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Abstract

Static estimators are commonly used as "soft-sensors" in the process industry.
The performance of the estimators depend on whether it is used for monitoring
(open-loop) or for closed-loop control applications. In this work, we propose to
design the estimators which are specialized for each case. The approach is to
minimize the estimation error for expected disturbances and measurement noise.
The main extension compared to previous work is to include measurement noise
and to provide explicit formulae for computing the optimal static estimator.
We also compare the results with standard existing estimators, e.g. PLS. The
approach is applied to estimation of product composition in a distillation column
from combination of temperature measurements.

Keywords: estimation, static estimator, combination of measurements,
distillation, composition

1. Introduction

In a chemical plant, there are usually a large number of sensors which are
used for monitoring and control of processes. However, some process variables
(e.g., composition) may be too di�cult or expensive to measure online. Estima-
tors, also called soft sensors, work by predicting such variables using available
measurements (e.g. temperatures).

Both dynamic and static estimators may be used, but the simpler static
estimators are most common in the process industry. Since our method is a
static estimator, our literature survey is limited to this group. There are many
approaches that have been used to obtain the static estimators, including multi-
variate regression [16, 27], arti�cial neural networks [2], support vector machine
regression [26], etc.

Principle Component Regression (PCR) [15] and Partial Least Squares (PLS)
[24] are two of the most used data analysis tools in chemometrics. These meth-
ods are based on projecting the solution to a lower-dimensional subspace. The
literature review by Wentzell and Montoto [23] compared these two methods,
covering both experimental and simulation studies. In short, the advantage
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of PLS is that the method obtains a small prediction error with fewer princi-
pal components than for PCR. Li and Shao [13] have mentioned large samples
needed for regression and insensitivity to measurement errors as two drawbacks
of these methods. Because of the popularity of these methods, we are going to
compare our method with the PLS regression method.

The simplest model-based static estimator is the "inferential estimator" of
Brosilow and coworkers ([10]). Let u′ =

[
u d

]
represent the vector of in-

dependent variables, including the inputs u and the disturbances d. Let x
represent the process measurements and y the variables we want to estimate.
Let the linear static model in deviation variables be

x = X u′ (1)

y = Y u′ (2)

The "Brosilow" estimator is then simply the following least squares estimate
of y

ŷ = Hxm (3)

where
H = YX† (4)

and X† is the pseudo inverse of the matrix X.
Joseph and Brosilow [10] discuss some of the weaknesses of this estima-

tor. For "ill-conditioned" plants, they �nd that the estimate may be improved
in some cases by removing measurements, because this reduces the condition
number. Where the condition number of X is large, intuitively, removing mea-
surements cannot be the optimal way of dealing with these problems, because
we are then throwing away information. This is also clear when we consider the
popular "data-based" regression estimators, like Partial Least Squares (PLS)
regression [12], where one does not remove measurements, but instead removes
weak "directions" in the data.

A fundamental problem with the Brosilow inferential estimator is that it
fails to take into account measurement noise in an explicit manner. The main
goal of this paper is to include the e�ect of measurement noise in the derivation
of the optimal model-based static estimator. This is the �rst static estimator
to include static measurement error (noise) in a rigorous manner. This allows
one to design an estimator which is optimal in terms of disturbances and also in
terms of noise. The latter means that we handle in an optimal manner the "high
condition number problem", which has been a major concern in previous work
([10], [16], [9], [17], [22]).The derivation is straightforward, but surprisingly it
seems it has not been presented before.

Another issue is that the Brosilow least squares estimator does not take
into account whether the estimator is used only for monitoring or for closed-
loop operation. Actually the latter is a shortcoming of most existing data-
based estimators. In the paper, we derive optimal estimators for four cases as
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illustrated in Figure 1. Case S1 is the direct extension of the Brosilow inferential
estimator to include measurement noise. In case S2, the inputs u are used to
control the variables y at given setpoint ys. It is similar to case S1, except
that the setpoint ys takes the role of the inputs. Case S3 is a generalization
where we control the variables z. Cases S1, S2 and S3 are practically relevant
if the estimator is used for monitoring only, because the estimate ŷ is not used
for control. Finally, case S4 is the relevant case when we use the estimator in
closed loop (for control purposes). Whereas the optimal estimators for cases for
cases S1, S2 and S3 are least-square estimators with a similar structure to the
Brosilow estimator in (4), the structure for case S4 is quite di�erent and the
mathematics to derive it are more complex. The derivation is based on results
for optimal measurement combination for self-optimizing control [1] and is the
main new contribution of this paper.

The derivation of the new static estimators is presented in section 2. The
concept of some well-known data-based estimators are described in section 3.
In section 4 we discuss how we can use our new ideas for optimal model-based
to derive new data-based estimator. Finally, in section 5, we compare the new
static estimators with previous work, including the Brosilow estimator and re-
gression based estimators on distillation case-studies.
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(a) S1: Monitoring case where u is a free variable
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(b) S2: Monitoring case where u is used to control the primary variable y

Plant
H

Plant
H

Plant
H

Plant
H

u

d

d

d

d

u

u

u

y

y

y

y

x

x

x

x

K

K

K

+

+

+

+

nx

nx

nx

nx

ŷ

ŷ

ŷ

ŷ

xm

xm

ys -

z
-

zs

xm

xm
ys

-

(c) S3: Monitoring case where u is used to control the secondary variable z
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(d) S4= CL: "closed-loop" case where u is used to control the predicted variable
ŷ

Figure 1: Block diagrams for di�erent scenarios

2. Derivation of Model-based Static Estimators

2.1. Problem de�nition

In this section, we derive optimal "open-loop" and "closed-loop" static esti-
mators. By "optimal", it is meant that we for a linear estimator of the form

ŷ = Hxm (5)

want to minimize the expected prediction error

e = y− ŷ (6)
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Figure 2: Block diagram for the linearized plant

The actual measurements xm, containing measurement noise nx are

xm = x+ nx (7)

We de�ne the following variables:

� u: inputs (degrees of freedom), these may represent setpoints for lower-
layer controllers

� d: disturbances, including parameter changes.

� x: all available measured variables.

� nx: measurement noise (error) for x.

� y: primary variables that we want to estimate

� z: secondary variables, which we may control, dim (z) = dim (u)

All variables are assumed to be deviation variables (away from the nominal
or centered values). We use linear static models for the primary variables y,
measurements x, and secondary variables z (see Figure 2)

y = Gyu+ Gd
yd (8)

x = Gxu+ Gd
xd (9)

z = Gzu + Gd
zd (10)

In terms of the notation used for the Brosilow inferential estimator in (1) we
have

X =
[

Gx Gd
x

]
(11)

Y =
[

Gy Gd
y

]
(12)

In addition, the expected magnitude variables of the independent variables
for each case (see Figure 1) is quanti�ed by weighting matrices (Wu, Wd,
Wnx ,Wys , Wzs), as explained in detail below.
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2.2. Estimators used for monitoring (cases S1, S2 and S3)

With the term �open-loop�, it is implied that the predicted variables ŷ =
Hxm are used for monitoring, that is, they are not used for control purposes.
It should be noted that this is not the same as implying that the variables in a
given system are uncontrolled. We can think of three main types of open-loop
monitoring estimators are illustrated in Figure 1:

Case S1 Predicting primary variables from a system with no control, i.e. the
inputs u are free variables.

Case S2 Predicting primary variables from a system where the primary vari-
ables y are measured and controlled, i.e. the inputs u are used to keep
y = ys.

Case S3 Predicting primary variables from a system where the inputs u are used
to control the secondary variables z, i.e. z = zs.

We �rst consider case S1 in detail. Cases S2 and S3 are then straightforward
extensions.

2.2.1. Case S1

Case S1 is the direct extension of the Brosilow estimator to include noise.
To �nd the optimal estimator for open-loop operation, the prediction error has
to be expressed as a function of the system and the estimator.

Lemma 1. For a given linear estimator , when applied to the system de�ned in
equations (5)-(9), and considering that u is a free variable, the prediction error
can be expressed as

e (H) =
[
(Gy −HGx)

(
Gd
y −HGd

x

)
−H

]  u
d
nx

 (13)

Proof. An expression of ŷ as a function of u, d and nx can be obtained by
substituting equations (7) and (9) into equation (5).

ŷ = H
(
Gxu+ Gd

xd+ nx
)

Using the de�nition of prediction error and substituting the expression for ŷ,
we will have

e (H) = (Gy −HGx) u+
(
Gd
y −HGd

x

)
d−Hnx

which is the same as equation (13).

Next, we derive an expression for the expected prediction error, assuming
that u, d, nx are normally distributed with given weight matrices.
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Lemma 2. Expected prediction error. Let the disturbance and noise be
normalized on the form

u = Wuu
′

d = Wdd
′

nx = Wnxnx
′

where the elements u′, d′ and nx
′
of the normalized vectors u′, d′ are assumed

to be normally distributed with zero mean and unit standard deviation;

u′ ∼ N (0, 1)
d′ ∼ N (0, 1)

nx
′ ∼ N (0, 1)

The diagonal scaling matrices Wu, Wd and Wnx contain the standard devia-
tions of the elements in u, d and nx respectively.

From Lemma 1 the prediction error can be expressed as

e =
[
(Gy −HGx)Wu

(
Gd
y −HGd

x

)
Wd −HWnx

]︸ ︷︷ ︸
M(H)

 u′

d′

nx
′


The expected value of the 2-norm of the prediction error (variance) then

becomes

E (‖e‖2) = ‖M (H) ‖2F

Proof. Let d̃ =

 u′

d′

nx
′

. Then, e = Md̃, and noting that ‖e‖2 = tr
(
eeT
)
,

the expected value of the 2-norm of the prediction error can be written as

E (‖e‖2) = E
[
tr
(
Md̃d̃TMT

)]
= E

[
tr
(
MTMd̃d̃T

)]
= tr

(
MTME

[
d̃d̃T

])
where tr (.) denotes the trace of the matrix and E [.] is the expectation

operator.

Since

∥∥∥∥∥∥
 u′

d′

nx
′

∥∥∥∥∥∥∼ N (0, Inu+nd+nx
), by substituting the normal distribution

in the de�nition of expected value we have
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E
[
d̃d̃T

]
= Var

(
d̃
)

In addition, we know that the square root of the trace of the matrix MTM
is actually the de�nition of Frobenius norm of matrix M. So,

E (‖e‖2) = tr
(
MTM

)
= ‖M‖2F

From Lemma 2, the expected value of the 2-norm prediction error (variance)
is minimized by selecting H to minimize ‖M‖F . This leads to the following
theorem

Theorem 1. The optimal "open-loop" estimator following the linear relation-
ship

ŷ = Hxm

that minimizes the variance of the prediction error (Lemma 1 and 2)

e = y − ŷ

when u is a free variable, is

H1 = Y1X
†
1 (14)

where X† is the pseudo-inverse of X, and

Y1 =
[

GyWu Gd
yWd 0

]
X1 =

[
GxWu Gd

xWd Wnx

]
(15)

If X1 has full column rank, we have X†1 =
(
XT

1 X1

)−1
XT

1 . If X1 has full

row rank, we have X†1 = XT
1

(
XT

1 X1

)−1
. For the general case, where X1 has

neither full row nor column rank, the pseudo-inverse may be obtained using the
singular value decomposition

Proof. In Lemma 2, we showed that minimizing ‖e (H) ‖2 is equivalent to min-
imizing ‖M (H) ‖2F for the expected prediction error. M(H) can be rewritten
as

M = Y1 −HX1

The optimization problem then becomes

min
H
‖Y1 −HX1‖

and we recognize that this is the least squares problem with the known
optimal solution.

H1 = Y1X
†
1
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Figure 3 shows an interpretation of Theorem 1, which is a direct general-
ization of the Brosilow estimator, when we also include noise. Note that the
elements in Y1 corresponding to nx

′
is zero.

xm †
1X 1Y

ŷ

d

u

n x

 
  
  

Figure 3: Interpretation of Theorem 1

This estimator is optimal for the case where the process input u are truly
independent variables, that is, when we have no control (case S1 in Figure 1).

2.2.2. Case S2

We now consider the case where the inputs u are used to keep the outputs y
at given setpoints ys. This means that ys replaces u as independent variables.
It is assumed that dim (y) = dim (u).

Theorem 2. Optimal �open-loop� estimator for closed-loop operation (con-
trolled y).

The optimal �open-loop� estimator H for closed-loop operation where the
degrees of freedom u are adjusted such that the primary variables y are kept at
the setpoints ys

y = ys

when applied to the system de�ned above and considering the expected prediction
error, is

H2 = Y2X
†
2

where

Y2 =
[

Wys 0 0
]

X2 =
[

Gcl
xWys FWd Wnx

]
(16)

where Gcl
x = GxG

−1
y and F = Gd

x −GxG
−1
y Gd

y

Proof. Considering that u is used for keeping y = ys. Solving equation (8) with
respect to u when y = ys gives

u = G−1y ys −G−1y Gd
yd

By combining equations (9), (7) and (5) with the above equation, the following
expression for ŷ as an explicit function of ys, d and nx is obtained.
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ŷ = H
[
GxG

−1
y ys +

(
Gd
x −GxG

−1
y Gd

y

)
d+ nx

]
Here,

(
Gd
x −GxG

−1
y Gd

y

)
=
(
∂x
∂d

)
y=ys

is the optimal sensitivity F [1], and

GxG
−1
y =

(
∂x
∂ys

)
d
known as the closed-loop gain Gcl

x . So, the above equation

becomes
ŷ = H

[
Gcl
x ys + Fd+ nx

]
With the assumption that y = ys, the prediction error then becomes

e = y − ŷ =
[ (

I−HGcl
x

)
−HF −H

]  ys
d
nx


Proceeding analogous to Lemmas 1 and 2 and Theorem 1, results in the

given preposition.

2.2.3. Case S3

Theorem 3. (Generalize theorems 1 and 2) Optimal �open-loop� estimator for
closed-loop operation (controlled z). The optimal �open-loop� estimator H for
closed-loop operation where the degrees of freedom u are adjusted such that the
secondary variables z are kept at the setpoints zs

z = zs

when applied to the system de�ned above, and considering the expected prediction
error, is

H3 = Y3X
†
3

where

Y3 =
[

Gcl
y Wzs F′yWd 0

]
X3 =

[
Gcl
xWzs F′xWd Wnx

]
where Gcl

y = GyG
−1
z , Gcl

x = GxG
−1
z , F′y = Gd

y − GyG
−1
z Gd

z and F′x =

Gd
x −GxG

−1
z Gd

z

Proof. Considering that u is used for keeping z = zs. Solving equation 10 with
respect to u when z = zs gives

u = G−1z zs −G−1z Gd
zd

By combining equations 8 and the above expression for u, we will have

y = GyG
−1
z︸ ︷︷ ︸

Gcl
y

zs +

(
Gd
y −GyG

−1
z Gd

z︸ ︷︷ ︸
)

F ′y

d

10



Introducing the optimal sensitivity F′y and the closed-loop gain Gcl
y we will get

y = Gcl
y zs + F′yd

By combining equations 9, 7 and 5, the following expression for ŷ as an explicit
function of ys, d and nx is obtained.

ŷ = H

GxG
−1
z︸ ︷︷ ︸

Gcl
x

zs +

Gd
x −GxG

−1
z Gd

z︸ ︷︷ ︸
F ′x

d + nx


Using the de�nition of prediction error with the expression for ŷ and y gives

e (H) =
[ (

Gcl
y −HGcl

x

) (
F′y −HF′x

)
−H

]  zs
d
nx


Proceeding analogous to Lemma 2 and Theorem 1, will result in the given
proposition.

Note that Theorem 3 is a generalization of Theorems 1 and 2, since setting
z = u gives Theorem 1 and setting z = y gives Theorem 2.

2.3. The "closed-loop" estimator

In this section, we will �nd an expression for the prediction error under the
assumption that the prediction ŷ = Hxm is used for controlling the primary
variables, that is, we have ŷ = ys. It is assumed that dim (y) = dim (u).

Theorem 4. The optimal "closed-loop" estimator HCL following the linear
relationship

ŷ = HCLxm (17)

that minimizes the expected prediction error

e = y − ŷ

for the expected sets of d,nx and ys, assuming that the degrees of freedom u are
adjusted to keep the prediction at the setpoint (ŷ = ys ), is

HCL = arg(min
H

∥∥H [ FWd Wnx

]∥∥
F
) (18)

s.t. HGx = Gy

or equivalently HGc
xl = I where the sensitivity matrix F is de�ned as

F =

(
∂x

∂d

)
y=0

= Gd
x −GxG

−1
y Gd

y

11



Proof. An expression for the prediction as an explicit function of u , d and nx

is achieved by combining Equations (9), (7) and (5) and becomes

ŷ = H
(
Gxu + Gd

xd + nx
)

(19)

Assume that the predictions ŷ are held at the setpoints ys by manipulating
u. Solving equation (19) with respect to u when ŷ = ys, gives

u = − (HGx)
−1

H
(
Gd
xd + nx

)
+ (HGx)

−1
ys (20)

An expression for the primary variable y, when u is used for keeping ŷ = ys, is
achieved by inserting Equation (20) into (8) and yields

y = −Gy (HGx)
−1

H
(
Gd
xd + nx

)
+ Gy (HGx)

−1
ys + Gd

yd

= −Gy (HGx)
−1

H
[(

Gd
x −GxG

−1
y Gd

y

)
d + nx

]
+ Gy (HGx)

−1
ys
(21)

where
(
Gd
x −GxG

−1
y Gd

y

)
is the optimal sensitivity F, and the expression be-

comes

y = −Gy (HGx)
−1

H [Fd + nx] + Gy (HGx)
−1

ys (22)

Inserting the expression for y into the prediction error e, remembering that the
prediction is kept at the setpoint (ŷ = ys), gives

e = y − ŷ = y − ys = −Gy (HGx)
−1

H (Fd + nx) + Gy (HGx)
−1

ys − ys

= −Gy (HGx)
−1

H (Fd + nx) +
[
Gy (HGx)

−1 − I
]
ys

(23)
Introducing normalized variables,

e = −Gy (HGx)
−1

H
[

FWd Wnx

] [ d′

nx
′

]
︸ ︷︷ ︸

e1

+
[
Gy (HGx)

−1 − I
]
ys︸ ︷︷ ︸

e2

(24)

In the �rst term of equation (24) we have extra degree of freedom, because
if we pre-multiply the �rst term by a matrix D, we will have

e1 (H) = e1 (DH)

where D is any nonsingular square matrix. This follows because

(DHGx)
−1

DH = (HGx )
−1

D−1DH = (HGx )
−1

H

D can be chosen freely without a�ecting e1 (H), so we may choose it such
that the last term is zero, e2 (H) = 0, corresponding to having HGx = Gy.
This means that the optimal H can be found by minimizing the �rst term
(e1) in equation (24). This problem is equivalent to solving the constrained
minimization problem (18) which is convex [1].
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The optimization problem in equation (18) is expressed with open-loop gains
(Gx and Gy), but can also be expressed with closed-loop gains by just substi-
tuting the open-loop gains for the closed-loop gains. This can easily be shown
by postmultiplying the constraint HGx = Gy with G−1y on both sides of the

equality, to get HGxG
−1
y = HGcl

x = I

2.3.1. Analytical Solution for H

If F̃ =
[

FWd Wnx

]
is full rank, which is always the case if we include

independent measurement noise (so that Wnx is full rank), then we may alter-
natively use the analytic expression shown in the Theorem below.

One special case, when the expression for H applies also for Wnx = 0,
is when number of disturbances are more than the number of measurements,
because F̃F̃T remains full rank.

Theorem 5. Under the assumption that F̃F̃T is full rank, an analytical solution
for the problem (18) is

HT
CL =

(
F̃F̃T

)−1
Gx

(
GT
x

(
F̃F̃T

)−1
Gx

)−1
Gy (25)

Proof: The proof is in [1] and is based on �rst vectorizing the problem and then
using standard results from constrained quadratic optimization.

This solution is equivalent to the following [21]

HCL = D

((
F̃F̃T

)−1
Gx

)T
(26)

where

D = Gy

(
GT
x

(
F̃F̃T

)−1
Gx

)−1
(27)

The following example shows the e�ect of noise for various scenarios.

2.4. Example: We consider a scalar case with one input (u), one disturbance
(d), one measurement (x), one output y

, and with the following model matrices

Gx = Gd
x = 1

Gy = Gd
y = 1

Wu = Wd = Wys = 1

This corresponds to the case where y = x and we have F = 0.
For case S1, Theorem 1 gives
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Table 1: Optimal H matrix for di�erent scenarios

Wnx H1 H2 HCL

0 1 1 1
1 0.67 0.5 1
5 0.074 0.038 1
∞ 0 0 1

Y1 =
[
1 1 0

]
X1 =

[
1 1 Wnx

]
and we �nd

H1 =
2

W2
nx + 2

For case S2, Theorem 2 gives

Y2 =
[
1 0 0

]
X2 =

[
1 0 Wnx

]
and we �nd

H2 =
1

W2
nx + 1

For case S4, Equation 25 gives

F̃F̃T = (Wnx)
2

and we have HCL = 1 for all values of the measurement noise.
Table 1 shows the optimal H for the three cases for some values of the

measurement noise. For the "monitoring" cases (H1 and H2), the optimal
estimator gain H approaches zero when the measurement noise goes to in�nity,
but this does not occur for the closed-loop estimator (HCL). The reason is that
the estimate ŷ = HCLxm is used for control, that is, u is changed such that ŷ
is equal to ys. If we used an estimator where HCL → 0 then we would need u
to go to in�nity, which is not optimal.

3. Data-based Estimators

So far we have assumed that we have available a model, which are given
by Gx, Gd

x, Gy and Gd
y in equations 8 and 9, and the expected magnitudes

of disturbances and measurement noise, etc. were given by weighting matrices
(e.g. Wd and Wx

n). Here, we consider the data-based case where we start from
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the observations collected in the matrices X and Y. We want to obtain a linear
relationship between the data sets.

Y = XB + B0 (28)

where B and B0 as optimization variables. B0 is normally zero if the data are
centered.

3.1. Least Squares Solution

The least-square solution to this problem is

B = YX† (29)

It can be seen to be a direct generalization of the "monitoring" estimators
in Theorems 1,2 and 3.

3.2. Principal Component Regression (PCR) Method

A variant of Least Square is PCR. It starts with a principal component
singular value analysis of the data matrix X, to remove directions in X data
with little information. The matrix is truncated to rank a, where a is the number
of principal components, and gives X̃ = ŨaΣ̃aṼ

T
a . The optimal estimator is

then

BPCR = YX̃†

where X̃† is the inverse of the truncated SVD of the matrix X.

3.3. Partial Least Square (PLS) Method

In its general form PLS creates orthogonal score vectors (called latent vec-
tors or components) by maximizing the covariance between di�erent sets of
variables. There are several di�erent algorithms generating bases which all give
the same predictor, when there is one Y variable. Rosipal and Kramer [18]
present a review of the di�erent forms. The �rst approach was nonlinear iter-
ative partial least squares (NIPALS) by Wold [25]. The predictor data matrix
X = [x1, x2, . . . , xr], containing the values of r predictors for N samples is com-
pressed into a set of A latent variable or factor scores T = [t1, t2, . . . , tA], where
a ≤ r. These factors are determined sequentially using NIPALS. The orthogonal
factor scores are used to �t a set of N observations to m dependent variables
Y = [y1, y2, . . . , ym].

There are some assumptions which are inherent in the problem de�nition or
some in the solution procedure, which are as follows [7]:

1. Assume centered data generated according to the latent variable model

2. Weight matrix should have orthonormal column vectors

3. The number of y variables is less than the number of components (m ≤ A)
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4. Components of regressor variables and response variables are independent,
i.e. diagonal expectations E

(
xk, x

T
k

)
= 0 and E

(
yk, y

T
k

)
= 0

5. The most important assumption is that the outputs and the input data
have linear relationship.

The NIPALS method includes various iterative orthogonalization (de�ation)
processes. Di Ruscio [5] has presented a new interpretation and description of
the basic PLS solution which is non-iterative (see Appendix), which is more
interesting for control community. This solution can be expressed in terms of
some weighting vectors only. The equivalence between this method and the
NIPALS version of the PLS method is demonstrated by Elden [6] by proving
that they give the same sequence of orthogonal basis vectors. The weight matrix
Wa is of size r × a (so the number of components, a, should of course �rst be
speci�ed). They have �rst calculated the weight vectors by an orthogonalization
process. The solution is parameterized as B = Wap, where the vector p is
chosen to minimize the Frobenius norm of Y −X×B = Y −X×Wa × p for
some speci�ed weighting matrix Wa.

The orthogonalization process for calculating the weight vectors is not unique.
It is evident that any weighting matrix de�ned as Wa := WaD (where D ∈
Ra×ais de�ned as a non-singular transformation matrix) can be a solution for
this problem, as mentioned by Di Ruscio [5]. So, by taking the weights Wa

from the Krylov subspace or from the space which span the Krylov subspace,
the optimal weights will be found in the sense that an iterative Ordinary Least
square (OLS) converges the fastest to the OLS solution, i.e. in a minimum
number of iterations [5].

4. New data-based estimation

We want to use our results for the optimal model-based estimators, to derive
data-based estimators. The �rst step is to obtain the required model to use for
cases S1-S4 in Theorems 1-4.

4.1. Monitoring cases

For cases S1-S3, all the optimal estimators are on the form H = YX†, so we
may use the data directly. The result will be identical to the conventional least
squares solution, which from our derivation should be the optimal estimator for
the case when there is no measurement noise for y.

4.2. Closed-loop estimator

Let us now consider the more interesting case S4, where we want to �nd the
optimal estimator to be used for closed-loop operation. To use Theorem 4, we
need to have information about F̃ =

[
FWd Wnx

]
and GxG

−1
y = Gcl

x .
This information can be obtained by transforming the original data in Y

and X, to match the "closed-loop" form as given by the matrices Y2 and X2 in
(16):
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Y2 =
[

Wys 0
]

X2 =
[

Gcl
xWys F̃

]
This may be done as follows. Collect all the experimental data in the big

matrix Yall.

Yall =

[
Y
X

]
(30)

Then

1. Perform a singular value decomposition on the data matrix Y = UΣVT

2. Multiply the data matrix YallV with the unitary matrix V to get YallV
on the desired form

Yall =

[
Wys 0

Gcl
xWys F̃

]
(31)

where F̃ =
[

FWd Wnx

]
Note that F is de�ned as

(
∂x
∂d

)
y=0

Since V is a unitary matrix, the magnitude of the prediction error does not
change when it is multiplied by V, so ‖YV −HXV‖F = ‖Y −HX‖F . This
follows because the singular vectors satisfy VT = V−1, so we have

YV = UΣ =
[

U1 U2

] [ Σ1

0

]
=
[

U1Σ1 0
]

The closed-loop data-based estimator (CL) su�ers from the same weakness
as LS, giving poor results for ill-conditioned matrices and underdetermined sys-
tems. Performing a principal component analysis on the X data will remove the
weaker directions containing noise resulting in a well-conditioned matrix. Then,
CL can be applied to the data. We call this �truncated CL�.

5. Examples

5.1. Example 1

To investigate the performance of the estimators, they were applied to a
linear approximation of a binary distillation column model - Column A [20] -
subjected to di�erent control scenarios. Full information about the model and
the source codes are online [19]. There are two inputs, namely the re�ux �ow
and the boilup, and one disturbance, which is the change in feed composition.
The model for the two primary variables is

y =

[
0.175 −0.164
1.764 −1.773

]
u +

[
0.164
1.836

]
d (32)
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where the primary variables are compositions of the two main components
in the top and bottom products. The model for the eight measurements (tem-
peratures) is

xm =



−190.292 189.035
−229.539 231.298
−50.149 50.743
−70.084 69.106
−154.121 154.457
−149.137 148.847
−215.412 216.714
−194.170 192.475


u +



−203.828
−244.896
−51.995
−71.375
−170.510
−164.730
−232.326
−205.026


d + nx (33)

These measurements are chosen randomly from the top and bottom sections in
the column. The two secondary variables, which are re�ux �ow and a temper-
ature measurement from 25th tray of column, are given by

z =

[
1 0

−154.121 154.457

]
u +

[
0

−170.510

]
d (34)

The disturbance and noise variances are as below for all scenarios:

d ∼ N
(
0, 0.052I2

)
nx ∼ N

(
0, 0.52I8

)
Since there is no control in the �rst scenario, the standard deviation in u

(σ≈ 0.05) was selected to give a small standard deviation in y. The resulting
standard deviations in the primary variables for all scenarios are the same.

Table 2: Four operation scenarios

Operation Estimator Input variables Variable distribution

Open-loop H1 u u ∼ N
(
0, 0.052I2

)
y = ys H2 G−1

y

(
ys −Gd

yd
)

ys ∼ N
(
0, 0.0052I2

)
z = zs H3 G−1

z

(
zs −Gd

zd
)

zs ∼ N
(
0,
[

0.052 22
]
I2
)

ŷ = ys HCL (HGx)
−1
[
H
(
Gd

xd + nx
)
+ ys

]
ys ∼ N

(
0, 0.0052I2

)

For the data based estimators, calibration data was generated by drawing
32 random values for u, d, ys and zs with the distributions given in Table 2,
and calculating the corresponding output variables xm and y for the respective
scenarios (except scenario 4). This gave one set of calibration data with 32
experiments: X (8 × 32) and Y (2 × 32). The median of the prediction
error for 150 runs are used to assess the estimators' performances because noise
and variation in input variables resulted in a distorted picture of estimator
performance by outliers.
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5.1.1. Model-based estimators

Table 3 shows the results of validation for model-based for di�erent cases.
For each case (S1, S2, S3 and S4), the matrix H is obtained �rst, using theorems
1-4. For example for case S4 we obtain

HCL =



−0.0024 0.0008
0.0004 −0.0041
−0.0001 −0.0017
−0.0025 −0.0001
0.0011 0.0004
0.0003 0.0013
0.0007 −0.0026
−0.0037 0.0005


Then, they were validated on the data generated randomly for each case

(S1, S2, S3, S4), with the given standard deviations for nx, u, zs, ys (see Table
2). The validation is done by �rst calculating u for the given case and then
substituting into the model. The reported data in Table 3 shows the median
of the prediction errors. In Table 3, the diagonal elements correspond to the
optimal estimators for the intended cases. As expected, the prediction error is
smallest along the diagonal. Note that the cases are not comparable along the
rows because of di�erent variances for di�erent cases. Calibrating with one case
and validating with another is mostly applicable to the last case. So, the shaded
cells are actually showing the more interesting data.

Table 3: The mean prediction error of the model-based estimators applied to
four operation scenarios

Estimator S1 S2 S3 S4
S1 0.0168 0.0248 0.0177 0.1972
S2 0.271 0.0156 0.035 0.0221
S3 0.0207 0.0224 0.0176 0.1021
S4 0.0187 0.0187 0.0187 0.0187

The prediction errors are equal for all the cases for S4 due to the constraint
Gy = HGx. The closed loop estimator gives the best performance as model-
based estimator. A low prediction error for case 1 when the data are calibrated
on case 1 may be misleading. Case 3 is the most used arrangement in industry,
where a secondary variable is controlled.

5.1.2. Data-based estimators

Figure 4 shows the estimators "closed-loop" performance with two di�erent
numbers of data. The number of regressors are increased from 8 to 41 (the
total number of stages). All estimators are trained on calibration data from
scenario 2 and validated on scenario 4. The performance of CL and LS was
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deteriorated when then the system was over-determined with low number of
data. This is because they were forced to use the weak directions and assimilate
noise and collinearity. Since truncated CL �lters out the noise, it results in
better performance. Comparing the two �gures in Figure 4, we will see that
if the data-based estimators are given enough data they will approach their
model-based counterparts.
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(a) Median prediction error for 150 data set with 32
samples
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(b) Median prediction error for 150 data set with 200
samples

Figure 4: Median prediction error for two sample sizes (validated for S4)

5.2. Example 2

The next example is from a multi-component distillation column (4 compo-
nents) which is simulated rigorously. The schematic of the distillation process
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with estimator is shown in Figure 5.
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Figure 5: Schematic of the distillation process with estimator

The two lightest and the two heaviest products are supposed to be sepa-
rated in the column. The feed stream is a saturated liquid mixture of methanol,
ethanol, 1-propanol, 1-butanol. Disturbances are composition, �ow rate, quality,
Pressure in the feed stream and also condenser pressure.The composition set-
points for 1-propanol in the top (xC3 in D) and ethanol in the bottom (xC2 in B)
of prefractionator are 0.0095 and 0.038 respectively.

Here we show how simple the closed-loop model-based estimator can be
derived by choosing the right variables as manipulated variable. We can actually
consider u to be any two variables from the process. For the sake of simplicity
and because we can use the close-loop information of the system, we select the
inputs to the estimation model to be equal to the product compositions, in our
case

u = y =
[
xC3inD xC2inB

]
This will make the case easier and the matrices will be as below:

Gy = I

Gd
x = F

Gd
y = 0

We use exactly the same information for PLS method. X and Y in PLS
method are the �rst and second row of Yall matrix (Equation (??)) respectively.
We have assumed that we have temperature sensors in every 4th tray. The
matrices in the following show the �tting matrices for the two methods (B for
PLS and H for Loss method).
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B =



0.0002 0.0013
0.0087 −0.0041
−0.006 0.0068
−0.0051 0.0003
0.0077 −0.0096
−0.0034 0.0124
−0.0016 0.0049
0.0026 −0.016
−0.0031 0.004



HCL =



0.0004 0.0014
0.0081 −0.0045
−0.005 0.0074
−0.0047 0.0006
0.0062 −0.0104
−0.003 0.0126
−0.0013 0.0051
0.0024 −0.0162
−0.0028 0.0042


Figure 6 shows the dynamic behaviour of the model as disturbances happen

and also of the estimators. It is shown that the estimated values can track the
real composition very well. It should be noted that the steady state value is
more in focus since the methods under study are static estimators. The dynamic
behaviour can be corrected by feedback.
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Figure 6: Estimated and model Composition values for the case with two
temperature controls and with the consideration of 8 measurements

6. Discussion

6.1. Relationship to self-optimizing control

This work originated from considering the "indirect control problem" ([9])
using the "exact local method" in self-optimizing control. In "indirect control"
the objective is to �nd a set of controlled variables c = Hx such that by keep-
ing c constant, we indirectly keep the primary variables y constant (or more
speci�cally, at their desired setpoints ys), in spite of disturbances d and mea-
surement noise nx. This can be viewed as a special case of "self-optimizing
control" with cost function J = ‖y − ŷ‖2 ([9]). We can then apply the theory
that has been developed for "self-optimizing" control, which includes the "exact
local method". This directly leads to the result in Theorem 4, when the "extra
degrees of freedom" in H are selected such that c = ŷ. This requires some
explanation. In indirect control, we adjust the inputs u by feedback to keep
c = Hx = 0 (constant). Note that we will generate the same inputs u (for a
given d and nx), also if we keep c′ = Dc = 0 where D is any invertible matrix.
The matrix D is the so called "extra degrees of freedom" in H.
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It is clear that one good variable c = Hx to use for indirect control of y must
be the estimate ŷ. However, if we look the other way around, then the optimal
c will not necessarily correspond to an estimate of y (ŷ). However, there are
extra degrees of freedom in selecting c = Hx, we can use these extra degrees of
freedom (i.e., the D-matrix), to make c = Hx equal to ŷ, which is in fact done
when we select H such that HGx = Gy (see Theorem 4).

6.2. Comparison with work of Pannocchia and Brambilla

Our paper provides an extension of the results of Pannocchia and Brambilla
([17]) on "steady-state closed-loop consistency" to include also measurement
noise. In addition, we have shown, in agreement with the results in [9], that we
can always achieve "perfect consistency" for setpoint changes, that is, the use of
the "extra degrees of freedom" in H, makes it possible to always have the norm
from ys to the prediction error (y−ŷ) equal to zero, without sacri�cing the norm
from disturbances (d) to the prediction error. In the notation of Pannocchia and
Brambilla ([17]) this means that we can always make εr = 0 without sacri�cing
the norm of εd.

The inclusion of measurement noise is important, because this is often a
critical factor. As an example, consider the estimation of the two product
compositions in a distillation column (y =

[
xD xB

]
) based on temperature

measurements (x = T). For a binary distillation column with constant pres-
sure, temperature and compositions are uniquely related. So, if there were no
measurement noise (nx = 0), one could in theory have a perfect estimate of
y by measuring the temperature at the two columns ends (x =

[
TD TB

]
),

irrespective of any disturbances in feed composition or feed rate (which may
a�ect stage e�ciency). However, in practice, the estimate will be poor because
of measurement error, especially for high-purity columns. For example, assume
the bottom product of a methanol/water distillation column should be about
99.99% water. At 1 atm, the boiling point of this mixture will be approximately
(0.9999×100 ◦C + 0.0001× 65 ◦C = 99.9965 ◦C, whereas the boiling point of
100% water is 100.00 ◦C. Thus, if we have a measurement error of more than
0.0065 ◦C (which we certainly will have), then the temperature measurement
will be useless to infer composition. Thus, due to measurement error (nx), we
need to locate the temperature sensor away from the column end, and the op-
timal location can be found using the methods presented in this paper which
includes measurement noise.

6.3. Measurement selection

The results presented in this paper also provide the basis for optimal mea-
surement selection, which extends the Algorithm 1 in Pannocchia and Brambilla
([17]) to include measurement noise. For example, assume there are 10 candi-
date measurements, and there are 2 outputs that we want to estimate (i.e, we
have 2 y's and 2 u's). Assume that we want to use 4 out of these 10 measure-
ments. There are then 210 candidate measurement sets, and we �nd the best
set by computing for each set the prediction error using Theorem 4. To avoid
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checking all sets, we can also use the branch and bound method developed by
Kariwala and Cao [11].

6.4. Comparison to standard data-based estimators

In least squares regression (LS), one gets B = YX−1, or more generally
B = YX†, where X† denotes the pseudo inverse of X. In principal component
regression (PCR), one gets B = YX†a where X†a =

∑a
i=1

1
σi
νiu

H
i denotes the

pseudo inverse of X = UΣVH with only A principal components included.
Thus, in both LS and PCR one inverts the X-matrix, while with the new loss
regression method, see equation (26), one considers only a part Xopt of the
transformed X-matrix. The proposed method seems a bit similar to PLS in
that we use the data for y to a�ect the X-data (we get Xopt from X by using
the SVD of Y).

Comparing the regression equations of the loss method and PLS, we realize
that the PLS method has one more degree of freedom (B0 ). By assuming
deviation variables

Y −Y0 = H (X−X0) (35)

We can write the above equation as

Y = HX + H0 (36)

where H0 = Y0 −HX0

By writing

H0 = diag (H0)× 1− vector (37)

then the problem can be written as

Y′ = H′X′ (38)

where H′ =
[

H diag (H0)
]
and X′ =

[
X 1− vector

]
.

So by just adding 1's to the end of the X-data, one can optimize to �nd
H′ using normal least squares, and then �nd H and H0. It should also be
mentioned that the extra degree of freedom in PLS is mostly zero because of
centering.

If we look at the general equation for B in PLS (equation (39)) and compare
it with the H solution (equation (26)), we see that Xopt is a variation of WaX.
Xopt is actually XV in Loss method, where V is the right singular vector. It
acts as some sort of Wa.

BPLS = Wa

(
WT

a XTXWa

)−1
WT

aw1 (39)

We must assume that Xopt is full rank (invertible) to use the analytic ex-
pression in equation (26). If Xopt does not have full rank one may use some
pseudo-inverse of Xopt (similar to PCR). This adds degrees of freedom to the
method, which in PLS is the size of the matrix Wa and is speci�ed in the �rst
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step (the number of components in PLS). However, the problem of invertibility
is solved by manipulating Wa matrix. This is one reason which makes the PLS
method less robust compared to Loss Method.

The PLS method for univariate data is optimal in the prediction error sense
[5]. However, the PLS algorithm for multivariate data is not optimal in the
same way as PLS1. There are reports that from the literature that the PLS
solution using di�erent approaches are not equivalent. For example de Jong's
SIMPLS [4] is not equivalent to Herman Wold's NIPALS.

As mentioned before, the reports from di�erent studies showed that PLS
always give a higher coe�cient of determination than PCR (Table 1 in [23]).
However, some authors [3, 14, 8] have taken a closer look on the shrinkage
properties of PLS and have shown that PLS nearly always can be improved in
principle, so the regression method as such is not optimal in any reasonable way.

7. Conclusion

In this paper, we have introduced a new static estimator. The method is
based on the loss method where it is assumed that a model is available. Four
cases have been used to get the calibration data and were validated for di�erent
cases. We have considered two estimators for the case with closed-loop control
of the outputs y. In case S2, we assume we have perfect measurements of y,
and we use the estimator ŷ = H2x for monitoring purposes. Case S4 is more
practically relevant, because we assume that we have no online measurement for
y, and instead we control the estimated ŷ = HCLx. Nevertheless, the cases are
quite similar, and we �nd that the estimates ŷ are similar for cases where the
estimation error is small. However, if the estimate is poor, then the di�erences
may be signi�cant. The simulation results showed that the best performance
can be obtained by model-based estimator for "closed-loop" scenario. Also, it
is shown that the data-based estimators perform at best like their model-based
counterparts given that the system is linear and exact model.
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8. Appendix

Theorem 6. (PLS1: a non-iterative solution). Di Ruscio [5]: Given data
matrix X ∈ RN×rand Y ∈ RN , the PLS solution is given by

BPLS = Kap
∗r (40)

where Ka ∈ Rr×a is the reduced controllability (Krylov) matrix for the pair(
XTX,XTY

)
de�ned as
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Ka =
[

XTY XTXXTY
(
XTX

)2
XTY . . .

(
XTX

)a−1
XTY

]
where 1 ≤ a ≤ r, and the polynomial coe�cient vector p∗ ∈ Ra is determined
as the LS solution to

p∗ = argmin ‖V (p)‖2F (41)

where
V (p) = ‖Y −XKap‖2p (42)

Hence

p∗ =
(
KT
aXTXKa

)−1
KT
aXTY (43)

which gives the PLS solution

BPLS = Ka

(
KT
aXTXKa

)−1
KT
aXTY (44)

with the assumption that
(
KT
aXTXKa

)−1
is non-singular for some 1 ≤ a ≤

r. The PLS prediction of Y is given by

YPLS = XKap
∗ (45)

where p∗ is given by (43). Furthermore, the minimum is

V (p∗) = trace
(
YTY

)
− trace

(
YTXKa

(
KT
aXTXKa

)−1
KT
aXTY

)
(46)

Proof. From Cayley-Hamilton Theorem we have that XTX satis�es its own
characteristic equation, i.e.(

XTX
)r

+ p2
(
XTX

)r−1
+ . . .+ prX

TX + pr+1Ir = 0 (47)

where p2, . . . , pr+1are the coe�cients of the characteristic polynomial det(λIr−
XTX). This can be used to form the matrix inverse

(
XTX

)−1
= − 1

pr+1

(
prIr + pr−1X

TX + . . .+ p2
(
XTX

)r−2
+
(
XTX

)r−1)
(48)

which is derived by post-multiplying (47) with
(
XTX

)−1
and then solving for the

inverse. When this equation is substituted into the OLS solution
(
XTX

)−1
XTY

gives the truncated solution
B (p) = Kap (49)

where Ka is the controllability matrix and p ∈ Ra is the coe�cient vector. We
know that ‖A‖2F = trace

(
ATA

)
=
∑m
i=1

∑n
j=1 a

2
ij , So

V (p) = trace
(
YTY

)
− 2trace

(
pTKaX

TY
)
+ trace

(
pTKT

aXTXKap
)

(50)
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Letting the gradient

dV (p)

dp
= −2KT

aXTY + 2KT
aXTXKap (51)

equal to zero gives the optimal solution (43), which when substituted into (40)
gives (44). Furthermore, the minimum value (46) can be found by substituting
the optimal truncated polynomial coe�cient into (50).

By �Non-iterative� they meant that there is no need for any de�ation (rank
one reduction) process in computing the PLS solution. The following theorem
is an extension of PLS1 to incorporate multivariate Y data.

Theorem 7. (CPLS: Controllability PLS solution). Di Ruscio [5] . Given data
matrix X ∈ RN×rand Y ∈ RN×m , the PLS solution is given by

BCPLS =
[

XTY
(
XTX

)
XTY . . .

(
XTX

)a−1
XTY

]
×


p1Im
p2Im
...

paIm


=
(
p1Ir + p2X

TX + p3
(
XTX

)2
+ . . .+ pa

(
XTX

)a−1)
XTY

=
∑a
i=1 pi

(
XTX

)i−1
XTY

(52)
where the vector of polynomial coe�cients

p∗ =
[
p1 p2 . . . pa

]T ∈ Ra (53)

is found from the solution to the LS problem

p∗ = argmin
p
‖vec (Y)−Xpp‖2F (54)

where vec (Y) is the vectorization of the matrix Y. The minimizing solution is
given by

p∗ =
(
XT
p Xp

)−1
Xpvec (Y) (55)

where

Xp =
[
vec

(
XXTY

)
vec

(
XXTXXTY

)
. . . vec

(
X
(
XTX

)a−1
XTY

) ]
∈ RNm×a

(56)

Proof. Using that V (p) = ‖ε‖2F , where ε is the prediction error, gives the opti-
mal LS solution (55) by letting the gradient dV

dp = 0.
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