can be obtained
using the same algorithm by proper permutation. Since A is assumed to have full
column rank and B has full row rank, these Cholesky factors exist and they are
unique. As a consequence we arrive at

UUTXLLT + ATCBT = A.

Both U and L are nonsingular and their inverses, which are again upper and lower
triangular respectively, can efficiently be computed. This can be exploited as follows.
Define the matrix

C:=-U"'ATCcBTL T

and partition C in a lower block triangular matrix C! and a upper block triangular

matrix C* ]
n 1
C'=>"N " EICE;
i=1 j=1
and .
C =Y > EICE;.
i=1 j=i+1

Notice that these matrices do not have any overlap in their nonzero blocks. Hence,
the optimality condition, (5.14) reduces to

UTXL-UALT = -U'ATCBTL T =C' 4+ C*
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This decomposes the problem into upper and lower triangular algebraic problems
UTXL=C' UL =-C"

The structured solutions for X and A are obtained as
X=UTCL™, A=-UCL"

which are solved recursively for numerical efficiency.

Remark 22 Solution in the case of singular data matrices A limitation of the
above mentioned technique to solve the optimality condition is that A and B must
have full column and full row rank respectively for the (complete) Cholesky factor
to exist. In principle, these conditions are pretty standard in LQG designs where
one needs to solve the estimation and control Riccati equations. Suppose (W, V) are
the process and measurement noise covariance matrices and (Q, R) are the state and
input weights in the quadratic objective. A sufficient condition for the solution to
the Riccati equation to exist is that the measurement noise V' and the input weight R
are both positive definite. If V > 0, then the full row rank condition on B is indeed
satisfied. A similar argument can be uses to guarantee full column rank of A, since
R > 0 implies that the performance channel has a feedtrough vR. However, not
every performance channel z; has a feed-through from the input » and consequently
not every A is of full column rank. Due to the parameter A appearing on the right
hand side of equation (5.14), it is not straightforward to solve the singular case,
hence we turn to regularization methods by a perturbation of the product

ATA el

where € > 0 is some small number to render it positive definite. Note that a
Kronecker solution can always be devised since then the problem is a vector-valued
quadratic program which is easily regularized by augmenting the objective function
without distorting optimality of the original problem. This augmentation in the
matrix case is more involved and the suggestion above is the easy way out, however,
it does distort optimality in the sense that the solution to this new problem is no
longer optimal for the original problem. d

5.4 The optimality conditions of CLMPC

The results of the previous section will now be used in deriving necessary optimality
conditions of the closed-loop MPC problem. Recall that the CLMPC problem was
defined as

(CLMPC) £(z5)

min
ufeR""u veR™, K€K
z{ = Goe2f + Gy + G Wi
vi+hlzg<gj j=1,...,m (5.15)
Z(K)=GEPGK” + GK wGK T

r,/h;frZ(K)hj <vj, j=1,...,m
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Suppose we square the last constraint and assume for ease of presentation that
r = 1 and we discard the dynamics and imagine we search directly over zj. To avoid
confusion, we make the substitution

T
Zy — Pp.

This leads to the following nonlinear optimization problem (NOP) of the form

min f(p)
pER"nP,VERm,XER""“xnn”
T .
(NOP) vithip<g, j=1,....m (5.16)

X=3,,EX;E]
h](AXB+C)AXB+C)Th; <v?, j=1,....,m

where the data matrices are given by

A= qu, B= (G’UGFP vaFW)
C=(CscFp GuFw) X=K

Note that this is a non-convex optimization problem due to the presence of v; and
l/J2 in the inequality constraints. The reason for looking at this formulation of the
CLMPC problem is that one can immediately recognize the quadratic form that
also appears in the FHLQG problem. By exploiting Lagrangian duality we wish to
go from constraints on the variance of the controlled variables to a control problem
with a minimal variance objective for which we known the solution (LQG!). The
Lagrangian function for (NOP) is defined as

L(pa X: v, As )\, 77) = f(p) + Z )‘]h’fp + Z(Ajyj - njl/]z) - Z ngj
j=1 j=1 j=1
+Y n;h] (AXB+ C)(AXB +C)"h; + r AT(Y_ EXyE] — X)
=1 : ' 2y

The Karush-Kuhn-Tucker first-order necessary optimality conditions (Luenberger,
1973) for (NOP) are given as follows. Suppose the solution (p*, X*,vy) is a local
minimizer of (NOP) and at this feasible point a constraint qualification is satisfied.
Then, there exist Lagrange multipliers

AeRY, peRT, Ac R Xy
such that

ap,X,uL(p*,X*,l/*,A, )‘7 77) =0

> XN +hIpt—g;) =0
j=1

> ui(hI (AX*B + C)(AX*B +C)Th; — v}*) = 0.

=1
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By decomposing the first condition into parts for the different optimization variables,
we arrive at the vector/scalar valued gradients

BpL(p*, X*, v*, A, A, ) = +ZA hT = (5.17)

anL(p*;X*, V*)A7’\7"7) = )‘j - 2T]jVj =0.

The first of these two, (5.17), is a typical optimality condition that appears in any
linear programming problem if we use a linear objective function

=0pf(P")

and shows how perturbations in the constraints locally change the objective value.
For the matrix variable X, the gradient matrix of the Lagrangian is again derived
using gradient techniques as in Section 5.3. Because

(A, EiXi;;ET) = tr ATE; X, ET = tr(ET AE;)" X,;; = (E] AE;, X,5)

it follows that the partial derivative of the Lagrangian with respect to X;; is given
by

Ox,; L(p*, X*,v*, A, A\, n) = ETAE;.
Hence, the Lagrangian is stationary with respect to the blocks Xj; if
ETAE; =0, 1<i<j<n

which implies that A must be upper block triangular with zero blocks on the diagonal.
This is compactly represented by the requirement that

A=3 Y EaE
i=1 j=i+1

This is the same condition as was derived in the previous section. The gradient with
respect to X gives

OxL(p*, X*,v*, A\ n) = AT() n;h;h]AX*B+C)BT —A=0.  (5.18)
j=1
This can easily be seen by the following equalities
hT(AXB+C)(AXB+C)Th; = tr AT (AX B+C)(AX B+C)"h; = ||h] AX B+h] C||}%
such that the derivative of this term is given by
(hTA)T(hTAXB + hIC)B" = A"h;h] (AXB + C)B”

the rest follows from linearity.
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Note that (5.18) equals the first-order optimality condition of the previous section.
Since the Lagrange multipliers for the linear inequality constraints are positive or
zero, that is n; > 0 for all j, we can factor the positive semi-definite weighting matrix
obtained by the positive sum of the rows of the constraint matrix

m
R=RT =) n;h;hT = FRFE.
j=1

Notice that as far as variance is concerned, it appears that we have minimized the
objective function

min tr(AXB+C)TR(AXB +C).
which was shown in Section 5.3.1 (where one absorbs the factor of the weight R in
A). This implies that the optimal solution X of the closed-loop MPC problem is
also optimal for some finite horizon LQG problem. The actual objective function
that corresponds to this LQG problem is unknown because the Lagrange multipliers
n; are unknown (if this was not the case, the closed-loop MPC problem could be
solved directly). Nevertheless, this result is very important and will be formalized
in the receding horizon implementation discussed in Chapter 7.

5.5 A heuristic algorithm

The second idea that was mentioned in the introduction of this chapter is to solve
the optimality conditions of the CLMPC problem using a sequence of minimum
variance problems that can each be solved very efficiently although there is no guar-
antee of convergence. Besides the argument that a matrix factorization approach is
computationally much less demanding than a Kronecker algebraic approach, there
is another application of this algorithm. A receding horizon implementation could
be considered online, in which the objective value is iteratively improved at low
computational cost, hence one iterates in time. This approach will not be pursued
in depth, but will be illustrated by means of an example. Consider the following
basic algorithm

1) Set a counter k = 0, set the initial optimal cost yo = oo, fix any forgetting
factor @ € (0, 1) and fix the weighting matrix of the finite horizon LQG problem
to

R = Zn;?hjh}‘
j=1

where n? = 1/y/m. Define n} = 1.

2) Increase the counter k = k + 1.
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3)

5)

Solve the corresponding minimal variance problem

i tr FREzFTFL
€
FZ = ((Gz:c + quXkaz)FP (sz + quXkaw)FW)

using the innovations approach. Suppose this problem has been solved for
the optimal X*, then the optimal variance matrix Zk is also known, and the
back-off terms using the ellipsoidal relaxation are readily computed by

vk =r\/hT Z*h;

Recall the discussion of Constrained Finite Horizon LQG in which the second
step was to compute the optimal feedforward signal for a given feedback con-
troller and hence given back-off’s to the constraints. Given this back-off vector
v*, compute the optimal solution of the dual linear program
n)‘lin Z]mzl(’/]k - gj))‘;'c
AR >0
ET___l h;j )\? +c¢=0

and primal linear program related to the original problem

Y = min cT'z*

z

vk + hTzF < g;

If v < k-1, scale the Lagrange multipliers for practical reasons

<.

nj — vy

)‘k
“k Tl;; if V}c>0
0 if vF=0

and normalize the coefficients

i* =i /|7

to avoid radical changes (ratios can be quite large for some indices). Then,
update the coefficients to the weighting matrix via the rule

nf = an; ™t + (1 - )iy
and set the best value so far

mj=n;, and ¥ =1
If v > k-1 set

nf = anf + (1 - ey~

such that the weighting parameters converge to the last good value n*.
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6) Compute the new weighting matrix as
m
RY =3 njhsh}
j=1

Note again that the coefficients can also be normalized in this step since scaling
does not change the optimal LQG controller.

7) Stop if little progress is made, otherwise continue to step 2.

To illustrate the recursive method, the algorithm has been implemented on the
column example of section 4.7 to solve the optimization problem CO. The result is
plotted in figure 5.1, where the solid line represents the iterative improvement of n*.
The optimum is found after 24 improving steps. The power of such a recursion could
however be increased considerably by utilizing this approach in a receding horizon
fashion.

5.6 Chapter summary

Current state of the art software for solving the closed-loop MPC problem requires
that the optimization problem is vectorized. This blows up the size of the problem
considerably and can prohibit on-line application for systems with many many inputs
and outputs and long prediction horizons. In this chapter an alternative closed-loop
prediction control strategy was developed called constrained finite horizon LQG con-
trol. In the first stage of this approach a sub-optimal feedback controller is designed
that determines the amount of back-off in a subsequent feedforward optimization
problem. The optimality conditions of CLMPC provides the relation between the
two approaches and also reveals how iterative use of CFHLQG can be used to solve
the CLMPC problem.
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Results ot Heuristic iteration

-51 T T T

Figure 5.1: Optimal result for the distillation column. Dashed-dotted line: optimal
value via conic solver, solid line: solution of heuristic iteration.
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6 The Stationary Solution

In this chapter the stationary solution to the closed-loop MPC problem is presented
that solves the problem of finding a linear time invariant controller and an optimal
steady-state operating condition. This controller is chosen to minimize the amount
of back-off to the constraints in directions that are economically attractive.

6.1 Introduction and problem formulation

The time-varying solution presented in the previous chapters allows for transitions
in the state-space for both batch and continuous processes. In the case of continu-
ous processes, the endpoint of such a transition usually is an optimal steady-state
operating point. In this chapter, a method is presented to find these optimal steady-
steady states as well as the feedback controller needed to keep the process safe within
its constraints. In this chapter we will discuss the linear time-invariant only, but
in case we want to find optimal steady states (af, o, wg, T4, Jg, 2) for the original
nonlinear system in which the time derivative is zero z§ =0

0 = £(0, zg, vy, tg, Wg)
Yo = Cyzy + Cy g + Dyig + Dy
Zy = C7 25+ Cy vy + Drug + DYy

the techniques in this chapter must be used iteratively in precisely the same way as
for the time-varying case as was discussed in Section 4.6 where the optimal solution
of the convex LTI problem must be used as an update on the steady state of the
nonlinear system.

@ a+tut, o+, W~ wh 4w
TT=rp+rt gy ty, Fozh4
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Hence, this update is computed on the basis of the linearization of the nonlinear
equations above, that is

0= (91f|0 l'r + 81—,f|0 ’UT + 8,;f|0 u” +31,—,f{0 'LUT
y" = C2a" + C" + Diu” + DPw’
2" =Ciz" +Cv" + Dju" + Djw"
where
6*f|0 = a*f( i'SJ_)E’ ﬂg’wg)'

Upon discretization on the sample times of these dynamics we arrive at the dynamics
given by

ZTr+1(E) A | BY B zk(€)
2k (€) =\ C, 0 D, wi ()
yx(§) c D¥ 0 ug(§)

We suppose that (A, B) is stabilizable and (A,C) is detectable. As usual, any
dynamic disturbance model is assumed to be incorporated in the plant model. Let
ur(€) be a Gaussian stationary reference process with mean 4. The system’s steady-
state response processes xx(£), zx(€) have expectations &, Z which are determined
by

=A%+ B4, 2=C,t+ D,u.

In the stationary case, we require the reference to be in rest, and therefore all
reference signals are assumed to be constant in time. For given constant reference
trajectories

assume that the system is controlled as

( sk+1(6) ) _ ( A. B ) ( sk(§) >+( 0 )
uk(§) C. D. ye(§) ~y" u” )’
In a standard fashion by setting

yE(€) = yr(€) — y" and uk(€) = ug(é) + v

we can clearly describe the controlled system as the interconnection of

Thy1(8) A|B* B 3 (€)
2k (E) = Cz 0 D, Wk (6)
Yk (8) c|Dbv 0 ug(€)

with the LTI controller
K- ( 5k+1(€) ) _ ( Ac B ) ( Sk(g) )
' "2(5) C. D, y;‘;'(f)
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resulting in the closed-loop system

G 7 (©)
sen®) | = (&4 B )
zk(8) oo

where the closed-loop system matrices are given by

Ay B A+BD.C BC. |B*+ BD.D"
( (vcl DCI )= B.C Ac B.D* : (6.1)
el cl C,+D,D.C D,C. I D.D.D¥

If the reference inputs y”, u” are chosen to satisfy, for some not necessarily unique
z", the open-loop equilibrium relations

2" =Azr" +Bu", y =Cz"+Fuw", 2" =C,z"+D,u",

it is easy to see with these formulas that the expectation of the closed-loop state-
process is given by

(,3) = (z",0).

Hence, all possible output expectations 2 equal the reference values z" of the con-
trolled system which are actually parameterized as

Sp={2":3(u",2"), 2" =C,a" + D,u", 2" = Ax" + Bu'} (6.2)

For given reference inputs ", u” we assume (as in the LTV case) that the cost of
the closed-loop steady-state response is measured by some smooth function f of 27,
and for illustrational reasons we restrict f to be linear

f(zr) — CTZT

motivated by the typical objective functions in a chemical plant economy (maximal
feed, minimal utility costs etc.). The reference inputs are chosen to minimize the cost
by off-line optimization. It is emphasized that our controller K and our reference
signal u" are not re-optimized with every new measurement sample. As before, the
output process z(§) should be contained in some polytope with probability larger
than some user-chosen level o

P(z€P)>a where P={(: H'¢ < g}.

Satisfaction of this constraint is certainly influenced by suitable controller choices.
This leads us to the following problem formulation:

Find a stabilizing LTI controller and reference inputs y", u” such that the
stationary output process of the controlled system satisfies P(z € P) > a and c¢T 2"
18 manimized.
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Let us recall that the Gaussian processes (&) and z(€) are fully described by their
means £, 2 and auto-covariance matrices X, Z. Indeed, let

Xi = E(zx(6) — &) (ze(8) — &)

then one immediately obtains the matrix valued dynamical system to propagate the
variance matrices

Xk-+—1 = AchkAz; + BclB::I;
Zy = CchkCZ; + Dchz;

If the closed-loop is striclty stable, p(Ay) < 1, then the matrix state X of this
system converges asymptotically to its equilibrium value X satisfying the Lyapunov
type of equations

X = AuX A% + ByuBY
Z = CyXCY + D4DY. (6.3)

Then, the probability constraint P(z € P) > a is equivalent to the integral con-
straint

! / e 3C-DTZ Dy > g
vV (2m)ndet(Z) Jp

As for the non-stationary case, the goal is thus to shape the variance matrix Z by
control in order to satisfy this bound and to reduce the cost ¢Tz" as far as possible.
It follows that the back-off to the constraints is given by

Vi = T4 / hthJ

With this preparation the following Steady-State Problem, in short SSP can be
formulated
(SSP) : inf cTar
K,X,Z,z" € S,v;
X AchAZ; + BclB£
Z > CuXCY + DD
v; +hiz" <g;

T\/h}‘Zhj < V; V]

Recall that K is any stabilizing controller and that the equilibrium set S™ was defined
in (6.2). Standard matrix perturbation arguments reveal that the matrix equations
(6.3) can be replaced by the matrix inequalities in SSP. Due to the nonlinearities
(in particular the square-root) it is neither clear whether this optimization problem
is convex, nor is it easily seen whether it can be solved by efficient techniques. As
one of the main results in this chapter we reveal how to solve (SSP) by Linear
Matrix Inequality (LMI) techniques, and how to design controllers whose McMillan
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degree is at most as large as that of the system description. Contrary to the LTV
solution, a two-step procedure is needed to find the global optimum. The solution
of the stationary closed-loop MPC problem via the computation of upper and lower
bounds presented in this chapter were obtained in fruitful collaboration with C.W.
Scherer and are in abridged form available in Van Hessem et al. (2001).

6.2 A heuristic iteration

To explain why we need to follow two steps, we first examine a fast heuristic iteration
based on a successive linearization of the constraints. Two constraints of (SSP) are
the matrix inequalities corresponding to the standard Ha-problem. Although these
constraints are nonlinear in the closed-loop Lyapunov matrix X and the controller
parameters, it is known how to linearize them by a suitable transformation (Scherer
et al., 1997). The technical obstruction to apply these techniques directly follows
from the constraints

ry/hT Zh; < v; or equivalently r2hthj <v? (6.4)

since both v; and 1/]2 appear as variables. Let us introduce a heuristic iteration pro-
cedure which shows remarkably good convergence properties at low computational
cost (compared to the full solution that is discussed hereafter). All variables that
are involved in the iteration are labelled with the iteration step k.

6.2.1 An iterative algorithm

Consider the following basic search algorithm.

1) Fix an initial guess v ; as initial back-offs to the constraints. Such values
can be computed by following the subsequent two step procedure: Design an
optimal Hj controller

(H;P) : inf m
K, X, Z,u
X » AchAZ; + Bc[Bg;
Z > CuqXCL + D, DY,
Ej hJTZhj < p

and solve, for the resulting output covariance matrix Zy, the optimization
problem

(LP): ~jter = inf el
2" es,, Vj

vi+hizl <g; j=1,....m

r,/honhj <v; j=1,...,m
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Both problems are solvable without any trouble, and the resulting optimal
parameters Vg ; can serve as initial guesses for the iterative procedure.

2) Given vy j, replace vZ in (6.4) with its linearization at vk, ; to obtain
rzh;‘rZhj < 2 V5 — V,%,j j=1...,m.
The linearization of (SSP) is then given by
(L-SSP),; : inf Tz

K, X,Z,z" € Sp,v;
X = AqX A% + ByBY
Z > CyXCY + Dy DY,
vj+h}1z" <gj j=1,....m
u,f’j + rzhthj <2pv; j=1,...,m

and can be globally solved after nonlinear controller parameter transformation
technique. The solution of (L-SSP); leads to the updates vg4 ;.

Step 2 is iterated until there is no significant improvement of the cost. More con-
cretely, for a user-defined absolute error ¢ > 0 the algorithm is stopped if two
consecutive outcomes satisfy

T2, — T2t <e

Note that by convexity, 7 majorizes its linearization at v, ;. Since vg41,; is feasible
for L-SSP;, this fact implies that it is also feasible for SSP, and thus also for
(L-SSP)i+1. We conclude that the iteration is well-defined, and that the iterates
satisfy

Optimal value of (SSP) < ¢T2f,; < Tz

which guarantees the convergence of the sequence cTz] as k — oo if the original

problem has a bounded solution. Note that this algorithm does not necessarily
converge to the global optimum but it does show good performance in application.

6.2.2 Convex constraints for dynamic output feedback

Output feedback LMI synthesis problems are generally are non-convex problems but
there exist technical procedures by Scherer et al. (1997) and Masubuchi (1998) to
render a large collection of bilinear matrix inequalities (BMI’s) into LMI's. The
L-SSP problem falls in this class, which allows us to globally solve it using these
procedures. The important technicalities involved in the solution are stated below
for direct reference. The standard constraints in Hy control can be written as

T
X >0, X —( A Bc,)(XO (AC‘>>-O

o 1 BT
x 0\ [ ¢ (6:5)
Zj = ( Cay Da, )( o I > < D%i“’, ) = 0.
ct,]
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Note that we are considering a slightly more general setup in the sense that multiple
performance outputs z] are handled. Then we can switch between one multidimen-
sional output 2x(&) or m scalar performance variables

A (€) := h] zx(€) = k] Cowy, + hT D,up = Clay + Diuy

to compute the variance in the direction of the jth constraint. The tools presented
here handle such cases without any problem. These constraints are the Schur comple-
ments (Zhou et al., 1996; Horn and Johnson, 1999) of the block structured matrices
below, such that the constraints (6.5) are equivalent to the constraints

X Ad Bcl A Cc‘.l,j Dcl,j
AT X' O |=o, ch, X' 0 |»~o.
BLI 0O 1 DT 0] 1

cl,j

Then, by introducing of P = X! the constraints can be reformulated to arrive at

P PAcl PBcl zZ Ccl,j Dci,j
ATP P o > 0, ¢, P O > 0, (6.6)
BL,P O I DL, O I

These are the analysis LMI’s for fixed problem data (Aci, Bet, Cety Det) (thus a fixed
controller) that are solved for the variables P,Z. These matrix inequalities are
nonlinear and non-convex in the case of controller synthesis as then the controller
parameters (A, B, Ce, Do) are still to be chosen and products of these parameters
with P are bilinear and therefore non-convex. These inequalities can be rendered
convex via a suitable optimization variable transformation. Partition P and P! as

(Y N L4 (X M
pe(ar V) -(aE V)

in the same block partitioning as the closed-loop system, (6.1), where both X, Y €
S™ (where n is the dimension of the state-space). Next, define the matrices

X T I Y
(e o) m=(o )
Then, PP~! = I implies PII; = II; and hence
X I
P::n{Pnlz(I Y).

Define the transformed system as

(88)=(" 8)-(5 )& 2)(¥% %) oo



which results in the following transformation closed-loop system representation

( Al B ) _ ( O7 PALIL | I PBy )
C; l D; ) \_ Ca;lli | D
AX+BC  A+BDC ’ B + BDD"
A YA+BC | YBY+BDY |. (6.8)
CiX +Di¢ Ci+DiDC| DIDDY

The matrix inequality constraints can then be linearized using the congruence trans-

formations
I, o o\Y/ P PA, PBy mL O O
oI, O ATP P 6] O I, O }|x=o,
o o I BIP © I O O I
T\, ° (6.9)
I 0O O Z Ca; Day I 0 O
O Imn O ct, P O OIm O |>0
0O 0 I DL, o I O 0 I

leading to the so-called synthesis LMI’s
P A B Z; C; Dy
AT P O | >0, CJT P O |>0
BT O I Df o I
which are the original analysis LMI’s after performing the transformations
P—-P, PA,— A, PB,;—B, Cc[,_,' —Cj, De,j — Dj (6.10)
Finally, upon substitution of the calligraphic blocks (6.8), the LMI’s are obtained
X I AX+BC A+BDC B+ BDD¥

x Y A YA+BC YB*+BD¥
*  x X I 0] >0 (6.11)
* % * Y o
*  x * * I
and
Z; CiX+DiC ci+DiDC DiDD¥
* X I 0
. . v 0 =0 (6.12)
* * * I

which are indeed affine in the bold-faced parameters (X,Y, A,B,C, 15) Once the
solution for the variables (X,Y, A B,C, 15) has been obtained, a back transforma-
tion must be performed to obtain the actual controller parameters. Recall that by
definition we have

NMT =1-YX, (6.13)
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and since I — YX > 0, we can find nonsingular factors M, N satisfying (6.13). In-
verse of the transformation (6.7) is simple and the controller parameters are directly
obtained from

Ac B.\_(N YB\ '/ A-YAX B MT o\7! (6.14)
Cc. Do) \ 0O I ¢ D CX I '
The important issue here is that the constraints in the (L-SSP); are convex in

their representations (6.11) and (6.12). This allows to solve (L-SSP); globally for
its optimum, where the optimal controller is then retrieved via (6.14).

6.2.3 Example of heuristic algorithm
To illustrate the algorithm, it is applied to the mechanical system of section 4.4,
(figure 4.8). In the previous example, the transition from the origin towards the

optimal steady-state was computed, but no explicit characterization of the steady-
state itself was given, see figure 4.9. The LTI dynamics of the system are given

by
9756  .0965 | .0316 0 0 |.0489 T
(ﬂ) = —-4825 .9225| 0 0316 0 |.9649 we ).

ve 1 o [ o o0 o1 o

Us

This system is stable with eigenvalues 0.9490 4 0.2141:, observable and controllable.
The performance output contains all inputs and states (as before)

(€)= (zgg) C, = ( : ) and D, = ( 0 ) (6.15)

Any vertical position where the mass has zero velocity is a possible steady state,
hence the set S’ of admissible steady-state cutputs equals

S=mll(I-4 -B)={A(2 0 1) |AeR}.

The objective is to maximize the vertical deflection, for which the following linear
objective is chosen

'=(-10 0).

Further, the certainty level is @ = .97 corresponding to a radius of the confidence
ellipsoid of » = 3. Two controllers with increasingly stringent constraints on the
velocity and on the control input will be computed. For the initial design (subscript
1), it is assumed that the physical limitations on the motion of the mass and the
input signal are given by the vector

¢"=(11 1 1 1e3 1e3)

(thus imposing no active constraint on the applied force). The optimal steady-state
is found at u; = 0.4436, z; = 0.8872, v; = &; = 0. The algorithm converges in four
iterations starting from an optimal Hy controller. The resulting covariance matrix
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first 4 iterations in iteration
T T T

L L L L !
-1 -0.8 -0.6 -04 -02 0 02 04 06 08 1

Figure 6.1: Result of the iterative scheme. Convergence after 4 iterations.

in the state-space is depicted by its 97% confidence ellipsoid in figure 6.1. Due to
the inactive constraints on the inputs, the optimization pushes the ellipsoid against
the position limit at the cost of increased variance in the velocity until ultimately
the velocity constraints saturate. This is the interplay between control design and
optimal set-point. To visualize the design, a simulation has been made showing the
evolution in the time domain. The results are plotted in figure 6.2. In the time
domain, the ellipsoid is indeed filled with dots, each dot represents one time instant.
The position of the mass is located very close to its limiting constraint during the
whole of the operational time. This small design example also reveals how one can
influence the design of the optimal controller and how this can be traded off against
economic benefit. Suppose the engineer is not satisfied with this design because of
possible equipment wear or plant-model mismatch in the high frequency domain,
which would not allow the high frequency content of the actuator force and the
velocity signals and the low signal to noise ratio

3—”51) ~3.1, 3o(v)~1.0.

Consequently, the controller is redesigned by replacing the constraints on the actu-
ator input and velocity by more stringent ones, where the velocity is now bound by
the constraints

03Lv<03, 05<5u<05

which corresponds to choosing

¢7=(11 3 3 5 5).
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Figure 6.2: Result in the time domain for design 1.
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Figure 6.3: Results in the time domain for design 2.
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The optimal values for the new design are given by
U2 = 03674, Ty = 07348, vy = .’I:'z =0.

for which the variance levels have reduced to

3o (u)
U

~0.36, 3o(v)~0.3.

In this new design, one can directly compute the cost of these control requirements,
i.e. the relative cost of design 2. compared to design 1. is

? x 100% =~ —17% (6.16)
1

hence a 17% drop in profit rate. This provides a direct link between the economics
of the process and the control design in which control motives may play a part. In
figure 6.3, the time domain responses of the system are plotted. What immediately
strikes the eye is the decrease in the higher frequency content of the signals, which
shows that the engineering effort has been successful.

6.3 A full solution to the stationary problem

In this section, the global optimum is computed and for technical reasons that will
soon be clear, two consecutive steps are needed to globally solve SSP. The procedure
is to first determine the optimal values of the reference input »" and the optimal
back-off terms v; by computing upper and lower bounds on the optimal solution of
SSP. Then, in a second step one solves a multi-objective Hy (LQG) problem using
LMI techniques in which the optimal controller is determined. The key is to perform
the following variable transformation in SSP

1 1
Xj = ;—X and Zj = V_Z
J J

thus, one divides the variance matrix by the back-off to each constraint. Then, by
direct transformation, it follows that SSP is equivalent to

(SSP-2) : inf el
K, Xj, Zj, 2 e ST, Vj

Xj = AaX;AY + -BaBj Vj
Zj > Cchng; + V%DchZ; Vi
vj+hT2" < g; Vj

Th;—‘Zjhj < Vj V3
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which simplifies to

(SSP-3) : inf cfar,
K, X;,2" €5 v
Xj = AaX;AL + 5-BaB} Vj
v; > Th;rcc[Xng;hj + ,,Ljthchz;hj V}
vi+hlz" <g; Vj

This new formulation reveals that controller analysis (fixed K) indeed amounts to
solving a genuine LMI problem because there are no bilinear terms (the term ,%j
disappears by rewriting the matrix inequality using a Schur complements). How-
ever, to optimize the controller as well, one observes the non-convex products of
optimization variables

A(K)X;, Ca(K)X;.

For the simple case that the constraint set P is just one half-space it is possible to
apply again the general transformation as in subsection 6.2.2 to directly compute an
optimal controller. A necessary condition of optimality is that there exists a A > 0
such that

C+Ah1 =0

The objective must be aligned with the normal to this single constraint and then the
optimal back-off is precisely determined by the minimal variance in this direction
and the optimal controller will be the corresponding LQG controller. Unfortunately,
this technique fails if P is the intersection of at least two half-spaces since then
technically more than one matrix X; is involved in the problem formulation such
that the nonlinear parameter transformation fails. The reason is that the problem
can be transformed only once, while to remove the nonlinearities one transformation
for each constraint is needed. Similarly as it has been suggested for multi-objective
control problems, see (Scherer, 2000) and references therein, the following remedy
based on the Youla-Kuéera parameterization is used.

6.3.1 The Youla-Kutera parameterization of the closed-loop

In the stationary case we can apply the similar techniques as in the time varying
case to obtain a solution because the algebraic structure of the problem formulation
has not changed significantly. On the other hand, there is a significant change in
the structure of the solution because in the stationary case we are interested in
the behavior of the system at time infinity. If we would pursue the analysis in a
lifted system representation, an infinite number of controller parameters would be
needed, while in state space the controller is parameterized with a finite number of
parameters.

It is well-known that the set of closed-loop transfer matrices w — z can be parame-
terized as
T=T +T,QT3

125



where Ty, Ta, T3 are proper and stable transfer matrices and @ € RH; is a free
parameter, see also the discussion in subsection 4.5. Consider again the plant dy-

namics
(wk+1(§) ) A | B B ) ( zk(€) )
Zk(g) = Cz 0 D, wk(f) .
Yk () o Dv 0 uk(§)

For this dynamic system, one first designs a feedback controller, usually chosen as
a LQG controller, although any stabilizing controller will do. Suppose we solve the
Riccati equations for X,Y (assuming there exist solutions)

X = AXAT — AXCT(CXCT + D*D*T)"1CX AT + BBT
Y = ATYA - ATYB(BTYB+ DID,)'BTYA+ CTC..

and let the Kalman gain N and the state-feedback gain L be given by
N =-APCT(cxCT + D*D*")™', L=-(B"YB+DID,)"'B'YA

Then, the Youla-Kugera parameterization for the error dynamics form of the observer
is given by the formulas (Maciejowski, 1994)

A+BL  -BL Bv
T, = O  A+NC|B“+ND" (6.17)
C.+D.L -D,L 0
A+BL | B A+ NC | B® + ND¥
=(aimaa) 2T 1 ) oW

In this case, the Youla parameter maps the innovations signal (for this particular
choice of N ) to an additive control signal. The transfer matrices T? from w to
zj = h] z admit a similar description as

T = hTTy + W ToQTs = TY + T{QTs

A+ BL ~BL Bv
TI = 0 A+NC | B® + ND¥

WTC, +hTD,L —hTD,L| O

where

T A+BL | B
2= h;-rCz—l—thleh}"Dz

with the corresponding realizations (Acl,Bcl,thcl,thcg) (with some abuse of
notation we still denote the corresponding closed-loop state-space realization with
(Acty Bety Coat,s D.;)). By referring to the standard LMI-description of the discrete-

time Hy-norm inequality
ry/h] Zh; = r| T (Q)ll2 < v
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we observe that (SSP-3) is nothing but

(SSP-4): 4* = inf . cfzr.
Q € RHy, 2" € §,,v;
@z <v; j=1,...,m
vi+hlzm <g; j=1,....m

Remark 23 H;. The Hardy space Hy consists of all complex-valued functions F
which are analytic outside the open unit disc D : {z € C: |z| < 1} that satisfy the
condition

1
2

1 27 ) .
I1Ell2 == (sup —/ trF(reJ“’)*F(re]“’)dw> < 00.
r>1 27 Jo

The subset of real rational function of Hs is denoted by RH, and it can be shown
that any such function is proper and stable, i.e. has all its poles in D. For such a
function F' € RHy, it can be shown that its Hy norm is found by integration over
the unit circle

1
2

27
1 Fll2 = (i/ trF(ej‘")*F(ej“’)dw> < 0.
2m Jg

6.3.2 Computation of upper bounds

If we investigate (SSP-4) it appears as if the problem can be solved directly since
it is a convex problem. However, because of the infinite dimensional constraint

@ € RH,

we cannot solve it directly. A problem is that @ cannot be parameterized directly in
terms of a state space or transfer function matrix as no convex techniques are then
available to globally solve (SSP-4). Therefore, the search space will be restricted
to finite dimensions and as a result it is not trivial to see how good or bad the
approximation is even after optimization. Let us make a specific choice for the
finite dimensional parameterization and see how good or bad it is afterwards by
computing lower bounds in the next section. We shall follow the path set out in
(Scherer, 1995; Hindi et al., 1998b), where the Q-parameter is defined as a Finite
Impulse Response (FIR) system

Q) =Y @iy
k=0

with matrix valued coefficients Qx € R™*™ . It is customary to use the variable
z € C in Z-transform Q(z) of Q; it should not be confused with the performance
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output z(£). Consider the following optimization problem
inf |71 + T2QT:
o, Ty + T2QT3]|2
and suppose we have a found an almost optimal discrete time controller
Q*(2)=C(zI-A)™'B+D

minimizing the norm of the closed-loop transfer function T, then this function has
a unique series expansion

Q*(2) = _ Mz 7F, (6.19)
k=0
where the M, are the Markov parameters
D k=0
Mi = { CA*1B E>1.

The region of convergence of the infinite series (6.19) contains the smaller disc Ds :=
{z€ C : |z| > p(Q*)}. In turn, D; contains the unit circle, hence we can use the
FIR expansion of Q*(z) to evaluate the 2-norm of the optimal solution, (see remark
23)

1
* 1 21r A jw\* Ak ( o7 ?
@ = (3 [ w@ Qe )
T Jo
Stated otherwise, the subspace
11
S = span{l, ;, ;, e }

lies dense in RH, and this motivates to solve the finite dimensional approximate
problem

1

’ Z_v

}

By using the denseness of the orthogonal basis, we arrive at the result that

|7y + T2Qu T3z — |Th + ToQ T3z asn — oo

1
i T = 1,—,...
Qiréfsu Ty + T2Q.T3)l2, where S, :=span{ '3

and consequently we can numerically find a e-suboptimal controller @}, by choosing
n sufficiently large. A typical state-space representation of the FIR system is given
by

(0] I 0 O | 0
0 O I .. O] O
(AQ BQ)_ . S .
Ca | Do o o .0 I]o




Depending on the specific structure of a problem, one might consider to use al-
ternative FIR parameterizations. Due to the specific dependence of the resulting
realization (Ac,,Bcl,thCl,thcz) of T7 on (Qo, Q1,- .., Qx), it turns out possible
to apply the general procedure as suggested by Scherer (2000) in order to transform
(SSP-3) with K replaced by Q, into a genuine LMI problem with optimal value u,,.
The starting point for this procedure is again the pre-stabilized system, (6.18). The
FIR system @Q is added this pre-stabilized system to arrive at

5,1 (€) A+BL -BL O Bv B .
sk+1(8) o) A+NC O |B*+ND¥ O i (¢)
gk+1(§) O BoC  Ag | BoDv 0 Skgg
A6 || eevpic —pir o 0 DI ||
() o o I 0 0 §
yi(€) 0 C o) Dv 0 Uk

where C; = }L?Cz, D; = h]TDz and zi = thzk. The closed-loop system is obtained
via the (now) static output feedback

_ Yk (€)
w(€) -M( 3 (6) ) '
=:Nq

The crucial property is the upper block-triangular structure of the system matrix
such that after static output feedback u = Ngy

gl ﬁ gl g Ay A + BNQC:' B, + ENQDw
2 |2 — | u= Ngy % Az B,

cli ¢c2ilo pi |——79Y : ———— :

o & |lpv o Cli €23+ DiNgC' | DiNgD™

the closed-loop transfer matrix
Tj = Ccl,j(ZI — Acl)_]Bcl,j + Dcl,j

is an affine function of the controller parameters. In the static output feedback case,
the trick is now to exploit the block triangular structure of the closed-loop system.
Introduce the partitioned matrices

X U
P~(o )
and introduce the matrices

U, ¥, _ X1 -X"\U
oI, )T\ UTx y—uTx-Ww

Then, the definitions
(¥ O (1 -7 . T (¥ O
I := ( ol T ) , g = ( 0 U, , imply II7 PII; = 0
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Moreover, define

( A B ) =( i PAqT | I PBay,s )

Cj ‘ Dj Ccl,jl'Il I Dcl,j
A1¥; AU, — UaAs + A+ BNoC | By + BNQDY — 3B,
= 0] V34, V3 B3
C19%;, O+ DINgC +CMi¥; | DINgD¥

Then, with the same congruence transformation, as in (6.9), and the same substitu-
tions as in (6.10) we arrive at the linear matrix inequalities

U, O AV A1V, — VA + A+ BNoC Bi+ BNoD¥ — ¥2B;

* \I-’a 0 ‘I/3A2 \I/3B2

* * U, (0 (0] =0
* * * s O

* * * * v;I

and

Z;, CMw, C%* +DiNgC+C}¥, DINgD"

* ‘111 O O
* * Vs (0] >0
* * * v;I

which are indeed affine in the optimization variables (¥,,¥3, ¥3,Z;, Ng). Finally,
this allows us to compute the approximate solution via

(SSP-5): 4" = inf T2
Qy € Sy, 2" € Sp,v;
T (Qu)llz <v; Vi
vi+hT2" < g; Vi

Due to the ever increasing length of the FIR expansion v of the Youla parameter, it
is easy to see that we have
7* < ,Yv+1 < 71.:

(at every increase in length, one can set the last parameter Qny41 = 0 to observe
that the previous solution is also feasible). This shows that one can compute a series
of non-increasing upper bounds ¥ of the optimal value. A density argument reveals
that 4¥ actually converge to v* for v — oo, see (Scherer, 1995).

6.3.3 Computation of lower bounds
In the previous subsection it was shown that increasingly long FIR systems asymp-
totically converges to the optimal controller. However, there is no guaranteed rate

of convergence and therefore the level of sub-optimality is unknown. Suppose that
it is possible to compute a lower bound ~, on the optimal value of (SSP-5) for each
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length of FIR system, then at any instance, the distance from the upper bound +?
to the optimum ~* is bounded by

V=7 < - (6.20)

which allows us to make a sensible choice on the acceptable length of the FIR
system. To develop the machinery, define the operator 7, that maps the transfer
matrix T'(z) = C(zI — A)~! B+ D (with stable A) into the truncated Toeplitz matrix
as

D 0 0
CB D 0

T,(T) = )
CA*™?B ... D

and Ey := (1 0 --- 0)T such that 7,(T)Ej is just the first block column of 7,(T).
Since the two norm of a stable system can be evaluated using the Markov parameters
is follows that -
ITIE = IDI5 + > ICA*BII; = | T(T) Eoll3
k=0
and it is not difficult to see that

17o(T)Evllz < | Tosa(T)Eull2 < ||T2 (6.21)
and in the limit one obtains
Jm (| 7,(T)Ey |2 = (T2
Moreover, one verifies for any ) € R’Hs that
T,(T9)Ey = T,(KT T1) Eo + T, (hT 1) T,(Q) T, (T3) Eo
and one observes that only the first v Markov parameters of ) enter this expression.

This motivates to define the optimization problem

Yo = inf cfar.

Q € RHy,2" € S,,v;
7| To(h] Th) Eo + T, (h] T2) T, (Q) T (T5) Eoll2 < v; Vi
vi + hJTzT <g; Vj

In view of (6.21) we conclude that v, < 7,41 < v*. Hence, l,, defines a nondecreasing
sequence of lower bounds of the optimal value of (SSP). One can show that =,
actually converges to v* (Scherer, 1999b). Note that this is nothing but a finite
dimensional convex quadratic program such that [, is easy to compute, no parameter
transformation is needed to render the constraints convex. Squaring both sides of the
inequality and introducing the slack variable P;, transforms the nonlinear inequality
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Py > - (T(T9)Eo) (T,(TY)Eo)
J

into the equivalent to the LMI

(zds (T”(Tuj}EO)T )0

that is readily implemented due to the affine parameterization of T;. The original
constraint is then enforced via the LMI

tl’Pj < Vj.

6.3.4 Construction of Optimal Low Order Controliers

The computation of the upper and lower bounds 4* and +, on the optimal value
v* in the last two subsections is based on the determination of a corresponding
Youla parameter whose McMillan degree increases with v. This means that the
total degree of the whole system is twice that of the plant (due to pre-stabilization)
plus the McMillan degree of the FIR system. We intend to demonstrate how to
construct a close-to-optimal controller with the same McMillan degree as that of the
plant.

Theorem 24 Given any € > 0 one can determine a feedback controller K with
the same McMillan degree as the plant that achieves a performance v¥ such that
7K <y +e

Proof. By the FIR techniques discussed in this chapter we know that for any ¢ > 0
we can find a Q with FIR length v that achieves a 4" such that 4¥ < v, + €. Let us
denote the corresponding back-off values by v§ and the steady-state output by z{.
Moreover, denote the resulting FIR Youla parameter as Q¢ and let it correspond to
the stabilizing controller K* for the original system. Since Q°, v§, 2¢ are feasible for
(SSP-4) with

T2l <yute

we can conclude that K*, v§, z{ are feasible for (SSP). Let us now fix the back-offs
in (SSP) to v5. We infer that there exists a high-order controller K¢ for which the
value of (SSP) is smaller than v* + e. This allows to constructively find 2" and a
controller with the same McMillan degree as the underlying plant which achieves
cTzm <y +e O
We have shown how to reduce, in a systematic and computationally efficient fashion,
the controller order without performance degradation. Hence, the computation of
the close-to-optimal back-off values v requires the solution of potentially large-scale
optimization problems, but that this does not come at the expense of inflation of
the controllers’ McMillan degrees. This interesting feature should be contrasted with
other multi-objective control problems for which such a reduction is in generally not
possible without conservatism.
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6.3.5 Example of full solution

Let us continue to example of the mechanical system. For this example case, the
computations of the upper and lower bounds have been carried out for various lengths
of the FIR parameter. For illustrational purposes the constraints were defined as
before with g¢” = (1 1 .3 .3 .5 .5 ). In figure 6.4, the solutions are plotted
along side the solution of the iterative algorithm. For a FIR system with 20 Markov
parameters, the following upper and lower bounds are found

~20

T — 020 100% ~ 0.06%

Y20 = 0.4042, 20 =0.4044, 0

The iterative algorithm converged in four iterations to an optimal value of
yiteTs = 0.4042

with optimal parameters ug = 0.4042, z3 = 0.8083, 3 = 0. This solution lies
close to the true optimal value, since it is between the best upper and lower bounds.
Although there is no guarantee that the iterative algorithm converges to the actual
optimal value, it does have the advantage that the total computation time lies 3
orders of magnitude below that of the upper and lower bound computation.

6.4 Chapter summary

In this chapter, a full solution to the stationary closed-loop MPC problem was given.
The solution to this problem consists of a LTT controller and an optimal steady-state.
In this stationary case, the optimal controller is found by dynamic feedback of the
innovations sequence as in the non-stationary case, but the techniques employed to
find the optimal solution are more involved. In a first step, a sequence of upper and
lower bounds on the optimal objective value is computed until a satisfactory accu-
racy is obtained. This fixes the necessary given back-off such that the optimal LTI
controller can be computed in the second step. This technique is computationally
too demanding to solve for large process systems and therefore a heuristic algorithm
has been developed that is comparable to the non-stationary case.

133



upper and lowarbounds and optimal value heuristic iteration
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Figure 6.4: Result of upper and lower bound computation (solid) and the heuristic
algorithm after 4 iterations, (dash-dotted).
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7 A Recursive Solution for the
Receding Horizon Implementation

In this chapter a recursive solution to the closed-loop MPC problem is presented. A
recursive solution is a crucial requirement to set up a receding horizon implementa-
tion of the control law. The technical contribution of this chapter is to construct an
optimal sequence of solutions that is independent of the specific sample path of the
system. '

7.1 Introduction

Up to this point, we have only considered snapshot solutions to the closed-loop MPC
problem. At time zero, the problem is solved for a finite time horizon for both the
feedforward trajectory and the feedback controller and as long as the actual time
is in this time window we have a full solution to the control problem (contrary to
open-loop MPC of course). However, in the case of continuous processing, the actual
time will eventually exceed the time window over which the control law is defined
and a new optimization problem needs to be defined and solved. Although this is one
possible (though extreme) solution, a better and more robust solution is to continu-
ously re-optimize the feedforward and feedback control action in a receding horizon
fashion. This re-optimization requires that the sequence of solutions thereby con-
structed is continuous in its behavior. We focus on the case that this re-optimization
is done every time sample, but in applications one can take any integer multiple of
the sample time within the control horizon.

Let us first emphasize some differences to open-loop model predictive control. In
open-loop MPC, only a feedforward is calculated, and this feedforward is used to
control the system in a receding horizon fashion. In this case, the receding horizon
control is a strict necessity to stabilize the system. In closed-loop MPC, the feed-
forward does not fulfill the regulation or stabilization task and the receding horizon
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implementation does not provide feedback in regulatory sense. It is the feedback con-
troller that stabilizes the system, while the receding horizon implementation is used
only to provide continuity in time (therefore we cannot speak of receding horizon
control). The feedforward is used for tracking purposes and contrary to open-loop
MPC, it should not even change every time sample due to arbitrary high frequent
disturbances.

In many control design methods, a feedback controller is computed once in transfer
function matrix or state-space form and then left to its online control task. Discrete
time state-space controllers are very efficient for computing control moves given
the output measurements due to the recursive nature of their representation, no
more than simple matrix multiplication is needed. The great advantage of such
a recursive description that cannot be overemphasized, is that measured data is
processed recursively by updating the controller state and it is completely clear how
to shift time by one sample. This reveals the strongest drawback of lifted or algebraic
system descriptions; these representations lack an internal state and must therefore
grow unbounded to keep track of past measurement data.

In a receding horizon approach to finite horizon control to continuous processes, a
continuum of solutions must be created. In each iteration, a prediction problem
is considered on the time window {k, ...,k + n} and a single iteration later a new
prediction problem must be considered on the time window {k +1,...,k+n+1}.
Hence in our context we will continuously be looking for a feedforward input and a
feedback controller

u Kk o o
, Ug 1 Kiv1k  Kitrk41 o
u; = - 3 Kk - . .
UZ.;.n Kk:+n,k Kk+n,k+1 Lo Kk+n,k+n

defined over a future horizon of n control samples. In chemical process applications,
the processes are usually slow and the prediction horizons quite long compared to
the dominant time constant of the process under consideration. In practise, the
actual extension of the horizon with a single time sample has therefore a relatively
low impact on the actual controlled behavior of the system. On the other hand,
the feedback of the current measurement to an additive future control sequence
determines the closed-loop behavior. Therefore, the central problem in deriving the
receding horizon implementation for closed-loop model predictive control lies at the
beginning of the horizon, as the horizon shifts from ¢ = &k to t = k+1. In light of this
discussion we will derive the receding horizon implementation for a batch problem
defined over n samples only, by considering a so-called shrinking horizon scenario
which allows us to study the main feedback mechanism.
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Consider the feedback law that was established in Chapter 4

TI,E)(g) K()O O e O 08(5)
ug(§) | Ko Kun - O vi(§)
u‘fc+;1(£) -I{nO .I(nl s knn ”fikf)

and after the first measurements become available, we compute the first innovations
vi. At each time instant k, the control law for the remainder of the horizon is then
given as

ug(§) Ki,j Krr O - 0 vk (€)
up41(8) k=11 Kty - Kiyik Kegrh4r - O vi,1(€)
. = . vy . . .
: =l o : : o :
Uri+n(£) A’n.j Kn,k R’n,k+l e K’nn 1”2 (E)

This implies that even for the computation of the future control moves, we need
to keep track of all past measurement data. This is eventually unacceptable and
therefore we aim at replacing this control law with a combination of innovations
feedback and state feedback using the control law

ui(§) Ly Kk o < 0 vk (§)
ui41(8) Lewr | . . Kit1x Ketrprr -0 O vi41(8)
. = . T . . R
u,‘c_,,n(E) Ln Kn,k K'n.,k+1 Tt Knn 'Uﬁ(f)

where I, is the state estimate. Hence, instead of keeping track of v5, we use this
sequence of innovations recursively to update the state estimate. The main problem
is to show that there is no loss of performance in this substitution.

7.2 Problem formulation

Consider again a discrete time-varying stochastic system

Tr41(8) Ay By By zk(§)
z#(€) | =| C¢ Ef Df wi(€) (7.1)
Yk (€) Cy DY O ur(§)

where wi(€) is a resulting white noise sequence with variance matrix Wy with the
property B};’WkD“’Z = 0 (process and measurement noise are independent). Let
us lift this system over a time horizon of n samples as before. As argued in the
introduction, the difficulty of the receding horizon implementation lies at the begin-
ning of the horizon. To derive a consistent receding horizon law, we must look at
the finite horizon batch problem in which the horizon gets shorter with each cycle
(extending the horizon with a time sample is then straightforward). At each cycle,
the optimal solution should coincide with the previous one if there are no changes in

137



the optimization problem formulation, that is, the objective function or inequality
constraints. In order to represent this batch iteration process compactly, define the
following stochastic processes

uk(§) wi(§) Yk (§) zk(€)
: yWi(§) = :  Yk(§) = : ,Zk(§) = :
un(g) wn(f) yn(g) zn(&)

representing the part from each signal u,w,y,z from sample k& to sample n cor-
responding to the remainder of the batch process time after time ¢;. For ease of
presentation and without loss of generality we will set the reference trajectories to
zero in the next few sections!, that is

ui(§) =

0.

I
(I
I

u, =0, wp =0, x; =0, yr =0, z;
These sections are concerned with state estimation and the results are not influenced

by the deterministic reference signals. As a consequence we can use the signals

uk(§) = ug(§), wi(€) = wi(6), xi(§) = xi (&), yr(§) = yi(§), z&(€) = zK(€)

which facilitates easier comparison of the results below to existing literature on state
estimation. One of the problems in building a receding horizon implementation is
to keep track of the past measurements. Recall the algebraic expression for the
observer error dynamics from Chapter 4, equation (4.39)

/30(0\ 1 o | (0] .. 0 ,wo(é-)
e1(§) _ %, eo(E)+ B§ 0] v 0 wi(§)
en(€) &2, oe,Bs | 92,85 - 0 /) \wa(®)

where the transition matrix is given by
%= Ai_14%_2- A7, =1, Ay = Ax — NiCj and B = BY — Ni.Dy.
The corresponding innovations sequence, (Kailath, 1968), is given by

k(&) : = yr(§) — 9k (&)
= C(xr(€) — #x(€)) + DFwi(€)
= Crex(€) + DY we(£)

and when the innovations sequence is put in its lifted form we obtain

v(€) = G.e0(8) + G, w(8) (7.2)

1Sections 7.2, 7.3, 7.4, 7.5 to be precise.
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or in terms of the matrices (@i’ o B, Cy, DY)

vo(€) Co Dy | O o / wo (&)

'Ul'(f) _ ?IQ?,O eo(€)+ ?133 .Di” o) ’wl'(§)

vn(§) qu)fz,o GN-‘I’%,IBS Cn(I’ZJBf Dy wn(§)
(7.3)

It follows immediately that at the next time sample, the remainder of the innovations
sequence is given by

v1(€) &) Dy o 0 w1 (§)

v2(8) 295, CyB§ o O w2 (§)
: = 1: e+ | . : : :

vn(§) Cn®7 Cn® ,B]  Cr®;, 3B3 Dy wn(€)

In the same fashion, the system transfer matrices Gk are reduced to represent map-
pings between these partial signals. The system matrices considered in consecutive
iterations have the following structure, see also (Furuta and Wongsaisuwan, 1993),

Gk — —I_ Gk — o ‘ 0

Co\etag ) T\ G B G )

Gk — _ G ok — Dy 0

o\ ) o\ e et )

¢, = (=2 ¢k, = (=212 7.4)
ToONGHM ) T\ GHBe | Gr "

where the decomposition matches the decomposition above, hence one slices off one
time sample at the time from the system matrices. Then, (7.2) is compactly written
as

vi(§) = Ghen(€) + G, wi(6)

and it is immediate that the performance output for the remainder of the batch is
given by

(7.5)

z(£) = Ghzx(€) + GE,uk(€) + GE,wi(€).

Thus many ingredients for a recursive implementation are there, however, to guaran-
tee optimality, the variance matrices as well as the control law must also be computed
recursively. This brings us to the problem formulation of this chapter that is to give
the recursive implementation of the closed-loop MPC problem.

(7.6)

Remark 25 A quasi-stationary angle. A few remarks are in order. A key issue is
that we do not want the actual controller to depend on the specific realization of the
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measured output process y(£). Recall the stationary solution in Chapter 6, where
an optimal set point and an optimal controller

z", K

were computed to maximize the profit by using the controller K to minimize the
back-off to the constraints. In this case, one does not update the controller at every
single measurement sample. Even in the case that an estimate of the initial condition
is available, there is no need to update the controller parameters, but only the
controller state. On the other hand, the controller is updated if the constraints or the
objective function change because these relocate the economic optimum. This view
point corresponds to the following property of the optimization problem. Suppose
there are no changes in the system dynamics, constraints, objective or properties
of the disturbances. Then all future solutions should coincide with the solution
obtained in the first iteration. |

7.3 Recursive construction of lifted FHLQG controllers

In the main result on the receding horizon implementation, we will rely on several
properties of finite horizon LQG controllers. In Chapter 5, the relations between
FHLQG control and CLMPC were already touched upon, but in this chapter we
will formalize these results. The reason for our interest in the FHLQG problem,
is that it is relatively easy to build a receding horizon implementation due to its
internal observer and state feedback structure. Let us return to our time-varying
stochastic system and let the control objective function be given as

EZ 2(&)TQr2k(€), Qi = 0. (7.7)

Theorem 26 recaps the standard result in Finite Horizon LQG theory that we will
need to construct recursive controllers for the CLMPC problem later on.

Theorem 26 Suppose we are given the time-varying system equation (7.1) and
the finite time objective equation (7.7). Let the control law be given as

ug(€) = Kovo(§) (7.8)
where Ky € Kq is a non-anticipative controller
K o - 0
K21 K22 o 0
Ky =
.}'('nl 'K'n2 . knn
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and vy is the innovations sequence. Then, at any time instant 0 < k < n — 1 in the
future, there exist matrices

Ly € :R‘(n—k)nuxnJr and K}, € R(n—k)'nux(n——k)ny
such that the control law

u(§) = Lrdw(€) + Kxvi(€)

generates the optimal control sequence for the remainder of the horizon.

Proof. Tt is well known that the optimal control sequence to the FHLQG problem
given by a Kalman filter and a state feedback. In discrete time, the optimal Kalman
filter dynamics are given by {Lewis, 1986)

Er11(8) = Ardr(§) + Brur(€) + Nevr(€) (7.9)
i (€) = yr(§) — Y (€)

where Ny is again the Kalman gain matrix. Then, the optimal LQG control sequence
can be generated by from this estimate via

uk(§) = Fidr(§) + Mrvi(§) (7.10)
where the innovations feedthrough matrix is given by
My = F PECE(CLPECT + F Wi FT) !

The covariance matrix P¢ will be computed in Section 7.5. Then, application of the
control input (7.10) to the observer dynamics (7.9) gives in closed-loop

Zr+1(8) = (Ax + BrFr)ir(€) + (Nk + B My )vi(§)

Represented as a lifted system one obtains

#0(€) I o 0 - 0 vo(€)
£1(8) 0 | Ng 0 - 0 v1(§)
: e Zo€) + | . : .o :
Zn(§) .0 QNG Dn.NT - O vn(§)
(7.11)

where the transition matrices are given by
i,j = Ai_1A2_2 oo A;, q);,j =1, Ai = A; — B\ Fy, and N,g = N + B M;,

Using this expression, the input sequence is given by

uo(€) \ FKlOo - 0 20(€) \ Mo|O - O vo(€)
wE | | O|R - O &1(€) N O |M -~ O v1(€)
un(€) olo - R ) \&@ oo - M ) \uie
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Carrying out the multiplication shows how the input depends on the innovation
sequence, and thereby reveals the structure of the innovations feedback law

uo(€) \ Fo Mo | O - O w(€) \
u1(§) _ .qu)g,() Bo6) + .FlN(? .1\’11 0 vl‘(f)
un (€) Fadto Fa®2 NG | FudSaNE - Ma ) \wa(®)

One time sample later one arrives at

Ll Kl
e e - ”~ ~
u1(§) F M o 0 v1(€)
u2(§) 95, F Nt M, -+ 0 v2(€)
: =1 2@+ . : o :
un(§) F,®7 F.®, Ni L"®,,N; --- M, v (€)

by using the recursive representation of the dynamics (7.4). The detailed derivation
of this step is shown in Remark 27 below. This can be represented compactly as

uy(§) = L1#1(€) + Kavi(§)

Because this cut can be made at any location in the horizon, a recursive solution
and therefore a receding horizon implementation for this control law

uy (&) = Li&r(€) + Kivi(§)

is easily derived, where the state and innovations feedback matrices are given by

Fy. Mg o - 0
F 1195 FeaNg O - 0
Ly = . FrLE , Ke=1] . k . L.
Fn@%’k an)%Yle Fn@ftﬂNf --- M,

|

This recursive construction of the controller is the motivation for the definition of a
receding horizon implementation. The next step is to exploit this procedure to get
a recursive solution to the CLMPC problem.

Remark 27 From the top block row in the matrices we see that

up(§) = FoZo(£) + Mowo(§) (7.12)

and by definition of the Kalman filter we have that

&1(8) = AoZ1(§) + Bouo(§) + Novo(§)- (7.13)

142




Upon substitution of (7.12) in (7.13) one obtains

£1(§) = (Ao + BoFo)i1(€) + (No + BoMp)vo(£)
= A§Z1(€) + Ngwo(€) '

Then, exploiting the recursive representation of the dynamics (7.4)

c  _ Ac
<I>1,0 - AO

c  _ He d
q>2,0 - q)2,1AE)

c  _ He c
n0 — (I)n,lAO

we observe that

u1(€) F Fy
'UZ(f) F2<I>§,1 .. FQ‘D§,1 .
S=] Aigo(©) + | Niuo(e)+
un(€) F, %,1 an’fm,l
M, 0] o 0 v1(€)
FyN§ M, e 0 v2(§)
FnQSg,lNlc Ln¢2,2N20 s My Un(f)

and when collecting the first common terms

u1(§) F
uz(€) F%5, o .
. =1 . (AoZo(§) + Ngwo(£))
un(g) an>1c1,l
M 0] 0] v1(€)
3 NY M, o v2(€)
1 - : :
Fnéfm,lNlc an)SLJNf e Mn Un(&)
and hence
u1(€) I3 M, o) 0 v (€)
u2(§) Fy®5, FNY M, e 0 v2(£)
: =1 an@)+ | . : T :
un(§) Fo®5 F.®;Nf L"®,N§ --- M, v (€)

Repetition of this procedure gives the same result for arbitrary time instances k. [
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Figure 7.1: Innovations feedback with state-feedback; a closed-loop predictive alter-
native to open-loop internal model control.

7.4 Definition of a receding horizon implementation

Theorem 26 shows that if a controller admits an observer/state feedback structure,
then restricted control laws of the form

u(§) = L2k (§) + Kivi () (7.14)
can replace the original control law

uo(§) = Kovo(§) (7.15)

on the remainder of the horizon without any loss of performance. The resulting
control structure is visualized in Figure 7.1. If the covariance matrix

Zo = Ezo(&)zo(€)”

is realized by the original control law (7.15), then the lower right block of Zg, given
by the covariance matrix

Zy, = Ez ()2 (§)T

is realized by the control law (7.14). Once this consistency in optimality has been
established on the finite horizon, one simply discards the measurements after they
have been used to update the state estimate. Then the new optimization problem
amounts to finding the receding horizon control law in terms of Ly and K;. In
practical implementation, a time sample is then added at the end of the horizon to
construct a continuous implementation as in standard receding horizon implemen-
tations for open-loop MPC.

Definition 28 A receding horizon implementation. Suppose a control law

ug(€) = Kovo(§)
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is given on a finite horizon, mapping a finite number of innovations into a finite
number of inputs. The receding horizon implementation of this control law is defined
as

ui(§) = Li2x(§) + Kxvi(§)
for some matrices
Ly € R(n—k)nuxn, and K, € R(n—k)nux(n-k)ny
and state estimate #; generated by the Kalman filter from any sample k onwards

on the remainder of the horizon. O

Let us also introduce a way to measure whether a receding horizon implementation
is good or not. To this end, suppose we have solved the CLMPC problem for the
controller Ky and reference input signal ug. Define the performance over the tail of
the horizon (from sample k onwards) as

n

Jk(Ko,ug) = Y f5 (25 (Ko, u))

=k
where we implicitly assume the objective to be of this structural form. Then define
the receding horizon objective value as

n

Jru(Lg, Ky, uf) = Z i (25 (L, Ki, ug)) -

i=k

The receding horizon implementation will be called optimal if the objective value of
the receding horizon implementation is equal to the original objective value restricted
to the remainder of the horizon {k,k+1...,n}

Jrn (L, Kk, u") = JE (Ko, u")

where the superscript * denotes the optimal values.

Remark 29 In the CLMPC optimization problem the optimal controller is cho-
sen from the set of all possible linear transformations of the output measurements.
Because the use of an observer together with state and innovations feedback is a

specific choice of a linear transformation, no improvement of the performance can
occur using the receding horizon implementation, hence

Jru(Li, Ky, u}) > Jf (Ko, up)
Hence, to prove optimality it suffices to prove that
Jru (L, Ki, ug) < Ji (Ko, ug)

It will be proved that under certain conditions, the CLMPC controller is optimal for
some FHLQG objective and then use of theorem 26 will give us the optimal receding
horizon implementation. O
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Remark 30 Stability and innovations feedback. The innovations approach to closed-
loop MPC turns out to be the right choice of controller structure when CLMPC is
put in a receding horizon implementation as we will soon show. However, one of the
problems associated with the feedback of the innovation sequence is that one easily
runs into trouble with stability. Let us analyze the situation. At time ¢y, we are
solving the finite horizon control problem, using n future measurements

Yo,Y15---5Yn

for some finite but possibly large n € N, (it makes sense to choose an horizon
length covering a few times the dominant time constant in view of the simultaneous
feedforward design). From Theorem 18 it follows that any output feedback controller
can be written as an innovations feedback controller, and consequently the same
problem can be written as a feedback of the innovation sequence

VoyV1y-+-yUn.

Both sequences have an equivalent information content and it is not difficult to
compute one control sequence from the other. However, at a certain moment in
time we are forced by memory and computational limitations to discard the first
samples

Yo and v

and at that time, both sequences are no longer equivalent with regard to their
possibilities in feedback. Suppose only the last measurement is used for static output
feedback (as a possible extreme case)

Yk (&) = Cxr(€), ur(§) = Kyyr(§)-

Then, we are still able to do (partial) pole-placement via
zx+1 = Azi(§) + Buk(§) = (A + BKC)zi(§)

such that it is not structurally impossible to stabilize the system, while it is struc-
turally impossible in the innovations feedback case. Once only a finite number of
samples of the innovation sequence v are used in linear feedback, the poles of the
corresponding recursive description cannot be placed as will be shown subsequently.
Recall that an open-loop system including the error dynamics observer is given by

zea(§)) _ [ A o i (£) B B
(ek+1(£)) = ( O A-NC ) (ek(ﬁ) o )@+ pu_npe )wr®
where N is the (stationary) Kalman predictor gain. Then, introduce a feedback of
the innovation and the state estimate

u(§) = Fx(€) + Kyvi(§) (7.16)
= Fz(€) + (K,C — Fex(§) + K,D¥wi(€)
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leading to the closed-loop system

(2206) = (107 PR ) (68) + (535 meo

If the state-feedback is set to zero F' = 0, then there is no way of stabilizing open-loop
unstable systems as then the poles of the closed-loop system contain the open-loop
poles of A. The intuitive reason is illustrated by the following. Consider the semi-
deterministic case in which an autonomous system with uncertain initial conditions

Thy1 = Az, yp =Cxzp, zo=2°
is observed by the Luenberger observer
Zpy1 = AZp + Nvg, vp=Ceg, er =z — Ik
and suppose we use the feedback law
u = Kyvg.
It follows immediately that the observer in error dynamics form is given by
exs1 = (A— NC)ex, v =Cer, €=z
and assuming that the observer gain N is chosen stabilizing this implies

ex >0 = vy—0 ask— 0.

Hence, the innovations sequence converges to zero if our observer is exponentially
stable. But this means that the control input converges to zero even if the state
estimate Z is still non-zero! With a properly chosen state feedback gain, the control
action can only be zero if both the innovation sequence v and the state-estimate
Iy are zero. 0

7.5 Recursive computation of the variance matrix

With the formal definition above, we can set up the receding horizon implementation
of the closed-loop MPC problem. To do so, we must keep track of the uncertainty
in the initial condition and the estimate thereof in order to compute the effect of
variance of the future controlled variables. Let the control law

uo(§) = Kovo(§) (7.17)

be put into a receding horizon implementation. Then, the control law above is
replaced by

ug(€) = Lr@r(§) + Kpvi(€) (7.18)
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from sample k onwards. By substitution of the expression for the innovation sequence
(7.5) it follows that

uk(€) = Ledi(€) + KiGhoex(€) + KxGh, wi(€) (7.19)

where the plant dynamics are given by equations (7.4). In the new optimization
problem a single time step later, the matrix

Zi = Ezi(&)z(§)T !

determines the future back-off and to compute the performance output zx, (7.19) is
substituted in (7.6) to obtain

2k(€) = G2k (€) + GLuk(€) + GL,wk(€)
= G¥,2k(8) + GEen(€) + GE,ui(§) + Ghywi ()
= (G%, + G5, Li)#x(€) + (G5, + GELKiGl e (6)+
+(Ghy + GL Kk Gl ) Wi (6)- (7.20)
To compute Zj efficiently, a recursion is needed to keep track of the joint variance
matrix of the estimation error and the state estimate at the beginning of the control

horizon (time sample k). From equation (7.20) we know that zx(£) in closed-loop is
some function of

2(€), ex(€), and wi(£).

Since Zx(£),ex(€) are independent of wy(§) it follows that we only need to keep
track of the joint variance matrix

. . T
Vi = E zk(E)) (xk(g))
* ( ex(€) / \ ex(§)
of £(£) and ex(£). Observe that the actual control move applied at each instant

is given by L. and K}! which are the first n, rows of the control law L; and Kj
respectively, see (7.18),

up = Lizx + Kilvg.

Using Kwakernaak and Sivan (1972) as reference, we can directly write
(-'i'k+1(§)) _ ( Ay + BiLy (N + BeK}')Cy ) (frk@))
6k+1(§) 0 Ar — NiCi ex(£)

(N + BLKY)Dy

such that the joint variance matrix is recursively given by

1 11 T
Vier = ( Ak+BkLk (Nk+BkKk )Ck )Vk( *x  * )

o Ag ~ NiCx * *
(Nk + B K} DY #\T
+ ( Be-NDp )Wl &
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with initial condition

From the projection theorem (Kailath, 1968) it is immediate that the estimation
error ey () is orthogonal to estimate & (£) for any k. Hence, the joint variance matrix
Vi is block-diagonal for each k by construction, therefore the variance matrices can
be constructed efficiently by the following Riccati recursions for the estimation error

Pty = Ak PEAT — Ny (CyPECT + DFWiDPT)NT + BYWi(BE)T (7.21)

with boundary condition
Py = P,.

Then, given the recursion for the estimation error, the recursion for the variance
matrix of the state-estimate follows from

PE. = (Ax + ByL})PE(Ar + By LE)T
+ (Ni + Bp K1) (CkPECF + DPWi D T)(Ny + B K1)
with boundary condition .
e =
L} and K}! are given externally in every cycle by the solution of the closed-loop

MPC problem. In both the CLMPC and the FHLQG problem, the Kalman predictor
gain is given by

Ny = A PECT(CrPECT + DPW DPT) 1. (7.22)

In the specific case of FHLQG control, the direct feedthrough term is determined
from the Kalman and state feedback gain via

Kl' = My = F PECF(Cr PECT + DEW, D)1,
Then upon substitution one finds the expression
Ni + BeKi' = (A + By L) PECT (CkPECY + Dy Wi D7)~
which leads to the Riccati recursion
Pfy1 = (Ak + BeLi) P (Ax + BiLi)"
+ (A + BiLy) PECT (Ck PECT + DYW D¥T) ' Cr PE(Ak + BiLE)T

This corresponds to the one step ahead prediction using the closed-loop system
matrix, (compare to the Kalman predictor gain (7.22) which is prediction using the
open-loop system matrix). The factored variance matrix of the initial condition and
disturbances are

P = Exx(§)zx(§)" = Pf + P¢ = FpFE, Wi = FwFjy.

By orthogonality we can directly sum the error and estimate variance matrices ob-
tained with the Riccati recursions.
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7.6 Recursive construction of the CLMPC controller

In the previous sections we have established recursive relations for the systems and
signals, for the control law via the receding horizon implementation and for the
variance matrices. It remains to show that we can recursively solve the optimization
problem. In this section we formalize the previous investigations between LQG
control and closed-loop MPC. The main idea is to show that the optimal solution to
the closed-loop MPC problem is also optimal for some finite horizon LQG problem
for which we have an optimal receding horizon implementation. Recall the CLMPC
problem was defined as

(CLMPC) min f(z")
uTeR"*u yeER™, K€Ky
z" = Gzl + Guu” + Gmw
v; + hTz < g], j=1,. (7.23)
Z(K) = GKPGK +GK WGK T
'I"‘/h?Z(K)h] S Vi, ] = 1,...,

Suppose we square the last constraint and assume for ease of presentation that r =1
and define the data matrices

A =Gy B= (GveFP GuwFW)
C=(GFp GwFw) X=K.

Then Theorem 31 below summarizes the result of Section 5.4.

Theorem 31 Consider the following optimization problem (NOP)

min f(p)
peR’"‘P vER™ X €R" " u X"y
(NOP) vi+hip<gj, j=1...,m (7.24)

X= i EX.,E
h] (AXB+C)(AXB+C)Th <vi j=1,....m

where X is the set lower block triangular matrices, f is some smooth function. Sup-
pose the solution (p*, X*, v*) is a local minimizer of (NOP) and at this feasible point
a constraint qualification is satisfied. Then X* is also optimal for the optimization
problem

min tr(AXB + C)TR(AXB + C)

X =%, E:XyET (7:25)

for some R = RT > 0.
Proof. See section 5.4. Define the corresponding Lagrangian of the (non-convex)
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optimization problem to be

L(p, X, v, A\ 0) = f(p) +D_ NI D+ D (Nvs —mivd) = O Nig;
j=1 j=1 =1
m

+Y hI(AXB + C)(AXB + C)Th; + tr AT(Y_ E;X;,ET - X).

=1 1,j

Then, because the constraint qualification holds at (p*, X*, v*), it follows that there
exist Lagrange multipliers

AeRT, peRT, AeR™xmm

such that

6p,X,uL(P*,X*,V*,Aa )‘a"’) =0

oMW AP —g;) =0

j=1

> ui(h] (AX*B + C)(AX*B + C)Th; - v}?) = 0.
Jj=1

By application of the matrix gradient techniques as discussed in Section 5.4 one
arrives at the result that the following equations are satisfied

m
AT [ > " n;hhT ) (AX*B +C)BT = A,

j=1

AZ Z EiAijE‘;r)
i>i>1

X*= Y EX}E] (7.26)
i2j2>1

for some Lagrange multipliers n € R}, and A € R"«*""v_ Then, if we define

R=73_njh;h]
j=1

it follows that R, being the positive sum of positive semi-definite symmetric rank-one
matrices, is positive semi-definite itself. Therefore, the optimal controller satisfies the
necessary optimality condition (7.26) that coincides with the necessary optimality
condition of the optimization problem (7.25). Since R > 0, this latter problem is
convex and hence the necessary optimality condition (7.26) is also sufficient for X*
to be optimal for (7.25). a

Now we are able to state the main result.
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Theorem 32 Consider the closed-loop MPC problem

. T
... S, 1)
VJ+h_:7I‘zBSg]$ j=1,...,m (7.27)
ZS = Gzzms + quua + szwg
rhT(AKB+ C)(AKB+C)Th; <v?, j=1,...,m

where A = Gy, B = ( GueFp GuuFw ) and C = ( GoioFp G.wFw ). Let
the rows h; of the constraint matrix be such that each vector h; constrains the
performance output z" on single time instances only and suppose there exists a
solution (u*,v*, K*) at which a constraint qualification holds. Then, the receding
horizon implementation is optimal for the closed-loop MPC problem.

Proof. By Theorem 31 it follows that the solution to the closed-loop MPC problem
is optimal for some finite horizon LQG controller. If the constraints cover single
time instances only, then for each constraint j there exist an index k; and a vector
I7 € R™ such that

T T
hizo = l; 2k,

for all stacked vectors zg € R™"=. It follows that the matrix
m
R=7_njh;h]
j=1

is block diagonal, where each block Ry on the diagonal of R is a weighted sum of
those I; vectors corresponding to that index k in the time horizon. Therefore the
corresponding finite horizon LQG objective function is of the form

N
EZ zk(g)TRka(ﬁ), Ry > 0.
k=0

Then, the optimal solution consists of a Kalman predictor combined with a state
feedback and innovations feedthrough where infinite gains are excluded by the exis-
tence of a solution to the closed-loop MPC problem. By Theorem 26 it follows that
the receding horizon strategy is optimal for this finite horizon LQG problem and
consequently also for the closed-loop MPC problem. a

7.7 Penalties on the rate of change of the input

Let us briefly illustrate why it is not restrictive to require that the performance
variables are constrained on single time instances only. The reason is that one can
usually reformulate the problem by extending the state space to include past values
of the performance variables. In advanced process control this is important because
it is common to quadratically penalize the changes in the control inputs in the
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objective function
EZ 2k(6) — 21) T Qu(2k(€) — 2t) + Auk(€)T ReAug(§).

where the changes in inputs is given by

Aug(§) = ur(€) — up—1().

and evenly common are inequality constraints on the rate of change of the inputs. In
this section we are interested in the receding horizon implementation of the closed-
loop model predictive control law in the case that there are rate constraints on the
control input sequence. Again the relation between the two is given by Lagrangian
duality, but it is clear that if we want to make use of Theorem 32 to reveal this,
the problem must be reformulated such that only constraints defined on single time
instances are left. Since the quadratic penalty on the change of the input covers
cross-products of inputs on different time instances, the standard LQG result applies
only after adding the previous input to the state vector of the LTV system

0= ()

The variational system is a recursive linear discrete time dynamical system rewritten
with relative inputs Aug(€) as

A Byl B Bv Y [FEE
m:+1(§) = ( Ok [k Ik Ok ) Auk(g)
wi

The optimal LQG solution will then be a state feedback of (the estimate of) the
extended state including the estimate of the control input. An observer for this
system is obtained as

Ar By

2 (&)
jk-kl(&) = ( 0 I ?[k i )

Atg(é)
o7\ wie

But, since the control input itself is available information for state estimation one
will in general have

Uk (€) = ux(§)

such that Ny is the usual Kalman predictor gain. The input to the LTV system is
given by the state feedback on the extended system and the innovation feedthrough

Aug(€) = Liat (&) + Kitvk(€)
= L% 8,(€) + Ly uk(€) + Kitor(€).
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Applying this feedback to the stochastic system leads to the closed-loop system

R Ap+ BeLY®  Bi(I+Ly™) | (Nk + BiKi')Cr o+
(.’cki1(€) ) — Lllc,z I+ L}c,u K;ilck (:z:k (&) )
ek+1(€) O O | Ak _ Nka Ck(s)

(N + Bx K" )DY
+ Ki'Dy wi(€)
Gk — Ny DY

for which the (block-diagonal) joint variance matrix is determined as
oy N\ 0 o
Vi = E xk(é))<xk(§)) : V=< ) Ewgw! = Wi.
k <€k(§) ex(€) 0 0O R Wkt k

The blocks are determined via the estimation Riccati recursion (7.21), while for the
estimate one finds

Pt ( Ac+BiLy® Bi(I+LpY) ) ¢ ( * % )T
1= 1,z 1,
ket L, I+rL*

Ni + Bp K1 werr T
+( ’°+K’%{° k )(ckp,:c,3‘+DkaDkT)(:) .

This analysis explains how the estimation problem is set-up and how one computes
the necessary initial variance matrices, the next step is to construct the actual opti-
mization problem. To this end consider the following extended performance output

+ey = [ 2x(6) )
z; (§) (Auk(ﬁ)
where the performance outputs are as usual given by
2k(€) = G, 7k (€) + Ghuuk () + G, wi(6).
To go from absolute inputs to relative inputs we have the following relations

ui(é) = Jug—1(8) + TAug(§)

where
I O O 0 I
I I 0O (0] I
=1 I I 0] . J= I
[ -« -« I I I
hence, the performance output is represented in the change in inputs
z{ (€)
Z+(€) _ G};z G,zqu Glzcz G';uT G’;w ek(&)
ST 0 0] 0 I o Aug(£)
wi(£)
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The feedback in lifted form is given by the following relative control sequence

Auy(8) = Lz} (€) + K vi(€)
= L{#k(§) + Liuk-1(8) + Kxvi(€)

or corresponding absolute control sequence
uk(§) = TLEZk(§) + (J + TL)uk-1(8) + TKivi(§)-
The closed-loop performance outputs are compactly represented by
it
7} (€) = (A*Mp B + CF) | ex
Wi

where the matrices A*, B¥, M, C* are given in terms of the system dynamics by

ok T I oloO oO
A’“:( Z; ), BtE={( O I| O (0]
o olei ¢k,
Gk, Gt J| Gt GE,
C'°=( 5“ g‘ I O“ 5 ) M= (L L} Ki)

How to solve this problem is shown in the next section.

7.8 State feedback implementation issues

The final step is the actual calculation of this additional state feedback gain Li. To
construct Ly we apply the same techniques as before, that is either the Cholesky
factorization in the case of the FHLQG problem or the Kronecker solution in the
case of true CLMPC. The future input is in both cases and in any iteration given by
the feedback control law consisting of a state feedback gain and innovations feedback
gain

(&) = L&k (€) + Kevi(£).

The performance output, expressed in terms of the state estimate £x(£) and estima-
tion error ex(£), is given by

zk(&) = (Gl:a: + G’:uLk)ﬁk(é) + (G};m + Gl:uchﬁe)ek(ﬁ) + (Glzcw + GqukGf,w)Wk(f)

To simplify notation, the optimization parameters are collected in a single lower
block triangular matrix (since Ly is a full block matrix)

Mk=(Lk Kk)EMk
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where M is the set of lower block triangular matrices
Mk={( L K ) : L e R X"=, KeKk}
and in analogy with the original problem
n—k 1
K = Z ZE,‘K','J'E;‘ : Kij € R™>™ 5 |
i=1 j=1
For notational convenience we further introduce the matrices
Ak =Gk,

gi_( Fe O 0
=\ O GtFp. Gt Fw

Ckt = ( G5 Fps:, G Fp. G, Fw)

Then, it is immediate that the variance matrix of the performance output process
is given by the product

Zy, = (A*M. B + C*)(A* M B* + C*)T

which is factored by construction and therefore the back-off is determined as

vj = r\/(W5)T Zehk = r||(R5)T A* M B* + (RE)TC* |, (7.28)

As before, the optimization parameters enter in an affine fashion and therefore, the
CLMPC with the additional state feedback is again found to be a second order cone
program. In the notation of subsection 4.4.5 we have the optimization parameter

m = vec(M)
= vec( L E‘iZjZl EiKi]'EJT )
_ ( vec(L) )
ZiZjZI Ej ® E,-vec(Kij)

Define p;; = vec(Kjj), 1 = vec(L) and
U::(E1®E1 Ei.®@FE;, E;QE, "')a pT=(p,{‘1 p,{‘2 p%‘Z '”)

to arrive at the compact representation

==(w)=(0 7)(5)

Substitution into (7.28) gives the vectorized back-off formula

T T I O 1
ww=rietis 5o (5 5 ) (5 )
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With this transformation, all variables appear as vectors in the optimization prob-
lem, which shows that the problem is in the format

min f(z")
p.Lu”
z2" = Gz + Gu” + Gy W
vilLp)+hTz" <g;, j=1,...,m

wp)=rlckht + B o w4y (0 ) (1)

Note that in the same fashion as before one obtains finite horizon LQG solutions by
solving the first order optimality condition

AT (AR M B* + CF)BFT = A, Ay € Ay (7.29)
where
Ay = {( 0 Yy F B AVET ) LAY g R"uxnv} (7.30)

where a little caution is needed when it comes to the full rank condition of B*. In
this new case, the existence of measurement noise is not sufficient to ensure that

T . . .
B*B*" has an inverse, see also the discussion in remark 22.
b

7.9 Chapter summary

In this chapter the receding horizon implementation of the closed-loop MPC prob-
lem has been developed. The key property of the optimal feedback controller of
the closed-loop MPC problem is that it is also optimal for some finite horizon LQG
controller. This optimal feedback controller is therefore constructed recursively us-
ing a combination of state and innovations feedback. Because such a controller
is observer-based, measurement data is processed very efficiently by implementing
a Kalman predictor to compute the state-estimate and the innovations sequence.
Because of the state feedback structure, the closed-loop variance matrices are also
constructed recursively by means of Riccati difference equations. This means that
the whole optimization problem is constructed recursively with a fized complexity in
terms of the amount of optimization parameters bounding the on-line computation
time.
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8 An Industrial Polymerization
Reactor

In this chapter the techniques discussed in this chapter are applied to a realistic
sumulator of a polymerization reactor process. The performance of constrained finite
horizon LQG control is compared to an open-loop MPC approach.

8.1 Introduction

The theory that was developed in the previous chapters will be applied to a high
density polyethylene (HDPE) continuous polymerization reactor. The main purpose
of this implementation is twofold. First, it will be illustrated how the theory is
applied to dynamic nonlinear chemical process systems using a nonlinear differential-
algebraic model, the current standard in modern process modelling. Second, the
performance of closed-loop predictive control will be compared to a set-up consisting
of an extended Kalman filter and a linear time-varying MPC, which is taken as the
industrial state-of-the-art in applied nonlinear model-based process control, see (Lee
and Ricker, 1994).

It cannot be overemphasized that the HDPE process is used for illustration purposes
only. For a full discussion on the control and operation of the HDPE process we
refer to the series of papers by McAuley and co-workers (1991,1992,1993) in the
chemical engineering literature. The model used in this thesis is based on the model
equations available in literature (Choi and Ray, 1992; McAuley et al., 1990). The
actual implementations was done by R.L. Tousain (2002) and extended by W. Van
Brempt (2000). We greatly appreciate that they have made their modelling efforts
available to us. The model is build in a generic process modelling language gPROMS,
(PSE, 2003), that is suited for large scale nonlinear differential algebraic modelling.
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8.2 The HDPE process

The HDPE process is a continuous fluidized bed polymerization reactor using solid
(Ziegler-Natta) catalyst particles. The schematic process lay out is given in figure
8.1. The reactor consists of a gascap, a fluidized bed and a material recycle loop.
The main feed components are Ethylene, Butylene and Hydrogen. Nitrogen does
flow through the reactor, but it is an inert gas for the reactions and is used to
maintain the fluidized bed and cooling power. In normal operation, the Nitrogen
feed is zero.

The main reactions that take place in the fluidized bed are (McAuley et al., 1990):
1) Catalyst Activation: potential sites on catalyst surface are activated at the start of
polymerization process. 2) Chain Initialization: first (co)monomer occupies active
sites to form living chains. 3) Chain Propagation: new (co)monomers are inserted
between active sites and living chains. 4) Chain Transfer: (co)monomer terminates
living chains and forms new living chains on catalyst. 5) Catalyst Deactivation:
active sites on catalyst particle are irreversibly turned into a dead sites.

The process has a basic control system consisting of three main PI loops. The
pressure in the gas cap is controlled by the main feed of Ethylene and the set
point of the pressure controller u4 therefore provides the main means to control
production. The reactions are highly exothermic and the temperature PI controller
adjusts the cooling water flow to a counter-current heat exchanger to remove this
heat of reaction. The cooling water flow through the valve is constrained by pressure
drop limitations. Violation of this constraint leads to reaction run-away by the
inherent open-loop instability. The reactor product flow is regulated by level control.

) . Controlled variables R
@ 23 P kg/m®] density
Z2 LNMI -l melt-index
23 FWC kg/hr] cool water flow
z4 PF kg/hr] product flow

Gas cap
Measured outputs
1 z(C2Hy) kg/kg] Ethylene gasfrac.
...... Y2 z(C4Hg) kg/kg)] Butylene gasfrac.
i vs z(Ha) kg/kg] Hydrogen gasfrac.

Manipulated variables

Fluidized
bed u1(2s5) C4Hsg kg/hr] Butylene
Product  u2(2) Ha kg/hr] Hydrogen
i > u3(27) TiCly kg/hr] Catalyst
! L ua(zg) SPyp bar]| pressure setpoint
'---& Ethylene [y
Disturbances
—&-@mb dy H-Bias kg/hr] Hydrogen bias flow

(@ Hydrogen dg C-Bias kg/hr] Catalyst bias flow
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Figure 8.1: Process schematic of the fluidized bed reactor
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8.3 A software architecture for advanced process control

A basic requirement for advanced process control is that a dynamic model of the
process is available. Linear model predictive control is well established in industry,
(Qin and Badgewell, 2003), and standard software is sold off the shelf. As discussed
in Chapter 1, the next level of automation used dynamic first principle models of
processes and the current industrially available optimization and MPC solutions are
unable to use these nonlinear models online. Within the EU-funded INCOOP!,
(INtegration of COntrol and plant-wide OPtimization) a generic interface for sim-
ulation, optimization and control was developed (Tousain, 2000; Van Hessem and
Tousain, 2001; Kadam et al., 2002). In this set-up, a central data server was used
to exchange commands and data between the modelling platform gPROMS and the
computational environment MATLAB (The Mathworks, 2002), in which all control
algorithms were programmed. Although all connections are OPC compliant and can
be connected to an actual plant, we have limited ourselves to a simulated process in
this chapter.

8.4 Open-loop implementation of a grade change scenario

The continuous HDPE process is a multi-product plant able of producing polyethy-
lene polymer in several grade specifications. In an industrial environment, these
product specifications are traditionally defined in terms of the density and melt-
index. The melt-index is related to the viscosity, elasticity, tensile and impact
strength and stress crack resistance, while the density is related to stiffness, hard-
ness, transparency, flexibility and heat resistance (McAuley and MacGregor, 1992).
Without discussion of the details, we will consider a grade change from grade A to
grade B defined by constraints on the density z; and melt-index z; of the polymer,
see table 8.1.

Table 8.1: Grade definitions

Grade A — B A
# [kg/m?] 942.9 937.9 -5
z5 8 11 3.1 +2

In the first step the nominal transition is optimized, after which the performance is
evaluated for the disturbance scenario. To find the optimal transition starting from
grade A, a quadratic objective function as proposed by McAuley and MacGregor
(1992) is considered that penalizes the quadratic norm of the difference between the
desired end-specifications of grade B. An additional weight on the rate of change of

1GRD1-1999-10628 project in Competitive and Sustainable Growth Programme (1999-2003)
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the control inputs

=T e 5T a7
AU =gy — U

is added to avoid excessive control moves from the outset. This gives the following

objective function

N 3

T 3
s@ug) = Y-S rkaat+ [13 400 - 5w e
=1

k=0 j=1

During the transition, we want the following inequality constraints to be satisfied

Table 8.2: Constraints on process variables

Variable lo up
23 [10*kg/h] 2.5 5.2
25 [10%kg/h] 0.0 1.5
26 [kg/h] 0.1 1.0
27 [kg/h] 0.2 2.0

This brings us to the deterministic reference optimization problem to be solved for

the grade change scenario (GOP)

: N rk r2 9\2
min §k=§_ A +f q; (2 — 2])%dt
uj € RVmu ° 173 o ]13

0= f(z",z",o",a",0")
" = C%z" + CYv" + D*u" + D¥w"
an(t) = ag, tE€ [te tetr)

(8.1)

Notice that the controls are assumed to be constant over each time interval [tx, tx+1)
and therefore appear as a double sum in the objective. To facilitate efficient imple-
mentation, we discretize the integral via a zero-order integration scheme (trapezoidal
rule can alternatively be applied to give computationally cheap evaluations). Sam-

pling the performance outputs on the control sample times

Z} = Z; (tk)
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then gives objective function

N 3
J(Aw) = Z Z’J (Aw{)* +Ts Z ZQ;(Z{,j(tk) — 22 (tx))?

_0] 1 k=0 j=1
—r T — = _ — _
= Z Ay, T Re AT + (2 — 20) T Qu(Z — 20)
k=0
= AuTRAT, + (7] - 2°)TQ(z) — 29)

where R = diag(R1, Ra, ..., Rn) and @ = diag(Q1,Q2,...,Q@n). For clarity
Aa{*,i

means the rate of change of the reference trajectory of the j*! input in iteration I,
on the time instant k.

Because the summation over the control sample time Ty has a high resolution in
the time window of length T, there is a negligible loss of dynamic performance
in the on-line implementation due to this approximation. The path constraints in
the optimization problem are given in table 8.2 and are enforced on the control
sample times only. Then a sequential receding horizon approach to the dynamic
optimization problem is used as was discussed in Section 4.6. Along an initial guess
for the optimal trajectory
Zy, U, W, Wi, 2
that satisfies the nonlinear dynamics in iteration [, we linearize the dynamics

0=0:f,3" + Oefl; 2" + Bofl,v" + Bafl,u” +0af|,w”,  27(0) ==
2 =Cx" + Cv" + Diju" + DYw"

to obtain the linearized optimization problem for the search directions d;. The
update on the control moves is given by

U, =10 +u; =0] +od;

because we apply the full Newton steps without line search we set o = 1. Then, the
approximate update z{, on the controlled variables is given by

Ziv1~Z+ 2] =2+ Glzudl.

Hence, in terms of d;, we obtain the linearized grade change optimization problem
(LGOP),

min 288" RAd + Adf RAG, + 2(2] - 2°)TQGL,di + dFGL,TRG  d,
d; € RN™

z{ GZI"L‘;‘,O + Glzudl
T,r T=r
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This is a standard QP that is easily and efficiently solved for d; leading to the
updated controls fi;+;. These controls are then used to integrate the model again
leading to a new trajectory

Zi+1, Ui41, U1, Wit Zi41-

To illustrate this full Newton step approach the first four iterations have been plotted
in figure 8.2.

8.5 Disturbance scenario for closed-loop simulations

In the next sections, the closed-loop performance will be analyzed. Two persistent
disturbances are considered on the feed flows of hydrogen and the catalyst both
strongly counteracting the desired transition. The local flow controllers compensate
these measurement biases by introducing biases in the mass flows. The Hydrogen
bias (H-Bias) strongly influences the melt-index and a negative value of this distur-
bance is chosen to counteract the transition from A to B. The advanced controller
must increase the hydrogen feed to compensate for this bias. A positive bias in the
catalyst feed (C-Bias) leads to a significant increase in energy hold-up and is suffi-
ciently severe to let the temperature controller TC increase the cooling water flow
up to saturation of the flow constraint. The steady state effects of the biases on the
performance process variables is displayed in table 8.3. Measurement noise is active
on all output measurements.

Table 8.3: Steady-state effects catalyst and hydrogen biases

[kg/h]  nominal AH,  ATiCl both Az
30 —0.050 +0.025 [ke/h]
% 942.9 942.9 943.2  943.2 +0.3 [kg/m®]
z2 11 0.72 1.0 0.70 -0.3 8]
23 5.0 5.0 5.4 5.4 +0.4 [10* kg/h]
24 3.65 3.65 3.76 3.76  +0.11  [10° kg/h]

In the simulations to come, there will be violations of the cooling water flow con-
straint. The inequality constraints are not taken into account during simulation
but only during optimization, which is done to make the results of the open- and
closed-loop predictive control techniques comparable.

8.6 Kalman filter based linear time-varying MPC

In this section we will show the results of the most commonly proposed nonlinear
model predictive control strategy applied to the HPDE reactor. This strategy is
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Figure 8.2: First four iterations in LTV method. Performance after optimization

before simulation (solid), performance before optimization after simulation (dash-
dotted), nominal target performance (solid).
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Figure 8.3: Open-loop trajectories of the control inputs. Applied inputs (solid) and
nominal target inputs (dashed).
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Figure 8.4: Open-loop trajectories of the controlled variables for the grade change.
Real performance (solid), reference performance (dash-dotted), target performance
grade B(dashed).
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adequately discussed by Lee and Ricker (1994) and which has also been used within
the INCOOP project in relation to rigorous dynamic optimization. In this approach,
an extended Kalman filter is used to estimate the state of the process, while a linear
time-varying MPC is used for both tracking performance and disturbance rejection.
Detailed descriptions of the extended Kalman filter (EKF) are available in literature
(Robertson et al., 1996; Lewis, 1986; Jazwinsky, 1970) and therefore we will be brief
in its discussion.

8.6.1 The extended Kalman filter

Let us use the following notation %;,|;, denotes the best minimal variance estimate
of z(t,) using all available measurement data y upto time ¢;. Suppose we are given
the covariance matrix P;_, of the estimation error and an initial estimate Zx_1x_.
First, we integrate the model to find the estimate 1 ;_;. That is, we seek solutions

» U Y

1SS

that, for given the input trajectories

satisfy the model equations

0= f(z,z,0,8,W), Z(tk-1)=Ex—1jk—1

§y=Cii+Cyv+ Dyu+ Dyw
over the time span [tg—1, %] and then set

Txk—1 = Z(tk) and Yrjk—1 = Y(tx)-
As soon as the measurement yi arrives we compute the innovations
Ve = Yr — ??kuc—l
and we update the state estimate as
123k|k = §k|k—1 + Nivg

where the Kalman Gain is given by

Ny = PECF(CkPECT + DEWDET) ™
The estimation error covariance matrix P is then updated via

Pg,, = AxPEAT — ANy (CLPECT + DEWi DY T)NT AT + BEWi B}

where (Ag, BYY, Cy, D) are the local discrete time matrices derived from the nonlin-

ear model f at (Z(tx), Z(tx), 0(tk), u(tx), W(tk)). Several variations on this procedure
are possible, such as making multiple iterations, or using a recursive prediction error
method (Kozub and Macgregor, 1992) but this is not pursued here.
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8.6.2 The open-loop MPC

The basic optimization problem in the MPC controller is the following. Suppose at
time t; we are given the estimates for the states :%k+1| % and an initial guess for the
nonlinear input sequence @ and disturbances @] over a future horizon [tx+1, tk+1 +
nTy] of n samples with sample time 7. The superscript p is used to denote prediction
and should be interpreted as in Section 5.2, while the subscript ! denotes cycle or
iteration in the optimization. Then, using this information we generate prediction
trajectories trajectories satisfying the nonlinear model equations

— - - — _p _— — . F-
0= f(vaxfa v{))u[ ,U)f), xp(tk+l) = xk+1|k
P = C2xl + CYol + DYal + DYy .

We seek to solve the following optimization problem

. tx+nT. _ T — = —a\T _ =
min L A ReAT, + (2 — 29)T Qi(2, — 2%)dt
Uit

0= f(Z} 11,11 1o Uy @P), TP (k1) = Bhrrlk
P = CZzP + CYOP + DYuP + DPwP
hTzp () < g5y §=1,...,m
in receding horizon. As usual, we seek the updates that satisfy the linearization of
the system dynamics along the predicted trajectory
0= 0;f], 3" + 0z f|, 2" + 85 f|,v* + Bafl v +0af|, WP, zP(tks1) = 2}
2P = CiaP + CvP + DyjuP + DYw?

and for the optimization purposes we discretize and lift these dynamics by standard
sampling and zero-order hold operations. Then by solving the following QP,

min (AT + Au))TRy(AR] + Aup) + (& ~ 29 +2])T Qu(E] — 2 + 2
w;

2P = G0 7h + Gy 0P + Gy WP,

hTZ} + hTal < g, j=1,...,m

we arrive at the desired updates

uf,, =0 +uj, and Z , ~7Z +7.
The control problem is then defined as the minimization of the objective function
subject to the dynamics and the inequality constraints in table 8.2.

k+n
Te(@gn) = > (A1) T ReAti i + (Zigr — 2T Qu(Zip — 29).
i=k

In this standard open-loop MPC problem we take the references to be constant and
equal to the desired end-values of grade B.

=78 forallk

168



Alternatively (although not pursued here) one can pre-filter the reference trajectory
in a two degrees-of-freedom design by means of an open-loop dynamic trajectory
optimization. This pre-filtering of the reference control signal and feedforward is
automatic in closed-loop MPC and constrained finite horizon LQG control due to
the variational structure in the control architecture, see also the discussion on feed-
forward in section 4.2.3. In case the constraints

Tsp )

cannot be satisfied online, a constraint relaxation scheme is used in which the con-
straints are replaced by

h;rip S gj —+ E]'

and the objective function is given by (3 = 10%)

J&ELAX(ﬁl-H) — ﬂHelIZ + Jl+l(ﬁl+1)

8.6.3 Simulation results

The closed-loop results are plotted in figure 8.6. The transition for both the density
and melt-index are comparable to the off-line determined optimum, and tracking
is good except for the cool-water constraint violation of approximately 4 hours. It
peaks at approximately 2.5% of the cooling capacity and leads to approximately 1%
on average over the duration of the constraint violation. The violation is induced
by the PI loop between the reactor temperature and cooling water flow. If the
constraint would have been enforced on the actual plant and not just in relaxed
fashion in the optimization problem, the reaction would have lead to reactor run-
away and the reactor would have been shut-down. The feed flows corresponding to
the closed-loop transition are plotted in figure 8.7. The constraint relaxation scheme
that is used in the EKF+MPC implementation to keep the optimization problem
feasible at all times results in the chaotic control moves, Figure 8.5.

hydrogen flow update catalyst flow update

0.3 - T Y
-0.01
-0.02
-0.03

-0.04 -
-0.05
-0.2 -0.06

o 2 4 6 8 10 12 14 o 2 4 6 8 10 12 14
time (hrs) time (hrs)

Figure 8.5: Bias compensation using EKF+LTV-MPC. Real values (solid), H-Bias
(dashed), C-Bias (dashed).
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Figure 8.6: Closed-loop trajectories of controlled variables using EKF+LTV-MPC.
Real performance (solid), estimated performance (dash-dotted), target performance
(dashed).
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Figure 8.7: Closed-loop trajectories manipulated variables using EKF+LTV-MPC.
Applied inputs (solid) and nominal target values (dashed).
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8.7 Constrained finite horizon LQG control

In this section we will apply the closed-loop prediction techniques as introduced in
this thesis on the HDPE process. Current solution methods for the true closed-loop
MPC problem, in which one simultaneously optimizes the feedforward and feedback
control, still requires vectorization of the problem which prohibits online application
at this time. Although a formal complexity analysis falls outside our scope, it turned
out that the column example discussed in Chapter 4 was at the limit of current com-
puting power?. To cope with this reality, the (strongly related) constrained finite
horizon LQG control strategy was developed in Chapter 5 as a cheap alternative. We
will apply it here to compute the feedback controller (CFHLQG#) and feedforward
(CFHLQG?®) in consecutive steps. In application, this is a good starting point any-
way because from a structural point of view, both techniques are identical up to the
computation of K, u” such that only minor changes in the control setup are needed.
The computation of the controller K is not restrictive for online application because
it can efficiently be computed using the control Riccati recursion or directly using
the matrix valued least squares techniques discussed in Chapter 5. The feedforward
computation is of precisely the same complexity as standard open-loop MPC; a sin-
gle QP must be solved. Therefore, the computational effort of CFHLQG is the same
as for open-loop MPC. As explained above we need to solve two problems, the feed-
back problem (CFHLQG#) and the feedforward problem (CFHLQG?®). The details
of each approach can be found in Chapter 5.

8.7.1 The CFHLQG* problem

For the CFHLQG problem, we start with the same quadratic objective in the min-
imal variance problem as in the deterministic quadratic control law of the MPC,
that is, the same weighting matrices @), R and we use the same second-order infor-
mation on the disturbances w(£) as the Kalman filter. Because the weighting matrix
R is defined as a penalty on the rate of change of the inputs, we must follows the
procedure as explained in detail in Section 7.7. Hence, we define the extended state

space
(a5
7 (6) = (uzi(s))

and the extended performance variables

#0=(3%). @-(% 2)

Then, let the weighting matrix Q@ have the blocks Qz on the block diagonal for
each time instant in the horizon and let us factor

Q" = Fo+Fg+

2Simulation was carried out on a Pentium III, 1GHz
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then the minimal variance problem that must be solved is given by

vV O

min tng+(AkMkB’°+Ck)( o w

)(A"MkB" + CHYT Fo+
M, e M,

where Ay, B, Ck, Vi, Wi, are defined in Section 7.7. From M} we can extract the
feedback matrices and define the feedback law

Aui(8) = Lid} (€) + Kixvi(€)- (8.2)

8.7.2 The CFHLQG? problem

We are given an initial guess for the reference trajectories @j, ], ¥],], ¥, Z] to
be optimized that satisfy the nonlinear model equations

0= f(i'{y‘i‘{a 17{,’&{,@[), :E'{(tk"'l) = i{,k-i-l
g; = Cyay + Cyoy + Dyuj + Dy wy (8.3)
zZ[ = Cix] + CYo] + Dyuj + DY w]
and we seek updates based on the linearized dynamics along this trajectory

0= 0;fl, 2] + Ozfl, ] + Oofl,v] + Oafl,u] +0aflyw], «[(tk+1) =T k41
Y = C2z} + C2v} + D¥uj + D¥u]
2] = Ciz[ + Cv] + Dyuj + DYwf

The same objective function as in the open-loop MPC problem is used for (CFHLQG?),
with that difference that we substitute the predictions with the references

w—u, uwP—u, yPoy 2l -2

and the back-off v is subtracted form the feasible set that is the inequality constraints
are replaced by

v; +hlz" +hlz" < g;
Then by solving the following QP,
min (AT] + Au)) TRy (AG] + Au}) + (2] — 29 + 2])TQw(Z] — 29 + 27)
" z" = Gupah + Gu” + Gy W'
Vj+h}12’+h}"zr <gj, j=1,...,m
we arrive at the desired updates

=T __ =T T 5T~ 5T T ST ~oT T
G,,=0;+uwjand Zj,, ~2Z +2 and ¥, =¥ +y;-
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8.7.3 Simulations results

The above controller computation leads to actual controller action of

u()r = iy, + u(§)-

The actual realization of uf(£) is readily computed from (8.2) and the estimate
and innovations signal generated by the Kalman filter that was also used for the
open-loop MPC implementation.

The results for the density and melt-index are given in figure 8.9. Without inequal-
ity constraints, both control systems, that is the EKF+MPC and CFHLQG show
comparable performance in tracking of the main quality variables density and melt-
index and in disturbance rejection because the same quadratic weighting matrices
have been used in both approaches. Note that this has a practical advantage that
tuning matrices for existing MPC can be used as initial starting point for a CFH-
LQG implementation. Because the CFHLQG controller consists of two optimization
problems, reference tracking (CFHLQG?) can be tuned separately from disturbance
rejection (CFHLQG?) such that improved performance can be obtained.

In the constraint case on the other hand, the EKF+MPC forces cannot maintain
the cooling water constraint and there is a long unacceptable period (50% of the
transition time) in which this main constraint is violated. The closed-loop predictive
controller keeps back-off to this constraint and no violation occurs, compare Figures
8.6 and 8.9. Figures 8.11 and 8.12 shows close-ups of the reference trajectories of
the cooling water flow and Hydrogen feed, where the back-off is visualized via the 1-
dimensional confidence intervals (these intervals are the projection of the confidence
ellipsoids on the corresponding controlled variable space). Due to the back-off taken
in the feedforward solution, inequality constraints play no role in the feedback control
moves induced by disturbances and no relaxtation scheme with some arbitrary high
coefficient 3 is needed. Consequently, the control input moves are very smooth
compared to the restless action in the EKF+MPC case, compare Figures 8.8 and
8.5.

hydrogen flow update catalyst flow update
0.06 v : . (s} .
005 —f— — = : S : -0.005
_..0.04 . : : i . ~0.01
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Soozf [ oo -0.02} -
0.01 ﬁ R . -0.025
% 3 4 6 @& 10 iz 4 O T T e 6 & 10 1z 14

time (hrs) time (hrs)

Figure 8.8: Bias compensation using the closed-loop predictive controller. Real
values (solid), H-Bias (dashed), C-Bias (dashed).
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Figure 8.9: Closed-loop trajectories controlled variables with back-off. Real perfor-
mance (solid), reference performance (dash-dotted), target performance (dashed).
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Figure 8.10: Closed-loop trajectories manipulated variables with back-off. Applied
inputs (solid), reference inputs (dashed-dotted) and nominal target values (dashed).
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Figure 8.12: Close-up of closed-loop hydrogen feed flow. Applied (solid), reference

(dashed-dotted) and nominal target value (dashed).
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8.8 Chapter summary

In this section the newly developed techniques were applied to a continuous poly-
merization reactor. A grade change problem is discussed and control is used for
both tracking (feedforward) and disturbance rejection (feedback). A persistent dis-
turbance scenario on the feed flows of Hydrogen and catalyst were considered that
strongly counteract the grade change. A constrained finite horizon LQG variant of
closed-loop predictive control was implemented and compared to the industrial state
of the art as discussed in (Lee and Ricker, 1994). The main conclusion is that the
predictive controller is, in contrast to open-loop MPC, able to keep the trajectories
feasible in the disturbance case using very smooth control action for disturbance
rejection. This shows that closed-loop predictive control is applicable to realistic
process systems and is able to outperform open-loop strategies.
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9 Conclusions and recommendations

At the beginning of this thesis, an analysis of the historical development of advanced
process control compared to the historical development of high performance control
for linear unconstrained systems was made. The crucial aspects of the closed-loop
control design methodology were identified (Chapter 1) which led to a subdivision of
the research objective in seven research questions (Chapter 2). In this chapter, the
research is concluded and a future outlook is given in the recommendations.

0.1 Results and conclusions

Formulating an advanced process control problem. The advanced process control
community has over the last twenty five years focussed on open-loop model pre-
dictive control methods. Although open-loop MPC has become a mature technol-
ogy and a standard commodity, its closed-loop behavior is unequal to its open-loop
future prediction even for simplest of possible disturbance cases. This structural
discrepancy of model predictive control is caused by its ignorance towards future
disturbances and the implicit nature of its receding horizon feedback mechanism. A
necessary condition to remove these limitations is to introduce the standard or gen-
eralized plant in a predictive set-up. This means that unknown future disturbances
and measured outputs are explicitly introduced as signals besides the manipulated
and controlled variables. This apparently simple step has far reaching consequences
for the analysis and synthesis of inequality constrained control systems. It breaks
completely with the traditional MPC solution that only considers manipulated and
controlled variables in the future while past disturbances and measurements are only
considered via state-estimation.

Integration of optimization and control. Economic benefit is the primary driver to
implement advanced process control on an existing plant. Industrial RTO and APC
have two structural objectives: 1) an economic objective that consists of finding eco-
nomically optimal steady-states or in more complex cases dynamic transitions and
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2) a control objective that consists of a dynamic open-loop regulatory optimization
problem used to track these optimal set points or reference trajectories and reject
process disturbances. The separation of the overall operational business objective
of a plant in two optimization problems is inconsistent and suboptimal. It reflects
the traditional approach in which a dynamic optimization is carried out with no
consideration to future disturbances because it is implicitly assumed that a perfect
control system will reject these disturbances not limited by the dynamics of the plant
itself. To remove this inconsistency, the optimal performance of the plant-controller
interconnection should be added as a constraint on the economic optimization prob-
lem. The suboptimality follows from the fact that the optimal controller depends on
the economic objective function and cannot be found without extensive simulation
studies. A necessary condition to solve this problem is to quantify the closed-loop
performance in terms of the controller parameters and to guarantee a priori that
the computed optimal trajectories will be realized. Closed-loop MPC solves the eco-
nomic optimization and control problem simultaneously (sufficient condition), while
constrained finite horizon LQG control provides a numerically efficient approxima-
tion. The key point in closed-loop predictive control methods is that the closed-loop
predictions match the actual closed-loop behavior.

Feedback, sensitivity and constraint handling. The paradox of open-loop MPC is
that it is applied to reject disturbances, but it does not consider disturbances in its
problem formulation. The advantage is the simplicity of the implementation but
it comes at a high cost of difficult analysis and almost impossible synthesis due to
the implicit nature of the required receding horizon control action. Therefore, MPC
cannot be considered a solution to advanced control problems in the long run. To
build a systematic control synthesis procedure, the basic characteristic of feedback
design methods namely the possibility to change the process sensitivity in closed-
loop by means of control is introduced. Because the standard plant is used, in which
both future disturbances and future measurements are available, this sensitivity is
expressed in terms of direct feedback that maps the future measurements to future
control moves. The calculation of the process sensitivity has traditionally been dif-
ficult because the inequality constraints introduce non-differentiable input-output
behavior. This is not the case in the new framework, because the introduction of
future disturbances requires that back-off to the inequality constraints is introduced.
The process can then locally move freely without activating the constraints which
recovers linearity (or differentiability) of the process behavior. The strength of this
approach is the bootstrap effect that is introduced. The back-off is a function of the
disturbance properties and the process sensitivity, which is a function of the con-
troller to be chosen. For linear time-varying dynamics, linear inequality constraints
and Gaussian disturbances the problem of finding the optimal controller can be
rendered conver by suitable transformations. Two crucial observations play an im-
portant role in this transformation. First, by either using the Q-parameterization or
the Youla-Kuéera parameterization of the closed-loop system, the sensitivity function
and (consequently the factor of the closed-loop variance) becomes an affine function
of the controller parameters. Secondly, by introducing an ellipsoidal technique com-
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bined with modern results in conic programming, the back-off is computed as the
norm of this parameterization giving so-called convex second-order cone constraints.

Feedforward trajectory design. Feedforward is a major factor in high performance
control design. The two types of feedforward are disturbance feedforward and con-
trol input feedforward. Disturbance feedforward is determined by exogenous sources
outside the system boundary and can therefore be added to the reference trajectory
for the disturbance channel. Control input feedforward (from hereon referred to as
the feedforward) is a different matter because it is optimized and therefore coupled
to the choice of feedback controller. In the presented framework, the feedforward
defines the economic profit of the plant and serves as a dynamic reference trajectory
for the control inputs. It is determined by specific grade and load changes, changes
In constraints, structural changes in properties of disturbances and changes in the
economic objective function. The feedforward and thereby the planned online profit
is not influenced by specific disturbance realizations since those are handled by the
feedback discussed above. The coupling between feedforward and feedback and thus
plant economics and disturbance rejection is the amount of back-off to the inequality
constraints. The better the feedback controller is, measured in variance in dominant
economic variables, the more closely the constraints can be approached. This en-
larges the feasible set of feedforward trajectories and increases the profitability of
the process by constrained pushing. Closed-loop MPC problem handles this cou-
pling in full generality by simultaneously optimizing the feedforward trajectory and
the feedback controller. Because this problem has a convex representation we are
guaranteed to find the global optimum in a numerically efficient way.

Convergence and stationary behavior. The closed-loop MPC problem is a time-varying
feedforward/feedback problem. This holds even in the case that the process has
linear time-invariant dynamics because of the different active sets of inequality con-
straints at each different time sample in a transition. Nevertheless, for continuous
processes the target of such transitions will in the end be an economically optimal
steady-state. This steady-steady state will not lie on the constraints because of the
necessary back-off to the constraints, where the minimal back-off is determined by
the optimal controller. This optimal solution can usually not be computed directly
because this requires an infinitely long prediction and control horizon. Instead,
this optimal steady-state and LTI controller can be computed directly using LMI
methods. In this case, a two-step procedure is presented again based on the Youla-
Kucera parameterization of all stabilizing controllers. In the first step, the optimal
back-off and steady-state are computed using a sequence of finite impulse response
controllers. Then in a second step, for fixed back-off, the optimal state-space con-
troller can be computed using standard output feedback techniques. The use of
linear matrix inequalities in this approach is a limiting factor in large scale applica-
tion, and therefore a fast alternative heuristic algorithm as in the linear time-varying
case has been developed using stationary LQG results in combination with linear or
quadratic programming (depending on the objective function).
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The receding horizon implementation. In standard open-loop MPC, feedback is ob-
tained by computing a new open-loop control sequence at each time instant over a
shifted time window and for this reason open-loop MPC is also referred to as re-
ceding horizon control. The reason for the development of closed-loop MPC is to
avoid receding horizon control because the closed-loop properties are unnecessary
complicated to analyze (not to mention systematic synthesis of controllers). Nev-
ertheless, in application of closed-loop predictive control to continuous processes a
receding horizon implementation is needed. Central lies the requirement that if the
data of the optimization problem does not change over a sample, then the optimal
feedforward and feedback controller solution coincides with the previous solution.
Therefore, the receding horizon implementation is related only to derive a consis-
tent feedback mechanism in a dynamic programming sense. The key to the solution
is duality that shows that the optimal feedback controller of the closed-loop MPC
problem is also optimal for some LQG control law. From this it follows that the
recursive solution is obtained via a state-feedback (in addition to the future output
feedback) to account for all past measurements. This state-feedback gain is easily
computed using the same numerical methods as for the output feedback controller.

Application to nonlinear process systems The developed tools are all based on lin-
ear time-varying dynamics as perturbation models along trajectories of nonlinear
models. In analogy of sensitivity methods in nonlinear programming, a sequential
optimization procedure is proposed in which the closed-loop MPC problem is in-
terpreted as a sub-optimization problem. The optimal feedforward trajectory and
feedback response to measurements is added to the results of the previous iteration
as in application of linear time-varying MPC to nonlinear systems. The advantage
in this approach is that the quality of the solution improves at each cycle due to
the receding horizon implementation. To illustrate the control methodology, the
constrained finite horizon LQG controller has been applied to a HDPE polymeriza-
tion reactor. A realistic process model for the HDPE process was available as a set
of differential algebraic equations in a professional generic modelling environment.
The simulations on the HDPE case confirmed the superior constrained handling for
disturbance scenarios compared to open-loop MPC.

9.2 OQutlook and recommendations

In this thesis a new perspective on model predictive control has been given opening
the way to new theoretic and applied research.
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Recommendations for applied research. The first recommendation is to apply the
closed-loop predictive techniques to a real system to reveal its value. Presumably
the best way to proceed is build a constrained finite horizon LQG controller for a
system that is currently controlled by a Kalman filter based linear MPC. In that
case, the Kalman filter can be reused to compute the state-estimate. The quadratic
weighting matrices are then used to compute the output feedback controller K and
state-feedback controller L (Chapter 7) as well as the back-off vector. Then, on-line
the feedforward is computed using the same quadratic regulatory objective function
as for the MPC. Closed-loop performance can then be improved by exploiting the 2
degrees of freedom since different quadratic weighting matrices can be used for the
feedforward and feedback respectively for optimal tracking and disturbance rejection.
The optimal steady-states can still be generated by a real time economic optimization
layer and fed to the controller optimization problem. A second step is then to
shift the economic tasks such as constraint pushing to the control level. In a third
step the feedback controllers can be included in the on-line optimization by the
methods discussed in this thesis leading to the full closed-loop MPC implementation.
Here the freedom in convex objective functions should be exploited to add some
robustness to the feedback controller. This can be achieved by adding some closed-
loop variance penalty to the linear objective functions to reduce the extremity of
purely economically optimal solutions.

Recommendations for theoretic research. In the past decades MPC applications have
largely driven theoretic control research focussed on understanding receding horizon
control. In closed-loop predictive control an explicit feedback control law is used
which should substantially reduce the complexity of the current Lyapunov based
results to get more direct and practical tests. Because of the back-off that is used,
the connection of the finite horizon solution to the asymptotic results (Chapter
6) should provide the infinite horizon extensions in which the converged closed-
loop ellipsoids are natural candidates for terminal sets. Other interesting research
directions are related to other types of disturbances and plant uncertainty to arrive
at robust model predictive control. The direct feedback gives explicit control over the
disturbance responses of the system and other performance criteria can be explored.
Because any observer can be used to render the closed-loop affine in the controller
parameters, it is natural to break with the traditional use of the Kalman filter in
advanced process control and to move on to other observer-based output feedback
controllers. This allows for plant-model mismatch as then the stringent requirement
that the observer is a perfect representation of the plant dynamics can be relaxed.
Reduced models seem to fit in this approach as well, which can be very important
because model adequacy is much easier established than model accuracy in closed-
loop. The derivation of recursive solutions are expected to be obtained as for the
quadratic case using the optimality condition and the existing results in control
theory.
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Symbols in Systems, Signals and Control

A System matrix at time k

Ay System matrix at time k

Ac System matrix of controller

Aa System matrix of closed-loop

Ag State-space matrix of () FIR parameter

A Transformed closed-loop system matrix

B Input matrix maps u to x

By, System matrix at time k

B. System matrix of controller

By System matrix of closed-loop
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Bg State-space matrix of @@ FIR parameter

B; Transformed closed-loop system matrix

C Output matrix maps z to y

C. Output matrix of controller

Ca Output matrix of closed-loop

Ck Output matrix maps z to y at time k

Co State-space matrix of Q FIR parameter

C Output matrix maps z to z

C; Transformed closed-loop system matrix

d Deterministic bounded disturbance

D Feedthrough matrix maps u to y
Bounded disturbance set

D, Feedthrough matrix of controller

Dy Feedthrough matrix of closed-loop

Dy, Feedthrough matrix maps u to y at time k

Dg State-space matrix of @) FIR parameter

Dy Output matrix maps w to y

Di Feedthrough matrix maps u to z

D; Transformed closed-loop system matrix

€k Estimation error at time k

f Nonlinear system eqautions

F Feedback Gain
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TI,TZ, T3

Dynamic system maps u to y (same for other signals)
Lower-block matrix of Gy

Identity system

Discrete time index

Feedback controller in predictive problems
Innovations feedback controller in predictive problems
Output feedback controller in predictive problems

Set. of non-anticipating controllers

Lifted State-feedback gain

Feedthrough matrix maps v to u

Markov parameters

Kalman gain/optimal filter gain

Static output feedback gain

Number of control inputs

Number of disturbance inputs

Number of states

Number of measured outputs

Number of controlled variables

Youla-parameter in ()-parameterization

Weighting matrix LQG

Weighting matrix LQG

Time

Dynamic systems in affine parameterization of closed-loop
Manipulated variable/control input

Algebraic variables

Innovations

Disturbance input/process disturbance

Covariance matrix disturbances

State variable/latent variable

Process variable/measured output

Controlled variable/performance output

Complex variable in Z-transform

State transition matrix discrete time dynamics

State transition matrix discrete time observer dynamics
State transition matrix discrete time controller dynamics

Symbols in Optimization Problems

W P

Matrix in least squares problem
Transformed controller parameters
Operator in linear equality constraints
Matrix in least squares problem
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Transformed controller parameters

Vector in linear equality constraints

Vector in linear objectives

Matrix in least squares problem

Transformed controller parameters

Transformed controller parameters

Block structured matrix with identity matrix on location 1
Ellipsoid

Factor of the matrix P

Vector in inequality constraint definition

40 element of g

Row jin H

Matrix in inequality constraint definition
Identity matrix

index of constraints

Objective function

Objective function receding horizon

Cone in optimization problems

Polar cone in optimization problems

Lagrangian

n-dimensional Lorentz cone
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Matrix gradient

Optimization variable includes state and innovations feedback
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Weighting matrix LQG

n-dimensional Euclidean space
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Sensitivity in optimization

Primal variables

Vector space

Free matrix in generic least squares problem
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Penalty on constraint relaxation

Objective value

Upperbound for sub-optimal controllers

Free variable
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Lagrange multiplier

Vector valued Lagrange multiplier
Matrix valued Lagrange multiplier
Sub-matrix of A

Upper bounds

Back-off vector

Symbols in Probability and Stochastics
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Step-shaped disturbance (bias)
Mathematical expectation

Factor of the covariance matrix P

Factor of the covariance matrix W
Probability density function of random variable
Distribution function of random variable x
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Probability of event

Covariance matrix of state

Covariance matrix of state-estimate
Covariance matrix of estimation error
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Covariance matrix

n-dimensional Euclidean space
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Joint variance matrix state-estimate and estimation error
Variance matrix of Gaussian disturbances
Covariance matrix performance outputs
Certainty level in probability constraints
Mean

Standard deviation

Diagonal matrix with singular values
Generic element sample space

Symbols used in examples

Bottom flow

Fraction component in liquid
Feed composition

Distillate flow
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Feedflow

Force

Block matrix in difference operation
Stiffness spring

Reflux flow

Mass

Mass hold up on trays

Recycle ratio

Matrix for difference operation
Fraction component vapor
velocity

Vapor flow

Thermal quality of the feed
Position

Lowerbounds in column example
Upperbounds in column example

List of Sub/Superscripts and Operations

Determinant

Infimization

maximization

Truncated Toeplitz matrix of system 7T'(z)
Control error

Estimation error

Value of z at discrete time ¢

Variable of nonlinear system in iteration !
Reference trajectory in of nonlinear system in iteration !
State of actual nonlinear process

Predicted signal

Reference signal

A priori estimate of x

A priori estimate of x given all data up to k — 1
Optimal argument optimization problem
Extended state for rate-penalties

Stacked vector of ) for several time instances
Frobenius norm

Spectral radius

Kronecker product
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LQR
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MIMO
MPC
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ODE
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RTO
SDP
SISO
SOCP
SSP
SQP

Advanced Process Control
Closed-loop MPC

Constrained Finite Horizon LQG
Feedback subproblem

Feedforward subproblem
Controlled Variable
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Dynamic Matrix Control

Extended Kalman Filter

Finite Horizon LQG
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Generalized Predictive Control
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Linear Program

Linear Quadratic Gaussian
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Model Algorithmic Control
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Model Predictive Control
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Ordinary Differential Equations
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Quadratic Dynamic Matrix Control
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Samenvatting

De chemische proces industrie wordt door de toenemende concurrentie op de wereld-
markt gedwongen om de efficiéntie van de procesoperatie te verhogen. Vanwege de
hoge investeringskosten die nodig zijn voor het bouwen van nieuwe fabrieken is het
uiterst interessant om de bestaande fabrieken anders te opereren. Het is daarom
wenselijk dat fabrieken bijvoorbeeld een grotere variéteit aan chemische producten
produceren of sneller wisselen tussen productspecificaties of operatie strategién. Om
aan de eisen van de markt te voldoen is onderzoek en ontwikkeling een noodzakelijke
eis om producten, productie processen en operationele strategieén te vernieuwen. In
bijna alle gevallen spelen modellen van verschillende complexiteit van fabrieken of
processen een belangrijke rol in de analyse van technologische problemen en de syn-
these van oplossingen. Modellen formaliseren de huidige status van onze systeem
kennis, wijzen op zwakke plekken tijdens validatie, leiden tot nieuw onderzoek, zijn
goede dragers van kennis over lange perioden en maken multidisciplinaire samen-
werking tussen ingenieurs en wetenschappers mogelijk.

Model-gebaseerde voorspellende regelaars (MPC) zijn een voorbeeld van zeer suc-
cesvol gebruik van modellen in de verbetering van procesoperatie. Het schept de
mogelijkheid voor multivariabele procesregeling waarin veel ongelijkheidsbegrenzin-
gen kunnen worden beschouwd. Het grote aantal bedrijven dat MPC technolo-
gie aanbiedt en het grote aantal succesvolle implementaties in de laatste twintig
jaar wijzen erop dat MPC in een volwassen status verkeert, maar het gebrek aan
voorspelbaarheid van het gesloten-lus gedrag legt het sterke tekort aan theoretische
ontwikkeling bloot. De grootste structurele limitatie van MPC is dat het een open-
loop voorspellende regelmethode is met de paradoxale eigenschap dat toekomstige
verstoringen en toekomstige procesmetingen niet worden beschouwd. Het implici-
ete karakter dat volgt uit toepassing van het voortschrijdende horizon principe is
moeilijk te analyseren en systematische instelling van de MPC met ongelijkheids-
begrenzingen is ronduit onmogelijk zonder zeer uitvoerige simulatie studies. Het is
niet bekend hoe de regelaarinstellingen gekozen moeten worden om de storingsgevoe-
ligheid van het proces te beinvloeden hetgeen één van de basis eigenschappen van
iedere systematische ontwerpmethode van terugkoppelregelingen is. Daarom zijn
er geen eenvoudige methodes om voorspellende regelaars voor gewenst gesloten-lus
gedrag te ontwerpen, om de optimale bescherming tegen overschrijding van begren-
zingen te bieden of om het proces tegen de limiet aan te opereren. De realiteit
van moderne geavanceerde proces regeling, waar zowel ongelijkheidsbegrenzingen en
stochastische verstoringen een centrale rol spelen, wijst er op dat er een fundamentele
noodzaak is om het MPC probleem zodanig te herformuleren dat deze begrenzingen
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en verstoring gelijktijdig worden beschouwd, terwijl de dynamische economie van de
fabriek wordt geoptimaliseerd.

In dit proefschrift wordt een nieuw raamwerk voor geavanceerde proces regeling
gepresenteerd. Het doel is de ontwikkeling van een strategie voor geavanceerde pro-
cesregeling waarin voorspellende regelaars systematisch worden ontworpen zonder
uitvoerige simulatie studies. Dit betekent dat het voortschrijdende horizon principe
voor het genereren van terugkoppeling volledig wordt vervangen door een directe
terugkoppeling. Dit voorkomt alle typische complicaties in analyse en synthese van
voorspellende regelaars en maakt het mogelijk om een regelsysteem te ontwerpen
met gegarandeerde prestaties. Dit creéert de mogelijkheid om ontwerpmethoden
voor hoge-prestatie regelingen te combineren met de geavanceerde procesregelingen
om economisch te optimaliseren onder ongelijkheidsbegrenzingen.

In de ontwikkeling van een efficiénte structuur die aan de bovenstaande eisen voldoet
moeten een aantal stappen tegelijkertijd worden gezet. Cruciaal is het meenemen
van toekomstige verstoringen en toekomstige proces metingen naast de traditioneel
aanwezige gemanipuleerde en geregelde variabelen. De beschikbaarheid van toekom-
stige metingen en gemanipuleerde variabelen wordt gebruikt om een expliciete regel-
wet op te stellen zodat een parameterisatie van realiseerbare storingsgevoeligheids-
functies ontstaat. Vanwege de onbegrensdheid van Gaussische verstoringen worden
de ongelijkheidsbegrenzingen met een bepaalde zekerheid afgedwongen. De mini-
maal benodigde veiligheidsmarges tot deze begrenzingen worden dan bepaald door
de keuze van de regelaar en de tweede-orde statistische eigenschappen van de ver-
storingen. Bovenop deze terugkoppelingsstructuur wordt een voorwaartse koppeling
gebruikt voor alle deterministische taken zoals transities naar optimale stationaire
toestanden of veranderingen in productspecificaties en procesbelasting. Nadat de
veiligheidsmarge van de ongelijkheidsbegrenzingen zijn afgetrokken wordt de voor-
waartse koppeling gevonden door het oplossen van een deterministisch dynamisch
optimalisatie probleem dat simultaan met de terugkoppelwet word geimplementeerd
zodat het proces in operatie gegarandeerd binnen de begrenzingen blijft.

Twee model-gebaseerde voorspellende regelaars zijn ontwikkeld die bovenstaande
strategie implementeren. De volledige oplossing wordt gegeven door de zogenaamde
gesloten-lus model-gebaseerde voorspellende regelaar (closed-loop MPC) waarin de
terugkoppeling, de veiligheidsmarge en het voorwaarts gekoppelde traject simul-
taan worden geoptimaliseerd. Een voorspellende formulering van de Youla-Kucera
parameterisatie van de gesloten-lus maakt dit probleem convex zodat het kan wor-
den opgelost met behulp van moderne optimalisatie algoritmes. Een versimpeling
van deze procedure is gegeven door het eindige horizon kwadratisch probleem (con-
strained finite horizon LQG control). In dit geval wordt het probleem in tweeén
gesplitst. In een eerste stap een vaste geschikt gekozen terugkoppelwet berekend
die de veiligheidsmarge vastlegt gevolgd door een tweede stap waarin het voor-
waartse gekoppelde traject met deze vast gekozen marges wordt geoptimaliseerd.
Het voordeel van deze aanpak is dat de complexiteit van de berekening nagenoeg
gelijk is aan die van standaard open-lus MPC en dat maakt deze aanpak geschikt
voor soortgelijke problemen. Voor continue processen worden beide oplossingen in
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een voortschrijdende horizon implementatie gezet zonder hieraan terugkoppeling te
ontlenen. De optimale implementatie wordt verkregen door een voorspellende toe-
standsterugkoppeling naast de uitgangsterugkoppeling te plaatsen, zodanig dat het
volledige optimalisatie probleem altijd een vast aantal vrijheidsgraden heeft. Beide
technieken zijn gebaseerd op lineaire tijdsvariérende systemen en kunnen daarom
worden toegepast op zowel lineaire als niet-lineaire dynamische systemen. Toepass-
ing van de voorgestelde regelstrategie op een gesimuleerde niet-lineaire industriéle
polymerisatie reactor laat veelbelovende resultaten zien die verder toegepast en the-
oretisch onderzoek naar gesloten-lus voorspellende regelmethoden motiveren.
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