Optimal Operation of a CO₂ Capturing Plant for a Wide Range of Disturbances

Mehdi Panahi Sigurd Skogestad

18.10.2011 AIChE Annual Meeting

Skogestad plantwide control procedure*

I Top Down

- Step 1: Identify degrees of freedom (MVs)
- Step 2: Define operational objectives (optimal operation)
 - Cost function J (to be minimized)
 - Operational constraints
- Step 3: Select primary controlled variables CV1s (Self-optimizing)
- Step 4: Where set the production rate? (Inventory control)

II Bottom Up

- Step 5: Regulatory / stabilizing control (PID layer)
 - What more to control (CV2s; local CVs)?
 - Pairing of inputs and outputs
- Step 6: Supervisory control (MPC layer)
- Step 7: Real-time optimization

NTNU Norwegian University of Science and Technology

*Skogestad, S., 2004, Control Structure Design for Complete Chemical Plants, Computers and Chemical Engineering, 28, 219-234

Optimal operation

Mode I: maximize efficiency Mode II: maximize throughput

Self-optimizing control is when we can achieve acceptable loss with constant setpoint values for the controlled variables without the need to reoptimize the plant when disturbances occur

NTNU Norwegian University of Science and Technology

Selection of CVs: Self-optimizing control procedure

Step 1: Define an objective function and constraints

- Step 2: Degrees of freedom (DOFs)
- Step 3: Disturbances
- Step 4: Optimization (nominally and with disturbances)
- Step 5: Identification of controlled variables (CVs) for unconstrained DOFs
- Step 6: Evaluation of loss

Economically optimal operation of CO₂ capturing

Steps 5&6. Exact Local method: The candidate CV set that

imposes the minimum worst case loss to the objective function

Exact local method* for selection of the best CVs

Exact local method gives the maximum loss imposed by each candidate CV set

The set with the minimum worst-case loss is the best

max. Loss=
$$\frac{1}{2}\overline{\sigma}(M)^2$$

M= $J_{uu}^{1/2}G^{y^{-1}}(FW_d W_n)$
F= $G^y J_{uu}^{-1} J_{ud} - G_d^y$

F is optimal sensitivity of the measurements with respect to disturbances; $F = \frac{\Delta y^{opt.}}{\Delta d}$

Exact local method for selection of the best CVs

39 candidate CVs

- 15 possible tray temperature in the absorber
- 20 possible tray temperature in the stripper
- CO₂ recovery in the absorber and CO₂ content at the bottom of the stripper
- Recycle amine flowrate and reboiler duty

Applying a bidirectional branch and bound algorithm^{*} for finding the best CVs

The best self-optimizing CV set in region I: CO_2 recovery (95.26%) and temperature of tray no. 16 in the stripper

These CVs are not necessarily the best when new constraints meet

* V. Kariwala and Y. Cao. Bidirectional Branch and Bound for Controlled Variable Selection, Part II: Exact Local Method for Self-Optimizing Control, Computers & Chemical Engineering, 33(2009), 1402-1412.

NTNU Norwegian University of Science and Technology

Optimal operational regions as function of feedrate

Region I. Nominal feedrate
Region II. Feedrate >+20%: Max. Heat constraint
Region III. Feedrate >+51%: Min. CO₂ recovery constraint

Proposed control structure with given flue gas flowrate (region I)

Region II: in presence of large flowrates of flue gas (+30%)

	FlowrateofPumpsflue gasduty		Self-optimizing CVs in region I		Cooler Duty	Reboiler duty	Objective function
	(kmol/hr)	(KW)	CO ₂ recovery %	Temperature of tray no. 16 °C	(KW)	(KW)	(USD/ton)
Optimal nominal point	219.3	3.85	95.26	106.9	321.90	1161	2.49
+5% feedrate	230.3	4.24	95.26	106.9	347.3	1222	2.49
+10% feedrate	241.2	4.22	95.26	106.9	371.0	1279	2.49
+15% feedrate	252.2	4.64	95.26	106.9	473.3	1339	2.49
+19.38% feedrate, reboiler duty saturates	261.8	4.56 (+18.44%)	95.26	106.9	419.4 (+30.29%)	1393 (+20%)	2.50
+30% feedrate (reoptimized)	285.1	4.61	91.60	103.3	359.3	1393	2.65

Saturation of reboiler duty (new operations region, region II); one unconstrained degree of freedom left

Maximum gain rule for finding the best CV: 37 candidates

Temp. of tray no. 13 in the stripper: the largest scaled gain

NTNU Norwegian University of Science and Technology

Proposed control structure with given flue gas flowrate (region I)

M. Panahi, S. Skogestad 'Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances' www.ntnu.no

11

Proposed control structure with given flue gas flowrate (region II)

Region III: reaching	the minimum	allowable	CO ₂ recovery
-----------------------------	-------------	-----------	--------------------------

	Flowrate of flue gas (kmol/hr)	Pumps Duty (kW)	CO ₂ recovery %	Self-optimizing CV in region II	Cooler Duty (kW)	Reboiler Duty (kW)	Objective function (USD/ton)	
	(KIIIOI/III)			Temperature of tray 13 °C				
Optimal nominal case in +30% feedrate	285.1	4.61	91.60	109	359.3	1393	2.65	
+40% feedrate	307.02	4.58	86.46	109	315.5	1393	2.97	
+50% feedrate	328.95	4.55	81.31	109	290.3	1393	3.31	
+52.78% feedrate, reach to minimum CO ₂ recovery	335.1	4.54	80	109	284.6	1393	3.39	

A controller needed to set the flue gas flowrate

Design of the control layers

Regulatory layer: Control of secondary (stabilizing) CVs (CV2s), PID loops

- Absorber bottom level,
- Stripper (distillation column) temperature,
- Stripper bottom level,
- Stripper top level,
- Stripper pressure,
- Recycle surge tank: inventories of water and amine,
- Absorber liquid feed temperature.

Supervisory (economic) control layer: Control of the primary (economic) CVs (CV1s), MPC

- CO₂ recovery in the absorber,
- Temperature at tray 16 in the stripper,
- Condenser temperature.

RGA analysis for selection of pairings

2. Steady-State RGA

$$G_{ss} = 10^{-2} \times \begin{bmatrix} -0.5232 & 1.48 \\ -8.47 & 5.17 \end{bmatrix}$$
$$RGA_{ss} = \begin{bmatrix} -0.27 & +1.27 \\ +1.27 & -0.27 \end{bmatrix}$$

"Break through" of CO₂ at the top of the absorber (UniSim simulation)

Proposed control structure with given flue gas flowrate, Alternative 1

Proposed control structure with given flue gas flowrate, Alternative 2 (reverse pairing)

M. Panahi, S. Skogestad 'Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances' www.ntnu.no 19

Proposed control structure with given flue gas flowrate, Alternative 2

Modified Alternative 2 = Alternative 4

Control of self-optimizing CVs using a multivariable controller

M. Panahi, S. Skogestad 'Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances' www.ntnu.no 25

M. Panahi, S. Skogestad 'Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances' www.ntnu.no 26

Performance of the proposed control structure, MPC

Conclusions

- Alternative 1 is optimal in region I, but fails in region II
- Alternative 2 handles regions I (optimal) and II (close to optimal), but more interactions in region I compare to Alternative 1. No need for switching
- Alternative 3 is optimal in region II. Need for switching
- Alternative 4 is modified Alternative 2 ,results in less interactions. No need for switching
- MPC, similar performance to Alternatives 2 & 4

Alternative 4 is recommended for implementation in practice

Conclusions

- Alternative 1 is optimal in region I, but fails in region II
- Alternative 2 handles regions I (optimal) and II (close to optimal), but more interactions in region I compare to Alternative 1. No need for switching
- Alternative 3 is optimal in region II. Need for switching
- Alternative 4 is modified Alternative 2 ,results in less interactions. No need for switching
- MPC, similar performance to Alternatives 2 & 4

Alternative 4 is recommended for implementation in practice

Thank you for your attention

NTNU Norwegian University of Science and Technology