A Distributed Algorithm for Scenario-based Model Predictive Control using Primal Decomposition

Dinesh Krishnamoorthy * Bjarne Foss ** Sigurd Skogestad *

* Dept. of Chemical Engineering, Norwegian Univ. of Science & Technology (NTNU), NO-7491 Trondheim, (e-mail: dinesh.krishnamoorthy@ntnu.no, skoge@ntnu.no).
** Dept. of Engineering Cybernetics, Norwegian Univ. of Science & Technology (NTNU), NO-7491 Trondheim, (e-mail: bjarne.foss@ntnu.no)

Abstract: In this paper, we consider the decomposition of scenario-based model predictive control problem. Scenario MPC explicitly considers the concept of recourse by representing the evolution of uncertainty by a discrete scenario tree, which can result in large optimization problems. Due to the inherent nature of the scenario tree, the problem can be decomposed into each scenario. The different subproblems are only coupled via the non-anticipativity constraints which ensures that the first control input is the same for all the scenarios. This constraint is relaxed in the dual decomposition approaches, which may lead to infeasibility of the non-anticipativity constraints if the master problem does not converge within the required time. In this paper, we present an alternative approach using primal decomposition which ensures feasibility of the non-anticipativity constraints throughout the iterations. The proposed method is demonstrated using gas-lift optimization as case study.

Keywords: Scenario Optimization, Primal decomposition, Uncertainty, Distributed optimization

1. INTRODUCTION

Model predictive control (MPC) has proven to be a highly successful control methodology in the process control industry due to its ability to handle large and complex multivariable systems, subject to process and operating constraints. MPC typically uses models that represents the system and computes an optimal input trajectory based on model predictions in order to minimize a certain cost function over the prediction horizon. Recently, there has been an increasing trend in the use of Economic NMPC, where the economic objectives are incorporated into the MPC problem.

The presence of plant-model mismatch or process variations can easily lead to constraint violations or suboptimal operation. Different approaches have been proposed in the literature to handle uncertainty in the MPC problem, such as min-max MPC (Campo and Morari, 1987), which computes an optimal input trajectory that minimizes the cost of the worst-case realization of the uncertainty. This, however, leads to a very conservative solution, since the optimization is performed in an open-loop fashion. It ignores the fact that new information will be available and a new control trajectory will be re-computed in the future. In other words, min-max MPC ignores one of the important aspect of uncertainty handling, namely, feedback. Feedback min-max MPC scheme was proposed by Scokaert and Mayne (1998) to overcome the limitations of the open-loop min-max MPC. Feedback min-max MPC is a closed-loop optimization scheme, where the notion of feedback is explicitly taken into account by optimizing over different control policies rather than a single control trajectory by representing the evolution of the uncertainty by a scenario tree. This approach was later studied in detail for nonlinear systems in the context of multistage NMPC problem and was shown to reduce the conservativeness at the cost of computational time (Lucia et al., 2013a).

One of the main challenges of this method is that the computational size of the problem grows exponentially with 1) length of the prediction horizon, 2) number of uncertain parameters and disturbances and 3) number of discrete models for each uncertain variable that is considered in generating the different scenarios. This poses a challenge for real-time implementation, despite advancements in computational power and efficient numerical solvers.

One solution to this problem is to stop the branching after a certain number of samples in the prediction horizon (known as robust horizon) in order to curb the number of scenarios as described in Lucia et al. (2013a). Another solution is to exploit the fact that each scenario can be written as an independent subproblem except for the so-called non-anticipativity constraints. Hence decomposition methods can be employed by solving the subproblems.
independently and later use a master problem to co-
ordinate the individual subproblems iteratively.

Scenario decomposition using dual decomposition was pro-
posed by Lucia et al. (2013b) and Martí et al. (2015). Dual
decomposition (also known as Lagrangian decomposition)
moves the subproblems by relaxing the coupling
constraints. A master problem then co-ordinates the in-
dividual subproblems iteratively. The previously relaxed
constraints are feasible only upon convergence. Martí et al.
(2015) indicates that such methods require a relatively
large number of iterations between the master problem
and the subproblem to converge, leading to challenges
with practical implementation. The use of augmented
lagrangian methods can help improve the convergence
properties, however this makes the problem non-separable
(Boyd et al., 2011).

The risk of dual decomposition is then that the master
problem may not converge within the required time. This
leads to infeasibility of the non-anticipativity constraints,
the implications of which are that the different subprob-
lems may give different control inputs at the first sample
time in the prediction horizon. This is not acceptable for
real-time closed-loop implementation. In this paper, we
propose an alternative approach to scenario decomposition
using the primal decomposition approach which ensures
the non-anticipativity constraints are always feasible. This
is because, in contrast to dual decomposition, primal
decomposition produces a primal feasible solution with
monotonically decreasing objective value at each iteration.

The key challenge in any real-time implementation of
optimizing controllers such as MPC is clearly, how best
to deal with time. Quoting Kerrigan et al. (2015), “The
correctness of a computation is a function of time”. The
late-arrival of a solution in many cases may simply not
be acceptable. In real-time optimization, approximate so-
lution now is better than an accurate solution tomorrow.
This strategy is adopted in many optimization algorithms
(Kerrigan et al., 2015). This is also the motivation to use
primal decomposition as opposed to dual decomposition
for the scenario MPC problem.

The paper is organized as follows. The framework of sce-
nario MPC is introduced in section 2. The decomposition
algorithm is presented in section 3. The proposed method-
ology is verified using a case study in section 4 before
concluding the paper in section 5.

2. SCENARIO MPC

Consider a discrete-time nonlinear system of the form,

$$\mathbf{x}_{k+1} = f(\mathbf{x}_k, \mathbf{u}_k, \mathbf{d}_k)$$

(1)

where, $\mathbf{x}_k \in \mathbb{R}^{n_x}$ denotes the state vector at time step k,
$\mathbf{u}_k \in \mathbb{R}^{n_u}$ is the vector of control inputs and $\mathbf{d}_k \in \mathbb{R}^{n_d}$
represents the uncertain parameters and disturbances.
Let us assume that the uncertainty belongs to a known
distribution such that $\mathbf{d}_k \in \mathcal{U} \forall k$.

If the model (1) is perfect, the predicted state trajectory
is given by $\mathbf{x}_{[k,k+N]}$ for the open-loop implementation of
the corresponding input trajectory $\mathbf{u}_{[k,k+N-1]}$ over
the prediction horizon $[k, k+N]$. However, in the presence
of plant-model mismatch, $\mathbf{u}_{[k,k+N-1]}$ must be associated

with a cone of state trajectories $\{\mathbf{x}_{[k,k+N]}\}_{\mathcal{U}}$ depending
on the realization of the uncertain variables (Guay et al.,
2015). Optimizing over a single control trajectory (open-
loop optimization) disregards feedback. In other words,
it disregards the fact that new information will be avail-
able in the future and the control trajectory will be re-
optimized. It may be prudent to optimize over different
control policies rather than a single control trajectory, see
Mayne (2014) and Mayne (2015). In other words, the opti-
mization problem should compute a cone of possible con-
trol trajectories $\{\mathbf{u}_{[k,k+N-1]}\}_{\mathcal{U}}$ instead of a single control
trajectory. A simple approach to solve this problem is to
discretize the uncertainty space and represent the cone of
trajectories as discrete scenarios. This is the basic principle
behind scenario MPC. Scenario MPC (also known as mul-
tistage MPC or feedback min-max MPC) is thus a closed-
loop optimization approach, where the evolution of the
uncertainty is explicitly taken into account by modelling
a tree of discrete scenarios as described by Scolaert and
Mayne (1998). By doing so, we can considerably reduce
the conservativeness of the solution compared to min-max
methods that optimize over a single control trajectory
(Lucia et al., 2013a).

To formulate the scenario MPC mathematically, the dis-
crete-time nonlinear system (1) reads as,

$$\mathbf{x}_{k+1,j} = f(\mathbf{x}_{k,j}, \mathbf{u}_{k,j}, \mathbf{d}_{k,j})$$

(2)

where, the subscript $(\cdot)_{k,j}$ represents the j^{th} scenario at
step k.

The first step to building a scenario tree is to discretize
the uncertainty space \mathcal{U} to get M discrete realizations.
A common practice is to consider a combination of nominal
and extreme values to cover the overall uncertainty space,
which has been shown to give good results in many
different application examples, see Lucia et al. (2013a),
Krishnamoorthy et al. (2017) and the references therein.

From the discrete realizations of the uncertainty, a scenario
tree is generated as shown in Fig.1. Each scenario is defined
as the path from root node to the leaf node. The number of
scenarios resulting from the branching at each time
step leads to exponential growth of the problem. A simple
strategy to curb this is to stop the branching after a certain
period of time N_r (known as robust horizon) as justified
in Lucia et al. (2013a). The total number of scenarios is
then given by $S = MN_r$.

Fig. 1. Scenario Tree for $M = 3$ and $N_r = 2$.

\[346\]
The resulting optimization problem is then written as,

$$\min_{\mathbf{x}_{k,j}, \mathbf{u}_{k,j}} \sum_{j=1}^{S} \left[\omega_j \sum_{k=1}^{N} J(\mathbf{x}_{k,j}, \mathbf{u}_{k,j}) \right]$$ \qquad (3a)

s.t.

$$\mathbf{x}_{k+1,j} = f(\mathbf{x}_{k,j}, \mathbf{u}_{k,j}, \mathbf{d}_{k,j})$$ \quad (3b)

$$g(\mathbf{x}_{k,j}, \mathbf{u}_{k,j}) \leq 0$$ \quad (3c)

$$\sum_{j=1}^{S} \mathbf{E}_j \mathbf{u}_j = 0 \quad \forall j \in \{1, \ldots, S\}$$ \quad (3d)

where ω is the probability or weight for each scenario, $J(\mathbf{x}_{k,j}, \mathbf{u}_{k,j})$ is the cost function, $f(\mathbf{x}_{k,j}, \mathbf{u}_{k,j}, \mathbf{d}_{k,j})$ is the system model, $g(\mathbf{x}_{k,j}, \mathbf{u}_{k,j})$ represents the nonlinear constraints. The constraints in (3d) are known as *non-anticipativity* or *causality* constraints which impose the fact that the future control inputs cannot anticipate the realization of the uncertainty. This implies that the states that branch at the same parent node, must have the same control input. Note that \mathbf{u}_j here represents the sequence of optimal control input for the j^{th} scenario, i.e. $\mathbf{u}_j = [\mathbf{u}_{1,j}^T \cdots \mathbf{u}_{N-1,j}^T]^T \in \mathbb{R}^{n_u N}$. To explain the notation of \mathbf{E}, we first introduce the notation:

$$p = n_u \sum_{j=1}^{S} n_u_{c,(j+1)}$$ \quad (4)

where $n_u_{c,(j+1)}$ represents the number of common nodes for two consecutive scenarios j and $j+1$ in the scenario tree (Klintberg et al., 2016). The matrices $\mathbf{E}_j \in \mathbb{R}^{p \times n_u N}$ can then be given as,

$$\mathbf{E} = \begin{bmatrix} E_{1,1} & E_{1,2} & \ldots & E_{1,S} \\ E_{2,1} & E_{2,2} & \ldots & E_{2,S} \\ \vdots & \vdots & \ddots & \vdots \\ E_{S,1} & E_{S,2} & \ldots & E_{S,S} \end{bmatrix}$$ \quad (5)

where

$$E_{j,j+1} = \begin{bmatrix} I_{n_u} & \cdots & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & I_{n_u} \end{bmatrix} \in \mathbb{R}^{n_u n_{u_{c,(j+1)}} \times n_u N}$$ \quad (6)

and $0 \in \mathbb{R}^{n_u n_{u_{c,(j+1)}} \times n_u (N-N_u)}$ is a zero matrix. Using such a chain structure for the non-anticipativity constraints results in sparse structures, which can be an added advantage (Klintberg et al., 2016).

3. SCENARIO DECOMPOSITION

As described above, the different scenarios are independent except for the non-anticipativity constraints, which couple the different scenarios together. To this end, the different scenarios are easily separable. Different decomposition strategies exist that facilitates efficient solutions of such large scale optimization problems by decomposing them into smaller subproblems. This way the different subproblems can be parallelized. A master problem is then employed to co-ordinate the coupling constraints, (Bertsekas, 1999).

3.1 Lagrangian Decomposition

In Lagrangian decomposition, the dual variables λ corresponding to the non-anticipativity constraints are used to define the Langrange function,

$$L(\mathbf{x}, \mathbf{u}, \lambda) = \sum_{j=1}^{S} \sum_{k=1}^{N} \omega_j J(\mathbf{x}_{k,j}, \mathbf{u}_{k,j}) + \lambda^T \mathbf{E}_j \mathbf{u}_j$$ \quad (7)

Since $L(\mathbf{x}, \mathbf{u}, \lambda)$ is separable in \mathbf{x} and \mathbf{u}, each scenario can be solved independently by relaxing the non-anticipativity constraints as shown (Klintberg et al., 2016),

$$L(\mathbf{x}_j, \mathbf{u}_j, \lambda) = \omega_j \sum_{k=1}^{N} J(\mathbf{x}_{k,j}, \mathbf{u}_{k,j}) + \lambda^T \mathbf{E}_j \mathbf{u}_j$$ \quad (8)

Note that (7) and (8) are also subject to the system model (3b) and nonlinear constraints (3c) for all $j \in \{1, \ldots, S\}$. The master problem iterates on λ and the non-anticipativity constraints become feasible only upon convergence of λ. Different forms of augmented Lagrangian decomposition methods have also been introduced in Martí et al. (2015), where an additional quadratic penalty term is added to (7) to improve the convergence properties. However, this makes the problem not separable in \mathbf{x} and \mathbf{u}. The subproblems must then be solved sequentially using the Alternating Directions Method of Multipliers (ADMM) approach (Boyd et al., 2011). Solving the subproblems sequentially can then make the computation time longer for problems with large number of scenarios.

The relaxation of the non-anticipativity constraints in Lagrangian decomposition poses a challenge for real time implementation. In an MPC framework, the optimization problem is solved to compute the optimal control trajectory and the first control move in implemented in the plant in a receding horizon fashion. In scenario MPC, the non-anticipativity constraints ensure that the first control input is the same for all the scenarios. However, if λ fails to converge within the required sampling time, infeasibility of the non-anticipativity constraints would mean that the first control move provided by the different scenario subproblems may be different. This is not acceptable for closed-loop implementation. We therefore, provide an alternative approach using primal decomposition framework which always produces a primal feasible point with monotone-decreasing objective value at each iteration.

3.2 Primal Decomposition

Primal decomposition iterates directly on the shared variables (Bertsekas, 1999). This ensures that the non-anticipativity constraints are always feasible at any point.
The generation of $\Phi_j(t_t)$ can be written by introducing a new auxiliary variable t_t,

$$
\Phi_j(t_t) = \min_{x_k,j,u_k,j} \omega_j \sum_{i=1}^{N} J(x_{k,j}, u_{k,j})
$$

subject to

$$
x_{k+1,j} = f(x_{k,j}, u_{k,j}, d_j)
$$

$$
g(x_{k,j}, u_{k,j}) \leq 0
$$

$$
E_j u_j = t_t
$$

where t_t has a similar structure to E_j as shown below,

$$
t_t = \begin{bmatrix} t_{1,2} & -t_{1,2} & \cdots & \cdots & \cdots & t_{S-1,S} & -t_{S-1,S} \end{bmatrix}
$$

which simplifies to updating each t_t using the corresponding lagrange multipliers from the different subproblems as shown in Fig.2.

The master problem is then written as,

$$
\min_{t_t} \sum_{j=1}^{N} \Phi_j(t_t)
$$

which simplifies to updating each t_t using the corresponding lagrange multipliers from the different subproblems as shown in Fig.2.

The generation of $t_{j,j+1}$ and the master problem update is illustrated using an example with $M = 3$ and $n_R = 2$. The corresponding scenario tree is shown in Fig.1 and the decomposed tree is shown in Fig.3. For such a tree, $l = 4$ and $t_t = \{t_1^T, \cdots, t_4^T\}$. Table 1 shows the $t_{j,j+1}$ or each scenario pair.

Each t_t is then updated in the master problem as shown,

$$
t_{1}^+ = t_{1} + \alpha_{1}(\lambda_{1,1} + \cdots + \lambda_{1,9})
$$

$$
t_{2}^+ = t_{2} + \alpha_{2}(\lambda_{2,1} + \cdots + \lambda_{2,3})
$$

$$
t_{3}^+ = t_{3} + \alpha_{3}(\lambda_{3,4} + \cdots + \lambda_{2,6})
$$

$$
t_{4}^+ = t_{4} + \alpha_{4}(\lambda_{4,6} + \cdots + \lambda_{2,9})
$$

where the subscripts of $\lambda_{k,j}$ represents the lagrange multipliers at sample instant k for the j^{th} scenario and α is a suitable step length. A simple stopping criteria for the iterations between the master problem and the subproblems could be when the change in t_t between two consecutive iterations is less than some small user-defined tolerance ϵ.

By introducing the auxiliary variables t_t, the first control input for all the scenarios is $u_1 = t_1$. The master problem iterates to drive t_t to the optimal input. In the case, where the master problem does not converge to the optimum within the required sampling time, the non-anticipativity constraints are still feasible, thus enabling closed-loop implementation. By warm-starting t_t in the subsequent time steps, the optimization problem is expected to eventually converge to the true optimum.

4. ILLUSTRATIVE EXAMPLE

4.1 Process description

The primal decomposition approach proposed above is implemented on an oil and gas production optimization problem. We consider a gas lifted well network consisting of 2 wells producing to a common manifold and a riser as shown in Fig.4. More detailed description of the system can be found in Krishnamoorthy et al. (2016) and the references therein.

The objective of the optimization problem is to find the optimum gas lift injection rates for the two wells such that the the profits from the oil production is maximized and the cost of gas compression is minimized. The gas-oil-ratio GOR_i for each well $i \in \{1, \cdots, n_w\}$, is assumed to be uncertain. The nominal value GOR_{00} and the variance σ_i are assumed to be known a-priori.

$$
\min_{w_{gl}} \sum_{k=1}^{n_R} \left[-\delta_{w0} \sum_{i=1}^{n_w} w_{po,i,k} + \delta_{gl} \sum_{i=1}^{n_w} w_{gl,i,k} \right]
$$

subject to

$$
x_{k+1} = f(x_k, u_k, GOR_{ik})
$$

$$
GOR_{i} \in [GOR_{00} \pm \sigma_i]
$$

where w_{po} is the oil production rate from each well, w_{gl} is the gas lift injection rate for each well, $n_w = 2$ is the number of wells, δ_{w0} and δ_{gl} are the value of produced and injected gas respectively.

Table 1. Construction of $t_{j,j+1}$ for the scenario tree in Fig.3.

<table>
<thead>
<tr>
<th>$(j,j+1)$</th>
<th>$n_{w}(j,j+1)$</th>
<th>$t_{j,j+1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,2)</td>
<td>2</td>
<td>t_1^T</td>
</tr>
<tr>
<td>(2,3)</td>
<td>2</td>
<td>t_2^T</td>
</tr>
<tr>
<td>(3,4)</td>
<td>1</td>
<td>t_3^T</td>
</tr>
<tr>
<td>(4,5)</td>
<td>2</td>
<td>t_4^T</td>
</tr>
<tr>
<td>(5,6)</td>
<td>2</td>
<td>t_5^T</td>
</tr>
<tr>
<td>(6,7)</td>
<td>1</td>
<td>t_6^T</td>
</tr>
<tr>
<td>(7,8)</td>
<td>2</td>
<td>t_7^T</td>
</tr>
<tr>
<td>(8,9)</td>
<td>2</td>
<td>t_8^T</td>
</tr>
</tbody>
</table>
The continuous time differential equations are discretized into (17b) using a third order direct collocation scheme in CasADi v3.0.1 (Andersson, 2013) using the MATLAB R2017a programming environment. The NLP problem is then solved using IPOPT version 3.12.2 running with mumps linear solver.

The dynamic optimization problem was solved with a prediction horizon of $N = 15$ and a sampling time of $T_s = 5\text{min}$. A robust horizon of $n_R = 2$ was chosen. $M = 3$ discrete realizations of the uncertain parameter GOR chosen are shown in Table 2. For the scenario decomposition approach, the step length was fixed at $\alpha = [0.0001, 0.0002, 0.0002, 0.0002]$ for $M = 3$ discrete realizations of the uncertain parameter GOR. The stopping criteria was defined as when the change in t between two consecutive iterations is less than $\epsilon = 0.001$.

4.2 Results and Discussion

In this section, the performance of the centralized approach and the distributed approach using primal decomposition as proposed above is compared using the case study described above. For the comparison of scenario MPC with nominal and worst case MPC for this problem, the reader is referred to Krishnamoorthy et al. (2017).

In the first simulation, we compare the centralized solution with the decomposed solution. The true realization of GOR for the cases is as shown in Fig 5. The total produced oil for the centralized and decomposed case are shown in top left subplot in Fig 5. The error between the centralized and decomposed solution is shown in top right subplot. The control input (gas lift injection rates for wells 1 and 2) for centralized and decomposed solution is plotted in the middle left subplot and the corresponding error is plotted in the middle right subplot. The number of iterations required for the scenario decomposition to converge at each time step is plotted in the bottom right subplot. From the simulation results, it can be seen that the primal decomposition approach provides similar solution as the centralized approach. Warm starting the problem at subsequent time steps reduced the number of iterations required to converge in the subsequent time steps. The average computation time for each subproblem was around 1s, as opposed to 11s for the centralized problem.

As mentioned earlier, the main advantage of primal decomposition over dual decomposition methods is when the master problem does not converge within a required sample time. This will lead to violation of the non-anticipativity constraints in dual decomposition, thus leading to closed-loop implementation issues. However, primal decomposition always ensures the feasibility of non-anticipativity constraints. From the results in Fig 5, it was seen that the number of iterations varied between 1 and 19 to converge. To emulate the case where the master problem has to be terminated before it converges fully, the number of iterations is capped at 5. The simulation setup is the same as the previous case. In the case of dual decomposition, prematurely stopping the iterations as done in this simulation will result in an infeasible solution, which causes implementation issues.

The results are shown in Fig 6. It can be clearly seen that the error between the centralized and decomposed approach is much larger during the first hour compared to the results in Fig 5. It can also be seen that the error becomes smaller over time, clearly showing the benefits of warm starting the master problem. The number of iterations required is also reduced to 1 when the change in GOR is constant for a period. This shows that if the disturbance is not varying too much, the primal decomposition is able to converge to the true optimal solution despite terminating the master problem prematurely. A close look of the first 1 hour of simulation comparing the simulation with the number of iteration uncapped (Fig 5) and capped (Fig 6) is shown in Fig 7.

Fig. 4. Schematic of a gas lifted well network with 2 wells producing to a common riser manifold.

Table 2. The discrete realizations of GOR used in the optimizer

| GOR well 1 | 0.08 | 0.10 | 0.12 |
| GOR well 2 | 0.10 | 0.12 | 0.14 |

Fig. 5. Comparison of centralized approach and decomposition approach.
5. CONCLUSION

In this paper, we presented an alternative approach to scenario decomposition using primal decomposition. The primal decomposition approach always ensures the feasibility of the non-anticipativity constraints, hence enabling closed-loop implementation, unlike dual decomposition methods. Warm-starting the master problem eventually leads to convergence over time. Primal decomposition approach may thus be an useful way to decompose scenario MPC for applications with higher sampling rates. The proposed method was tested on a gas lift optimization case study. The simulation results clearly demonstrates the benefit of primal decomposition approach for scenario decomposition. Simulation results show that the primal decomposition eventually converges to the solution of the centralized counterpart despite being terminated prematurely.

6. ACKNOWLEDGEMENTS

Fruitful discussions with Prof. Eduardo Camponogara, Dr. Thiago Lima and Marco Aguiar from the Federal University of Santa Catarina are gratefully acknowledged.

REFERENCES

