Dynamic compensation of static estimators from Loss method

Maryam Ghadrdan1 Ivar J Halvorsen2 Sigurd Skogestad1

1Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway

2Applied Cybernetics, SINTEF, Trondheim, Norway

19 Dec 2013
Motivation

Goal: Correct the dynamic behaviour of a variable which is calculated by combining different measurements

Area of application

1. **Self-optimizing control**
 - Active constraint \(c = Hy \) (\(c \) is a physical variable)
 - Combination of measurements \(c = Hy \) (\(c \) is not a physical variable)

2. **Static soft-sensor**
 - Estimation of a primary variable by combining different measurements with different weights \(\hat{y} = Hy \)

1. Ghadr dan et al. (NTNU & SINTEF) Dynamic compensation of static estimators
1. Introduction
 - Loss method: closed-loop estimation
 - Distillation case-study
 - Results

2. Dynamic compensation of static estimators
 - Cascade control
 - Selection of subset of measurements
 - Filtering
 - Optimization of LP filter parameters
 - Explicit solution for the filter problem

3. Concluding remarks
OBJECTIVE
The main objective is to find a linear combination of measurements such that keeping these constant indirectly leads to nearly accurate estimation with a small loss L in spite of unknown disturbances, d, and measurement noise, n^x.

$$\min_H \| e \|_2 = \| y - \hat{y} \|_2$$
Assumption: Linear models for the primary variables y, measurements x, and secondary variables z

\begin{align*}
y &= G_y u + G_y^d d \\
x &= G_x u + G_x^d d \\
z &= G_z u + G_z^d d \\
G_y &= \left(\frac{\partial y}{\partial u} \right)_d, \quad G_y^d = \left(\frac{\partial y}{\partial d} \right)_u \\
G_x &= \left(\frac{\partial x}{\partial u} \right)_d, \quad G_x^d = \left(\frac{\partial x}{\partial d} \right)_u \\
G_z &= \left(\frac{\partial z}{\partial u} \right)_d, \quad G_z^d = \left(\frac{\partial z}{\partial d} \right)_u
\end{align*}

The actual measurements x_m, containing measurement noise n^x is

\[x_m = x + n^x \]

The linear estimator is of the form

\[\hat{y} = Hx_m \]
If $\tilde{F} = \begin{bmatrix} FW_d & W_{n^x} \end{bmatrix}$ is full rank, which is always the case if we include independent measurement noise, then

$$H_4^T = \left(\tilde{F}\tilde{F}^T\right)^{-1} G_x \left(G_x^T \left(\tilde{F}\tilde{F}^T\right)^{-1} G_x\right)^{-1} G_y$$

3 Alstad et al. (2009), Optimal measurement combinations as controlled variables, J. Proc. Control, 19 (1), 138-148
Distillation case-study

- Components
 - A - Methanol
 - B - Ethanol
 - C - Propanol
 - D - n-Butanol

- 4-component system

- Thermodynamics: Wilson

- Objective: Estimate compositions from combination of temperature measurements
H values

\[
\begin{bmatrix}
\Delta \hat{y}_1 \\
\Delta \hat{y}_2
\end{bmatrix} = H
\begin{bmatrix}
\Delta T_5 \\
\Delta T_6 \\
\Delta T_7 \\
\vdots \\
\Delta T_{32}
\end{bmatrix}
\]
Monitoring the composition estimated when single temperature loops are closed ("Open-loop estimation (S1)")

![Top composition estimate with -1% change in boilup](image1)

![Bot composition estimate with -1% change in boilup](image2)

Figure: Top estimate with -1% change in boilup

Figure: Bot. estimate with -1% change in boilup
Monitoring the composition estimated when single temperature loops are closed ('Open-loop estimation (S3)')

Feed disturbance: +10%

zF1 disturbance: -4%

zF4 disturbance: -4%

Ghadrdan et al. (NTNU & SINTEF)
We studied 3 approaches:

- **Cascade Control:**
 The idea is to close a fast inner loop based on a measurement with no RHP-zero and adjust the setpoint on a time scale slower than the RHP-zero.

- **Use of measurements from the same section of the process:**
 It is less likely to get RHP-zero if the dynamic behavior of the measurements are similar. However, this gives a larger steady-state error.

- **Filters:**
 Low-pass filters will keep the system optimal at steady state. The filtered measurements are \(\hat{y} = H_H F u \)
Example

\[G_x = \begin{bmatrix} \frac{1}{3s+1} \\ \frac{1}{s+1} \end{bmatrix} \]

and the optimal matrix \(H \) is

\[H = \begin{bmatrix} 2 & -1 \end{bmatrix} \]

the transfer function from \(u \) to \(\hat{y} \) is

\[
G = HG_x = \frac{2}{3s+1} - \frac{1}{s+1} = \frac{1-s}{(3s+1)(s+1)} \approx \frac{e^{-1.5s}}{3.5s+1}
\]

Figure: Block diagram of the estimation
Theorem

Cascade (inner-loop) can not move the zero of HG_x

Proof.

The expression for the estimated primary variable is

$$\hat{y} = h_1 x_1 + h_2 x_2$$

where

$$x_1 = g_1 u, \quad x_2 = g_2 u$$

and $u = k(x_2 - x_2)$
So,

\[x_1 = \frac{g_1}{g_2} x_2, \quad x_2 = \frac{kg_2}{1 + kg_2} x_{2s} \]

The transfer function from \(x_{2s} \) to \(\hat{y} \) is

\[\hat{y} = \left(h_2 + h_1 \frac{g_1}{g_2} \right) \frac{kg_2}{1 + kg_2} x_{2s} \]

The term \((h_1 g_1 + h_2 g_2) \), which includes the RHP zero, is unchanged.
To improve the dynamic controllability: Put structural constraints on the measurements \(^4\)

This is done to

- reduce the time delay between the MVs to CVs,
- have measurements of the same dynamics to avoid inverse response.

In our example: Choose measurement from one side of the column

Drawback: Less accurate compared to the option where we use all the measurements

Filtering

Figure: Block diagram of the estimation system including filter (H_F)

$$H_F = \begin{bmatrix} \frac{1}{\tau_{F1}s+1} & 0 \\ 0 & \frac{1}{\tau_{F2}s+1} \end{bmatrix}$$

$H_F(0) = I$
Example

\[G_x = \begin{bmatrix} \frac{1}{3s+1} \\ \frac{1}{s+1} \end{bmatrix} \]

and the optimal matrix \(H \) is

\[H = \begin{bmatrix} 2 & -1 \end{bmatrix} \]

Some Filters:

\[H_{F1} = \begin{bmatrix} \frac{1}{s+1} & 0 \\ 0 & \frac{1}{3s+1} \end{bmatrix} \]

\[H_{F2} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{s+1}{3s+1} \end{bmatrix} \]

\[H_{F3} = \begin{bmatrix} \frac{3s+1}{s+1} & 0 \\ 0 & 1 \end{bmatrix} \]

The filtered transfer function will be

\[H_{dyn1}G_x = \frac{1}{(3s+1)(s+1)} \approx \frac{e^{-0.5s}}{3.5s+1} \]

\[H_{dyn2}G_x = \frac{1}{3s+1} \]

\[H_{dyn3}G_x = \frac{1}{s+1} \]
Example

\[
G_x = \begin{bmatrix}
\frac{1}{3s+1} \\
\frac{1}{1} \\
\frac{1}{s+1}
\end{bmatrix}
\]

and the optimal matrix \(H \) is

\[
H = \begin{bmatrix}
2 \\
-1
\end{bmatrix}
\]

Some Filters:

\[
H_{F4} = \begin{bmatrix}
1 \\
0 \\
\frac{1}{3s+1}
\end{bmatrix}
\]

The filtered transfer function will be

\[
H_{\text{dyn}4}G_x = \frac{2s + 1}{(3s + 1)(s + 1)} \approx \frac{0.83e^{-0.25s}}{1.25s + 1}
\]
Example

Using Lead-lag compensators, we can make the response as fast as we want.

Figure: Step response for different cases
Distillation case-study

Figure: \(\mathbf{H}_G \mathbf{x} (t) \) with -1% change in boilup and constant Reflux ratio

Figure: Estimated composition (\(t_f = \mathbf{H} \mathbf{G}_x \)) and filtered estimated composition (\(t_f = \mathbf{H} \mathbf{H}_F \mathbf{G}_x \)) where there are filters only on 6th, 16th and 17th measurements.
Optimizing filters

\[
\min_{H_F} \| G_{ref} - HH_F G_x \|
\]

Figure: Real composition, Estimated composition \((HG_x)\) and filtered estimated composition \((HH_F G_x)\) where filters are optimized for first 100 min. assuming \(G_{ref} = G_{u \rightarrow y_1}\).
Optimizing filters

Figure: Real composition, Estimated composition (x_{C3}) and filtered estimated composition (\hat{x}_{C3}) where filters are optimized for first 100 min. assuming $G_{ref} = G_u \rightarrow y$.
Explicit solution for the filter problem

Approach:
Convert the model matching problem to Nehari problem

\[\| T_1 - T_2 Q \|_\infty \Rightarrow \| R - X \|_\infty = \| \Gamma_R \| \leq 1 \]

- An optimal \(Q \) exists if the ranks of the two matrices \(T_2(j\omega) \) and \(T_3(j\omega) \) are constant for all \(0 < \omega < \infty \).

Our problem:

\[\min_{H_F} \| G_{ref} - HH_F G_x \|_\infty \]

Define: \(H_{dyn} = HH_F \)

Lemma

Let U be an inner matrix and define $E = \begin{bmatrix} U^\sim & _ \\ _ & I - UU^\sim \end{bmatrix}$, then,

$$\|EG\|_\infty = \|G\|_\infty$$

Proof.

It suffices to show that $E^\sim E = I$.

Lemma

Suppose F and G are matrices with no poles on imaginary axis with equal number of columns. If $\| \begin{bmatrix} F \\ G \end{bmatrix} \|_\infty < \gamma$ then $\|G\|_\infty < \gamma$ and $\|FG_0^{-1}\|_\infty < 1$.

Ghadradan et al. (NTNU & SINTEF)
Theorem

(i) \(\alpha = \inf \{ \gamma : \|Y\|_{\infty} < \gamma, \text{dist}(R, RH_{\infty}) < 1 \} \)

(ii) Suppose \(\gamma > \alpha \), \(G, X \in RH_{\infty} \)

\[\|R - X\|_{\infty} \leq 1 \]

Then \(\|T_1 - T_2 Q\|_{\infty} \leq \gamma \)

Proof.

(i) Let

\[\gamma_{inf} = \inf \{ \gamma : \|Y\|_{\infty} < \gamma, \text{dist}(R, RH_{\infty}) < 1 \} \]

choose \(\varepsilon > 0 \) and then choose \(\gamma \) such that \(\alpha + \varepsilon > \gamma > \alpha \). Then there exist \(Q \) in \(RH_{\infty} \) such that

\[\|T_1 - T_2 Q\|_{\infty} < \gamma \]

From Lemma 1 we have:

\[\left\| \begin{bmatrix} \hat{U}_i^T \\ I - \hat{U}_i \hat{U}_i^T \end{bmatrix} (T_1 - T_2 Q) \right\|_{\infty} \leq \gamma \]
This is equivalent to \[\| \begin{bmatrix} U_i T_1 - U_o Q \\ Y \end{bmatrix} \|_\infty < \gamma \]

This implies from Lemma 2 that
\[\| Y \|_\infty < \gamma \]
\[\| U_i T_1 Y_o^{-1} - U_o Q Y_o^{-1} \|_\infty < 1 \]

The latter inequality implies \[\text{dist} \left(R, U_o R H_\infty Y_o^{-1} \right) < 1 \]

\(U_o \) is right-invertible in \(R H_\infty \) and \(Y_o \) is invertible in \(R H_\infty \). So, (26) gives
\[\text{dist} \left(R, H_\infty \right) < \text{dist} \left(R, R H_\infty \right) < 1 \]
The general algorithm to obtain Q is as follows

Step 1 Compute Y and $\|Y\|_\infty$

Step 2 Find an upper bound α_1 for α ($\|T_1\|_\infty$ is the simplest choice)

Step 3 Select a trial value for γ in the interval $(\|Y\|_\infty, \alpha_1]$

Step 4 Compute R and $\|\Gamma_R\|$. Then $\|\Gamma_R\| < 1$ iff $\alpha < \gamma$. Change the value of γ correspondingly to meet this criteria

Step 5 Find a minimal realization of R: $R(s) = [A, B, C, 0]$

Step 6 Solve the Lyapunov equations to find controllability and observability gramians and set $N = (I - L_0 L_c)^{-1}$
Step 7 Set

\[
L_1(s) = \begin{bmatrix} A & -L_c NC^T & C & I \end{bmatrix}
\]
\[
L_2(s) = \begin{bmatrix} A & N^T B & C & 0 \end{bmatrix}
\]
\[
L_3(s) = \begin{bmatrix} -A^T & NC^T & -B^T & 0 \end{bmatrix}
\]
\[
L_4(s) = \begin{bmatrix} -A^T & NL_0 B^T & B^T & I \end{bmatrix}
\]

Step 8 Select \(Y \) in \(RH_\infty \) with \(\| Y \|_\infty \leq 1 \) (for example \(Y = 0 \)) and set

\[
X = R - (L_1 Y + L_2)(L_3 Y + L_4)
\]
Example

\[G_x = \begin{bmatrix} \frac{1}{3s+1} \\ \frac{1}{s+1} \end{bmatrix}, \quad G_{\text{ref}} = \frac{1}{0.5s + 1} \]

and the optimal matrix \(H \) is

\[H = \begin{bmatrix} 2 & -1 \end{bmatrix} \]

\[H_F = \begin{bmatrix} \frac{2.011s^5 + 5.971s^4 + 0.5466s^3 - 7.412s^2 - 1.321s + 0.2051}{s^6 + 3.699s^5 - 0.418s^4 - 13.02s^3 - 7.559s^2 + 1.578s + 0.4668} \\ \frac{3.017s^4 + 11.27s^3 + 9.929s^2 - 1.597s - 1.026}{s^6 + 3.699s^5 - 0.418s^4 - 13.02s^3 - 7.559s^2 + 1.578s + 0.4668} \end{bmatrix} \]

- A weighting transfer function should be included to make \(H_F(0) = I \)
What should G_{ref} be?

In the case of estimation

- First option: actual values from simulation
- The estimate can be even faster (since \hat{y} is being controlled)

One idea is to specify a first-order transfer function with the smallest time constant in the process as the desired transfer function from inputs to the estimates.

For our case: $G_{ref} = \frac{1}{\tau_{int}s+1}$

Internal time constants can be found from changing the two inputs boilup and reflux rate at the same time such that the external flows remain constant.

\[
\Delta y_D = \left(\frac{-0.06e^{-2s}}{740s + 1}\right)\Delta V
\]

\[
\Delta x_B = \left(\frac{-0.067e^{-0.33s}}{137s + 1}\right)\Delta V
\]
Concluding remarks

- Extra dynamic compensation is necessary when measurements with different dynamics are combined
 - Cascade will not remove the RHP zero, but helps with rejecting disturbance
 - Choosing measurements with similar dynamics might help to avoid dynamic problems
 - Filtering fast dynamic measurements will help remove the inverse response
- Explicit solution comes from converting model matching problem to Nehari problem
- The filter matrix gets big as the number of measurements increase.
- A weight function should be considered to weaken the effect of filter at steady-state
Concluding remarks

- Extra dynamic compensation is necessary when measurements with different dynamics are combined
 - Cascade will not remove the RHP zero, but helps with rejecting disturbance
 - Choosing measurements with similar dynamics might help to avoid dynamic problems
 - Filtering fast dynamic measurements will help remove the inverse response
- Explicit solution comes from converting model matching problem to Nehari problem
- The filter matrix gets big as the number of measurements increase.
- A weight function should be considered to weaken the effect of filter at steady-state

Thanks for your attention