From process control to business control:

How the philosophy and methods of process control can be applied to businesses: key performance indicators, logistics, markets, management and other?

Trial Lecture
Deeptanshu Dwivedi
18th Jan, Trondheim
Scope of the lecture

• Introduction to Process Control
• Feedback & Feed forward Control
• Optimal Control Theory
• Stochastic Control Theory
• Model Predictive/ receding horizon control
• Self-Optimizing Control
Scope of the lecture

- Introduction to Process Control
- Feedback & Feed forward Control
- Optimal Control Theory
- Stochastic Control Theory
- Model Predictive/ receding horizon control
- Self-Optimizing Control
Process Control

• **Control** in Process Industries
 – control process variables (like T, P) when manufacturing a product

• Objectives of Process Control
 – Ensure safety
 – Reduce variability
 – Increase profits

• Process Industries
 – the chemical industry
 – oil and gas
 – the food and beverage industry
 – the pharmaceutical industry
 – water treatment industry
 – etc
Scope of the lecture

- Introduction to Process Control
- Feedback & Feed forward Control
- Optimal Control Theory
- Stochastic Control Theory
- Model Predictive/ receding horizon control
- Self-Optimizing Control
Feedback Control

- **Simple**: tight control with only a very crude model.
- **Robustness**: can adapt to new conditions.
- **Stabilization**: fundamentally change the dynamics of a system
Feedback Control: Example

<table>
<thead>
<tr>
<th></th>
<th>Process Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>Reactor</td>
</tr>
<tr>
<td></td>
<td>(to maintain temperature)</td>
</tr>
<tr>
<td>Controlled Variable</td>
<td>Temperature</td>
</tr>
<tr>
<td>Sensor</td>
<td>Temperature transmitter</td>
</tr>
<tr>
<td>Manipulated variable</td>
<td>Valve position</td>
</tr>
<tr>
<td>Disturbance</td>
<td>Feed Flow rate</td>
</tr>
</tbody>
</table>

![Diagram of a Temperature Loop](image-url)
Feedback Control: Analogy

<table>
<thead>
<tr>
<th></th>
<th>Process Control</th>
<th>Business/ Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>Room Heater, Reactor (to maintain temperature)</td>
<td>Academic Institute* (maintain effective education)</td>
</tr>
<tr>
<td>Controlled Variable</td>
<td>Temperature</td>
<td>Grades, Employment, Publications, Awards</td>
</tr>
<tr>
<td>Sensor</td>
<td>Temperature transmitter</td>
<td>Surveys</td>
</tr>
<tr>
<td>Manipulated variable</td>
<td>Valve position</td>
<td>Changes in the curriculum, Faculty-Student ratio</td>
</tr>
<tr>
<td>Disturbance</td>
<td>Feed Flow rate</td>
<td>Change in population, demographics etc.</td>
</tr>
</tbody>
</table>

*Arkun, Y. (2009)
Feedback Control: Analogy..
Feed forward Control

Take proactive corrective action by measuring disturbance
Feed Forward Control: Analogy

<table>
<thead>
<tr>
<th>System</th>
<th>Process Control</th>
<th>Business/Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room Heater, Reactor</td>
<td>Academic Institute (maintain effective education)</td>
<td></td>
</tr>
<tr>
<td>(to maintain temperature)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disturbance</td>
<td>Feed Flow rate</td>
<td>Change in population, demographics etc.</td>
</tr>
<tr>
<td>Feed forward</td>
<td>Model</td>
<td>Model/ Forecast</td>
</tr>
</tbody>
</table>

Especially in business/management problems, there is a large time delay, so feed forward may be a good policy

- Use proactive policies using forecasts
Feedback-Feed forward Combination

• Difficulty to account for every possible load disturbance in a feed forward system
 - Uncertainty causes instability

• Use feedback/ forecast both to make manage the educational institute
Scope of the lecture

• Introduction to Process Control
• Feedback & Feed forward Control
• Optimal Control Theory
• Stochastic Control Theory
• Model Predictive/ receding horizon control
• Self-Optimizing Control
Optimal Control Theory

- Deals with optimization of dynamic systems from one state to another
- Optimal control problem*

Maximize
\[J = \int_0^T F(x,u,t) \, dt + S[x(T), T] \]

subject to,
\[\dot{x} = f(x,u,t), x(0) = x_0 \]

Aim is to find, \(u^* \) & \(x^* \)
\(u^* \), optimal control
\(x^* \), optimal trajectory

- Problem may be solved numerically

*Sethi & Thompson (2009)
Optimal Control Theory..

\[u^* \]

\[x^* \]
Optimal Control: Optimum cash

Optimum cash balance: firms need cash on hand

• If too much cash
 – loss in terms opportunity cost (securities have higher rate of interest)

• If too little cash
 – will need to sell securities (=loss due to brokerage fees)

• Find tradeoff between cash and securities
Optimal Control: Optimum cash...

<table>
<thead>
<tr>
<th>Objective*</th>
<th>Maximize $J = [x(T) + y(T)]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraints (state equations)</td>
<td>$\dot{x} = r_1 x - d + u - \alpha</td>
</tr>
<tr>
<td>Constraints (control equations)</td>
<td>$\dot{y} = r_2 y - u$, $y(0) = y_0$</td>
</tr>
</tbody>
</table>

where,
- x = the cash balance in NOK
- y = security balance in NOK
- d = instantaneous rate of demand for cash
- u = rate of sale of securities
- r_1 = interest rate earned on the cash balance
- r_2 = interest rate earned on the security balance
- α = the broker's commission in dollars

*Sethi & Thompson (2009)
Optimal Control: A Production-Inventory System

• Inventory: Production-inventory are need to manage fluctuations in customer demand for the product

• Pros
 – Immediately available for demand
 – Inventory stock may be used in reaction to market prices

• Cons
 – Cost of storage
 – Opportunity cost of firm’s money tied in unused inventory
Optimal Control: A Production-Inventory System

| Objective* | maximize
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[J = \int_{0}^{T} e^{-\rho t}[h(I - \hat{I})^2 + c(P - \hat{P})^2] dt]</td>
</tr>
</tbody>
</table>

| Constraint (state equation) | \[\dot{I} = P(t) - S(t), I(0) = I_0 \] where, \]
| | \[I = \text{inventory level} \]
| | \[P = \text{production rate} \]
| | \[S = \text{sales rate at time} \]
| | \[\hat{I} = \text{inventory goal} \]
| | \[\hat{P} = \text{production goal} \]
| | \[h = \text{inventory holding cost coefficient} \]
| | \[c = \text{production cost coefficient} \]
| | \[\rho = \text{nonnegative discount rate} \]

Sethi & Thompson (2009)
Optimal Control: Nerlove-Arrow Advertising Model

- Advertising is an investment to make **Goodwill**

- **Goodwill, }G(t)\):
 \[\dot{G} = u - \delta \cdot G \]

 - \(u \) is advertising effort, say in NOK
 - Depreciates with time at a rate \(\delta \) (as consumers “drift” to other brands)
Optimal Control: Nerlove-Arrow Advertising Model

| Objective* | maximize
\[
J = \int_{0}^{T} e^{-\rho t} [R(p, G, Z) - u] dt
\]
where,
\(R = \text{revenue}\)
\(p = \text{price}\)
\(G = \text{Goodwill}\)
\(Z = \text{exogenous variables like, consumer income, population size etc.}\)
\(u = \text{advertising effort}\) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint (state equation)</td>
<td>(\dot{G} = u - \delta \cdot G, G(0) = G_0)</td>
</tr>
</tbody>
</table>

*Sethi & Thompson (2009)
Scope of the lecture

- Introduction to Process Control
- Feedback & Feed forward Control
- Optimal Control Theory
- Stochastic Control Theory
- Model Predictive/ receding horizon control
- Self-Optimizing Control
Stochastic Control

• A stochastic control problem:
 – What is the optimal magnitude of a choice variable at each time in a dynamical system under uncertainty

• Stochastic process:
 \[dX(t) = b(X(t)) \, dt + \sigma(X(t)) \, dB(t) \]
 where,
 \(b = \) drift term
 \(\sigma = \) diffusion term
 \(\{B(t)\} = \) standard Brownian motion

• \(X(t) \) may be exogenous factors
Stochastic Optimal Control: A Production-Inventory System

| Objective* | maximize $J = E\left[\int_0^T e^{-\rho t} \{h(I - \hat{I})^2 + c(P - \hat{P})^2\} dt\right]$
$E[I]$ is the expectation of I |
|---|---|
| Constraint (state equation) | $\dot{I} = (P(t) - S(t))dt + \sigma d B(t), I(0) = I_0$
where,
$I = \text{inventory level}$
$P = \text{production rate}$
$S = \text{sales rate at time}$
$\hat{I} = \text{inventory goal}$
$\hat{P} = \text{production goal}$
$h = \text{inventory holding cost coefficient}$
$c = \text{production cost coefficient}$
$\rho = \text{nonnegative discount rate}$
$\sigma = \text{white noise (sales return / inventory spoilage)}$ |

Morimoto, Hiroaki (2010)
Scope of the lecture

• Introduction to Process Control
• Feedback & Feed forward Control
• Optimal Control Theory
• Stochastic Control Theory
• Model Predictive/ receding horizon control
• Self-Optimizing Control
Model Predictive Control

• Open-loop optimal solution is not robust
• Must be coupled with on-line state / model parameter update
• Requires on-line solution for each Open-loop optimal !!
 – Analytical solution possible only in a few cases (LQ control)
• Very successful in process industries like refinery & petrochemicals
Model Predictive Control..

1. At time k, solve the open-loop optimal control problem on-line with $x_0 = x(k)$
2. Apply the optimal input moves $u(k) = u_0$
3. Obtain new measurements, update the state and solve the at time $k+1$ with $x_0 = x(k+1)$
4. Go to step 1
Model Predictive Control: Stochastic MPC

- Examples: Polymerization reactor
- Supply chains
- Dynamic hedging
- Sustainable development
- MATLAB Financial toolbox 😊
Stochastic MPC: Portfolio Optimization

• Portfolio is any collection of financial assets
 – Stocks (unit of ownership in a company)
 – Bonds (instrument of indebtedness of the bond issuer to the holders)
 – Cash

• Portfolio optimization
 – changing the set of financial instruments held to meet various criteria
 most notably, Financial risk

• Financial Risk:
 – Asset-backed risk, credit risk, foreign investment risk, liquidity risk, market risk etc
Stochastic MPC: Portfolio Optimization..

• asset price dynamics by stochastic differential equations
 – instantaneous expected returns and instantaneous volatility of the asset
 price dynamics are functions of the factors

• maximizing a utility function

• Solutions by Hamilton–Jacobi–Bellman equation
Stochastic MPC: Portfolio Optimization

- Asset based model*:
 - Linear Gaussian factor model

 Rate of Return

 \[r(t + 1) = \mu(t, x(t)) + \varepsilon^r(t) \]

 \(\varepsilon^r = \) white noise of risky asset
 \(\mu = \) the expected rate of return
 \(x = \text{exogenous factors} \)

 Prices of risky assets

 \[P_i(t + 1) = P_i(t)(1 + r_i(t)) \]

 \(r_i(t) = \) exogenous factors

 \[x(t + 1) = \Theta(t,x(t)) + \Psi(t,x(t))\varepsilon^x(t) \]

Stochastic MPC: Portfolio Optimization..

- Portfolio optimization problem

\[J = \max_{u(t),q(t)} E\left[\sum_{t=0}^{T} U_1(q(t)) + U_2(W(T)) \right] \]

\[U \text{ : utility functions capturing risk} \]
\[W \text{ : Wealth} \]
\[u \text{ : distribution of assets} \]
\[q \text{ : consumption} \]

if consumer is only interested in utility at the end of time

\[J = \max E\{U_2(W(T))\} \]
Stochastic MPC: Portfolio Optimization..

Receding Horizon Control

• Based on the information at time t, measure (for example stock prices $P_i(t)$, exogenous factors $x(t)$).
• Compute the open-loop optimization problem
• Apply only the first control decision, i.e., $u(t)$, of the sequence $u(t), u(t+1), \ldots, u(T-1)$ and we move one time step ahead.
• Go to step 1

Other example:
Railways (Schutter & Boom, 2001), air traffic management (Zhang et al, 2012), logistics (Daganzo & Erera, 1999)
Scope of the lecture

• Introduction to Process Control
• Feedback & Feed forward Control
• Optimal Control Theory
• Stochastic Control Theory
• Model Predictive/ receding horizon control
• Self-Optimizing Control
Self-optimizing Control

- Hierarchal Control*
 - Regulatory layer
 - Control unstable/integrating modes
 - CVs which would otherwise drift
 - Supervisory layer
 - Steady state local optimizer gives set points
 - Otherwise, “self-optimizing”
 - variables when kept constant ensure acceptable operation without needing optimizing layer
 - insensitive to disturbances
 - easy to measure & control
 - sensitive to manipulated variables
 - *Significant amount of theory has been developed in this group*
 - Self-optimizing variables for production planning & scheduling??

*Skogestad (2001)
Self-optimizing Control: for production planning

- What to Control at planning/scheduling layer

- In production planning, SOVs may be translated to KPIs*
 - For an objective like, Customer Delivery performance, good KPIs
 - On-time shipment %
 - average lateness of orders
 - customer query time
 - customer order lead time
 - frequency of delivery
 - For an objective like, Internal Delivery performance, good KPIs
 - production schedule attainment
 - number of order amendments
 - schedule changes

- The optimal values may be set by benchmarking/best business practices**

Acknowledgements

I would like to thank for the inputs received from:

- Prof Sigurd Skogestad (NTNU)
- Prof Heinz Preisig (NTNU)
- Prof Tore-Haug Warberg (NTNU)
- Dr Ivar Halvorsen (SINTEF)
- Dr Knut Wiig Mathisen (Advanced Process Control coordinator, Yara International ASA)
- Mr Esmaeil Jahanshahi (NTNU)
References

- Morimoto, Hiroaki, Stochastic control and mathematical modeling : applications in economics / Hiroaki Morimoto, Cambridge : Cambridge University Press, 2010
- Florian Herzog†, Simon Keel†, Gabriel Dondi, Lorenz M. Schumann, and Hans P. Geering, Model Predictive Control for Portfolio Selection, Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA, June 14-16, 2006
- B. De Schutter and T. van den Boom, Model predictive control for railway networks, International Conference on Advanced Intelligent Mechatronics Proceedings 6-12 July 2001 Como, Italy
- Katerina Konsta & Evi Plomaritou, Key Performance Indicators (KPIs) and Shipping Companies Performance Evaluation: The Case of Greek Tanker Shipping Companies, International Journal of Business and Management Vol. 7, No. 10; May 2012
Conclusions

• Process Control principles are/ may be used for businesses and management
 – Qualitatively &/Or Quantitatively

• Process Control theory may provide a systematic framework to make business decisions