A convex formulation of fixed-order linear quadratic control with and without noise

Henrik Manum and Sigurd Skogestad*

Abstract—By using a newly established link between self-optimizing control and linear-quadratic optimal control [1], [2], we show in this paper how to derive fixed-order linear quadratic optimal controllers (no noise) and fixed-order H₂ optimal controllers (with noisy measurements) by solving a convex quadratic program. The method may be applied, for example, to find optimal SISO and MIMO PID controllers with and without noise. In the literature, these problems has previously been assumed to be non-convex [3]. The validity of the approach, and in particular of the noise assumptions, has been verified on a small-scale laboratory experiment.

Index Terms—linear quadratic control, fixed-order control

I. INTRODUCTION

A key result, which is a basis for this paper, is the nullspace theorem [4] (noise-free case, see Theorem 2):

For a quadratic static optimization problem there exists (infinitely many) linear measurement combinations $c = H y$ that are optimally invariant to disturbances d, provided $n_y \geq n_u + n_d$.

Consider a LQ problem of the form

$$
\min_u J(u, x(0)) = x_N^T P x_N + \sum_{k=0}^{N-1} [x_k^T Q x_k + u_k^T R u_k]
$$

subject to $x_0 = x(0)$

$$
x_{k+1} = A x_k + B u_k, \quad k \geq 0
$$

$$
y_k = C x_k
$$

Here the initial states are the disturbances ($n_d = n_a$).

One sees immediately that there may be some link to linear quadratic optimal control (LQ), because the discrete LQ problem can be written as a static optimization problem. The link is: If we let the “measurements” y contain the inputs u plus the states x, then the invariant variable combination $c = H y$ is the same as the LQ feedback law, i.e. $c = u - K x$.

The measurements can in theory include previous and future outputs (states). However, for feedback control is all measurements need to be at the same time to avoid problems with causality. To have sufficient number of measurements ($n_y \geq n_u + n_d$) at the present time, we need information about all the present states x_k.

However, in general x is not measured directly. For the noise-free case one may use a Luenberger observer of order $n_x - n_y$ to estimate the remaining states and use the output from the observer as the input to the controller [5]. As noted in [5], “another approach is to differentiate the available outputs a number of times and the combine these derivatives appropriately to obtain the state vector.” Is it further noticed that “in this case, the estimate responds instantaneously to disturbances, but it is severely degraded by a small quantity of additive noise in the measurements” In this work we use this approach where the derivatives give “state information”.

In addition, we provide a convex problem formulation to get fixed-order controllers for cases where of the derivatives are not available.

Importantly, results are further extended to the case with noise, that is we find combinations $c = H y$ that yield minimum loss when held constant (Theorem 2).

Consider (1), but with noisy measurements

$$
y_m = y + n^u.
$$

As above, the initial state $x(0)$ is treated as the disturbance. We can now use a generalization of the nullspace theorem that handles noise as “measurements” y we include the output, a selected number of derivatives of the outputs plus the inputs, $(y_k, \frac{\partial y_k}{\partial t}, \ldots, u_k)$, and we derive a feedback law that minimizes the deterministic objective function in (1) subject to using noisy measurements. As for the noise-free case, we have a convex formulation of the fixed-order control problem.

The rest of the paper is organized as follows: In section II we review two theorems from self-optimizing control. In section III we will see that these theorems gives a nice link to LQ control, and several examples will be given.

A. Notation

In previous works on self-optimizing control and in particular the nullspace method, candidate variables are denoted y and the $n_c = n_u$ variable combinations (controlled variables) $c = H y$. These candidate variables can be process outputs, and also inputs. On the other hand, in process control literature y is referred to as measurements or process output, but usually not inputs. In this paper we work most of the time with discrete models, and then y_k is a process output, whilst y is a vector of candidate variables, for example $y = (x_k, u_k)$.

Figure 1 shows the candidate variables y that are combined to $c = H y$ and control them using a feedback controller. In this work we will show that the feedback controller can be obtained from $c = H y$ itself, if we include the inputs u_k in the candidate variables y. Further, in this work, $c_s = 0$

Department of Chemical Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.

*Author to whom correspondence should be addressed. Email: skoge@ntnu.no
for all candidate variable combinations, as we will typically consider regulation problems in deviation variables.

The most important notation is also summarized in figure 1. Typically, \(u = (u_k, u_{k+1}, \ldots, u_{k+N-1}) \), \(d = x_0 \) and \(y = (y_k, \frac{d y_k}{dt}, u_k, u_{k+1}, \ldots, u_{k+N-1}) \).

\[c = H(y + n^y) \]

Fig. 1. Summary of important notation.

Then for a given \(H \), the worst-case loss introduced by adding the constraint \(c = H y \) is \(L_{wc} = \bar{\sigma}(M)/2 \), where \(M \) is

\[
M \triangleq \begin{bmatrix} M_d & N_{n^y} \\
J_{uu} & J_{ud} & J_{dd} & J_{yd} & J_{yd}
\end{bmatrix}
\]

\[
M_d = -J_{uu}^{1/2}(HG^y)^{-1}HFW_d \\
M_n = -J_{uu}^{1/2}(HG^y)^{-1}HW_{n^y}.
\]

The optimal \(H \) that minimizes the loss can be found by solving the convex optimization problem

\[
\min_H \|H \bar{F}\|_F \\
\text{subject to } \|H F\|_F
\]

Here \(\bar{F} = [FW_d \ W_{n^y}] \).

The reason for using the Frobenius norm is that minimization of this norm also minimizes \(\bar{\sigma}(M) \) [6].

Remark 1: If \(\bar{F} \bar{F}^T \) is non-singular we have an explicit expression for the optimal \(H \) [4]:

\[
H^T = (\bar{F} \bar{F}^T)^{-1}G^y \left((\bar{F} \bar{F}^T)^{-1}G^y \right)^{-1} J_{uu}^{1/2}. \tag{8}
\]

Remark 2: Since, in this particular case, the matrix \(H \) that minimizes the Forbenius norm also minimizes the maximum singular value of \(M \) [6], this \(H \) is also a solution to \(\min_H \bar{\sigma}(M) \).

Remark 3: From [4] we have that any optimal \(H \) premultiplied by a non-singular matrix \(n_c \times n_c \), i.e. \(H_1 = DH \) is still optimal. One implication of this is that for a square plant, \(n_c = n_u \), we can write \(c = H_1 y = H_1^{1/2} y + I u \). To see this, assume \(y = (y_m, u) \), so \(H = [H^{y_m} H^u] \), where \(H^u \) is a non-singular \(n_u \times n_u \) matrix. Now, \(H_1 = (H^u)^{-1}[H^{y_m} H^u] = [H^{y_m} H^{y_m} I] \).

Remark 4: More generally, for the case when \(\bar{F} \bar{F}^T \) is singular, we can solve the convex problem (7) using for example CVX, a package for specifying and solving convex programs [7], with the following code:

```plaintext
cvx_begin variable H(N+nu,ny+nu+N); minimize norm(H*Ftilde,'fro') subject to H*Gy == sqrtm(Juu); cvx_end
```

An important comment regarding Theorem 2 for LQ

It is assumed in this work that the problem can be formulated as a static problem at time \(t = k \) (with all the measurements available at time \(k \)) This assumption is satisfied for the PID controller with direct measurements of the present output \(y_k \), the derivatives \(\dot{y}_k \) and the sum \(y'_k = \sum y_k \) for integration.

However, if we only have available present output measurements \(y_k \), then the derivatives must be obtained by using previous measurements, e.g. \(\dot{y}_k = y_k - y_{k-1} \). In this case, there will then be an additional “start-up” loss, in addition to that given in Theorem 2, and it is not guaranteed that the solution obtained from Theorem 2 is optimal (although it is likely to be reasonably close to the optimal case).
III. FULL STATE INFORMATION

A. No noise

Assume that noise-free measurements of all the states are available. It is well known that the LQ problem (1) can be rewritten on the form in (3) (see for example [8]) by treating \(x_0 \) as the disturbance \(d \), and letting \(u = (u_0, u_1, \ldots, u_{N-1}) \). Thus, from Theorem 1 we know that for this problem there exists infinitely many invariants, but only one of these involves only present states.

Without loss of generality consider a stable process that can be described by the following linear model:

\[
x_{k+1} = Ax_k + Bu_k, \quad k = 0, 1, 2, \ldots
\]

\(x_0 : \text{known} \) (9)

Let \(y = (x_k, u_k, u_{k+1}, \ldots, u_{k+N-1}) = (x_k, u) \). Note that this includes also future inputs, but we will use the normal "trick" in MPC of implementing only the present (first) input change \(u_k \). Since we have \(n_d = n_u + n_u \) and no noise, we can use Theorem 1. The open loop model becomes:

\[
y = G^y u + G^y_d d
\]

\[
G^y = \begin{bmatrix} 0_{n_x \times (n_u, N)} \\ I_{n_u N} \end{bmatrix} \in \mathbb{R}^{(n_x + n_u, N) \times (n_u, N)}
\]

\[
G^y_d = \begin{bmatrix} I_{n_u N} \\ 0_{(n_u, N) \times n_d} \end{bmatrix} \in \mathbb{R}^{(n_x + n_u, N) \times n_x} (10)
\]

Here \(I_m \) is an \(m \times m \) identity matrix and \(0_{m \times n} \) is a \(m \times n \) matrix of zeros.

The matrices \(J_{uu} \) and \(J_{ud} \) are the derivatives of the linear quadratic objective function. Here we will consider the following infinite horizon objective function:

\[
J = \sum_{k=0}^{\infty} \left(x_k^T Q x_k + u_k^T R u_k \right).
\]

If we assume that for \(k \geq 0 \) the solution to the optimization problem of minimizing (11), it can be shown [8] that this particular objective function can be rewritten as

\[
J = \sum_{k=0}^{N-1} \left(x_k^T Q x_k + u_k^T R u_k \right) + x_N^T P x_N,
\]

where \(P \) is a solution to the discrete Lyapunov equation \(P = A^T P A + Q \). (For an unstable process we can set \(u_k = -K x_k \) for \(k \geq N \), where \(K \) is a state feedback gain matrix such that \((A - BK) \) has no eigenvalues outside the unit circle. For the objective function in (11) we can convert the problem to finite horizon by using a final state weight matrix for example from [9].)

For the objective in (12) with the process model in (9) we show in [10] that

\[
J_{uu} = \begin{bmatrix} B^T P B + R & B^T A^T K B & \cdots & B^T (A^{N-1})^T P B \\ B^T P A B & B^T P B + R & \cdots & B^T (A^{N-1})^T P B \\ \vdots & \vdots & \ddots & \vdots \\ B^T P A^{N-1} B & B^T P A^{N-2} B & \cdots & B^T P B + R \end{bmatrix} (13)
\]

and

\[
J_{ud} = \begin{bmatrix} B^T \\ \vdots \\ B^T \\ \vdots \\ B^T \\ B^T P A^{N-1} B & B^T P A^{N-2} B & \cdots & B^T P B + R \end{bmatrix} A (14)
\]

The sensitivity matrix (optimal change in \(y \) when \(d \) is perturbed) becomes:

\[
F = \frac{\partial y_{opt}}{\partial d^T} = - (G^y J_{uu}^{-1} J_{ud} - G^y_d) = \begin{bmatrix} I_{n_u} \\ -J_{uu}^{-1} J_{ud} \end{bmatrix} (15)
\]

Since there is no noise we can use Theorem 1 to get the combination matrix \(H \), i.e. find an \(H \) such that \(H F = 0 \):

\[
[H_1 \ H_2] \begin{bmatrix} I_{n_u} \\ J_{uu}^{-1} J_{ud} \end{bmatrix} = H_1 - H_2 (J_{uu}^{-1} J_{ud}) = 0 (16)
\]

To ensure a non-trivial solution we can choose \(H_2 = I_{n_u, N} \) and get the following optimal combination of \(x_k \) and \(u \):

\[
c = H y = J_{uu}^{-1} J_{ud} x_k + u \]

which reads out as \((u_k = K^k x_k), (u_{k+1} = K^{k+1} x_k), \ldots, (u_{k+N-1} = K^{k+N-1}) x_k\), of which the first invariant \(u_k = K^k x_k \) is the one to be implemented.

In [10] we prove that this gives the same result as conventional linear quadratic control, by conventional meaning for example equation (3) in Rawlins and Muske 1993 [8].

B. Noisy measurement of state vector

Assume now that noisy measurements of the state vector are available, and that the noise-level on all states is the same, i.e. \(x_{m,k} = x_k + \alpha \). As before, we treat the initial state as a disturbance, \(d = x_0 \), and assume the following bounds on the disturbance and noise:

\[
d = W_d d', \ \ n^y = W_{n^y} n^y', \ \ W_d = I, \ W_{n^y} = \alpha I, \ \text{and} \ ||d'||_2 \leq 1. (18)
\]

Here \(\alpha \) is the noise-to-disturbance ratio and we have assumed that the combined two-norm describes the disturbance and noise variations. Further assume that an optimal state feedback \(K \) for the case of no noise \((\alpha = 0)\) has already been found. By using Theorem 2 and the analytical expression for \(H \) (8), we prove in appendix A that

\[
u_k = \frac{1}{1 + \alpha^2} K x_k (19)
\]

Thus, \((1 + \alpha^2)\) is the optimal reduction in state feedback gain when \(\alpha > 0 \).

IV. OUTPUT FEEDBACK WITHOUT NOISE

In this section we will consider a second order SISO process with noise-free output measurements. For clarity of presentation, we present the theory by way of an example.

We will consider two cases. First, the full-information case where we measure the derivatives and where \((y_k, \frac{\partial u}{\partial t})\) and the inputs are combined using Theorem 1. The controller is equivalent to a Luenberger observer with poles at \(-\infty\).
in continuous time domain and 0 in discrete time, but is derived using Theorem 1, and not using observer theory. In the second case a low-order controller using the explicit expression (8) from Theorem 2 with observer canonical form and then discretizing, as in example 1.) We want to bring both \(T \) and \(I \) to the origin, and to achieve this we need to solve an optimization problem to get the optimal combination, since \(n_d \leq n_y = Nn_u + (n_d - 1) \leq Nn_u + n_d \). The optimal \(H \) can now be found solving the convex optimization problem shown in Theorem 1.

We end up with the feedback law

\[
 u_k = -7.14y_k. \tag{26}
\]

Note that this gain is the double of the gain for the full information case.

Numerical comparison: A simulation was run with disturbances drawn from a uniform distribution with \(\|d\|_1 \leq 1 \), and by computing the average stage costs under closed loop, \(J_{\text{avg}} = \frac{1}{N} \sum_{i=0}^{N-1} x_i^T Q x_i + u_i^T R u_i \) we found that \(J_{\text{avg, full information}} = 6.4 \), while \(J_{\text{avg, reduced information}} = 22.7 \). As expected, there is a loss with only output feedback.

V. Output feedback with noise

In this section, we will use Theorem 2 to find low-order controllers when noisy measurements are available. We will show the methodology on a small-scale laboratory plant, which is shown in figure 2. The low-order controller that we want to use is a PID controller, and therefore we first show how to derive a LQ-optimal PID controller and then apply the controller to the laboratory plant. The laboratory-scale plant is rather small and likely to be affected by disturbances such as opening of lab doors, air conditioning, other lamps switched on/off etc., hence integral action seems necessary for controlling the plant.

The PID controller is synthesized using Theorem 2, but before finding the controller some more preliminaries are needed. We need to

1) Augment the model with a disturbance model.
2) Modify the objective function to penalize input change rather than absolute value of the inputs. This is necessary in order let the outputs reach their setpoints when integrating disturbances occur. (We want to use the inputs to counteract disturbances at steady state, hence we should not require the inputs to return to the nominal point of operation.)

We start by augmenting the model with integrating disturbances. The formulation, see (27), includes both input and output disturbances. In addition we add integrators for summing up the outputs. These correspond to the integrators in the controller. (For the example, the number of integrators in the controller \(n_s \) equals number of integrating disturbances \(n_s = n_d = n_y = 1 \). We also add as an output the output change \(y_{k+1} - y_k = (CAx_k + CBu_k) - Cx_k \), where \(d_{k+1} \) was assumed to be \(d_{k+1} = d_k \). (The derivatives may also be added by starting from a continuous model on observer canonical form and then discretizing, as in example 1.) We
then get the following model of the plant and controller:

\[
\begin{bmatrix}
 x_{k+1} \\
 d_{k+1} \\
 \sigma_{k+1}
\end{bmatrix} =
\begin{bmatrix}
 A_{\text{plant}} & B_d & 0 \\
 0 & I & 0 \\
 C & C_d & I
\end{bmatrix}
\begin{bmatrix}
 x_k \\
 d_k \\
 \sigma_k
\end{bmatrix} +
\begin{bmatrix}
 0 \\
 0 \\
 0
\end{bmatrix}
\begin{bmatrix}
 \sigma_k
\end{bmatrix} +
\begin{bmatrix}
 0 \\
 0 \\
 0
\end{bmatrix}
\begin{bmatrix}
 u_k
\end{bmatrix}
\]

\[
\begin{bmatrix}
 y_k^f \\
 y_k^d \\
 y_k^c
\end{bmatrix} =
\begin{bmatrix}
 C(A_{\text{plant}} - I) & 0 & 0 \\
 0 & 0 & I \\
 C(A_{\text{plant}} - I)
\end{bmatrix}
\begin{bmatrix}
 x_k \\
 d_k \\
 \sigma_k
\end{bmatrix} +
\begin{bmatrix}
 0 \\
 0 \\
 CB
\end{bmatrix}
\begin{bmatrix}
 u_k
\end{bmatrix}
\]

(27)

We now modify the objective function to penalize \(\Delta u_k \). Assume the original objective function was on the form

\[
J(x, u) = x_N^T P x_N + \sum_{i=0}^{N-1} x_i^T Q x_i + u_i^T R u_i + 2 x_i^T N u_i,
\]

hence no term \(\Delta u_k R_\Delta \Delta u_k \). First note that in continuous time, \(u = K x \Rightarrow \dot{u} = K \dot{x} \) in closed loop. In discrete time \(\dot{x} \approx x_{k+1} - x_k \) and we get that

\[
\dot{u} = K \dot{x} \approx K (x_{k+1} - x_k) = K ((A - I)x_k + Bu_k)
\]

(28)

The term \(\Delta u_k^T R_\Delta \Delta u_k \) becomes

\[
\Delta u_k^T R_\Delta \Delta u_k = x_k^T (A - I)^T K R_\Delta K (A - I)x_k + u_k^T B^T K R_\Delta K B u_k + 2 x_k^T (A - I)^T K R_\Delta K B u_k.
\]

(29)

This formulation is useful because we can use, for example, the function \(\text{’lqr’} \) in Matlab directly to get the \(K_{lqr} \) feedback matrix. This matrix is needed for the calculation of the final weight matrix \(P \). In earlier examples we calculated \(P \) from \(P = A^T P A + Q \), by assuming that \(u_k = 0 \) for \(k \geq N \). With integral action this is wrong, since at steady state we use the inputs to counteract the integrating disturbances. The following final weight can be used to change the problem from infinite to finite horizon: (See Appendix B for a derivation.)

\[
P = (A - B K_{lqr})^T P (A - B K_{lqr}) + K_{lqr}^T R K_{lqr} + Q - N K_{lqr}.
\]

(30)

Let us summarize the method for finding a (MIMO) PID controller with quadratic objective function and noisy measurements:

1) Choose weights \((Q, R_\Delta) \) for the LQ problem.
2) Determine weights \(W_d, W_n \) from operating data and/or process knowledge.
3) Augment the process model as shown in (27).
4) Solve LQ problem, for example with \(\text{’lqr’} \) in Matlab, iteratively on \(K \), with the following objective:

\[
J = \sum_{i=0}^{\infty} x_i^T (Q + (A - I)^T K R_\Delta K (A - I)) x_i + u_i^T B^T K R_\Delta K B u_i + 2 x_k^T (A - I)^T K R_\Delta K B u_k.
\]

(31)

The following iteration scheme was used:

\[
\text{while } ||\Delta K|| > \beta \text{ do}
Q_n \leftarrow Q + (A - I)^T K R_\Delta K (A - I)
R_n \leftarrow B^T K R_\Delta K B
N_n \leftarrow (A - I)^T K R_\Delta K B
\]

and \(R_\Delta = 1 \).

(34)

We further set \(W_d = I_3 \). For the noise weight \(W_n \), we choose

\[
W_n = \begin{bmatrix} 1 & 100 \\
 & I_{n \times n} \end{bmatrix}
\]

(35)

This matrix should be related to the noise-to-disturbance ratio. Here the disturbances are the disturbances to the initial

Preprint submitted to 2009 American Control Conference.
Received September 22, 2008.
states x_0. In this example however, we use this matrix as a tuning matrix in which we set a high noise-term on the differential (the third output) and let the other terms have same weight as the disturbance weight matrix. This is because we do not want too much derivative action, but at the same time we want to demonstrate the mathematical framework for deriving a PID controller. (Of course, if we do not want a D-term in the controller, we should have excluded the differential as a possible “measurement” before using Theorem 2 to find the controller.)

For the disturbance model we choose

$$B_d^T = \begin{bmatrix} 1 & 1 \end{bmatrix}, \quad C_d = 0.$$ \hfill (36)

Notice that

$$\text{rank} \begin{bmatrix} I - A_{\text{plant}} & -B_d \\ C_{\text{plant}} & C_d \end{bmatrix} = 3 = n_x + n_y,$$ \hfill (37)

which indicates that offset-free control at steady state should be possible [15], [16].

As input horizon we set $N = 20$ in this example. Using the above method, we first find that $K_{\text{LQ}} = 10^6 \begin{bmatrix} 3.1590 & -0.1174 & 0.0010 & 0.0013 \end{bmatrix}$, and that

$$P = 10^6 \begin{bmatrix} 6.8224 & -0.2768 & 0.0029 & 0.0035 \\ -0.0993 & 0.0547 & -0.0011 & 0.0000 \\ 0.0010 & -0.0010 & 0.1811 & -0.0000 \\ 0.0045 & -0.0000 & 0.0000 & 0.0000 \end{bmatrix}.$$ \hfill (38)

Since we now have penalty on the input change, $\Delta u_k^T R_{\Delta} u_k$, the $J_{ uu}$ matrix in (13) needs to be changed slightly. This can be done by letting $U = (u_0, u_1, \ldots, u_{N-1})$ and $\Delta U = MU$ where

$$M = \begin{bmatrix} -1 & 1 \\ \vdots & \vdots \\ -1 & 1 \end{bmatrix} \in \mathbb{R}^{n_x(N-1) \times n_x N}.$$ \hfill (39)

The matrix $J_{ uu}$ is now

$$J_{ uu} = \frac{1}{2} \begin{bmatrix} B_d^T P B + R & B_d^T A \ast K B & \cdots & B_d^T (A^{N-1})^T P B \\ B_d^T P A B & B_d^T P B + R & \cdots & B_d^T (A^{N-2})^T P B \\ \vdots & \vdots & \ddots & \vdots \\ B_d^T P A^{N-1} B & B_d^T P A^{N-2} B & \cdots & B_d^T P B + R \end{bmatrix} + M^T \begin{bmatrix} R_{\Delta} \\ \vdots \\ R_{\Delta} \end{bmatrix} M.$$ \hfill (40)

The structure of $J_{ ud}$ is the same as in (14). The open loop model $y = G^y u + G^y d$, with $d = x_0$, is for this example

$$G^y = \begin{bmatrix} D \\ I \\ 0 \\ I \\ C \end{bmatrix}, \quad G^y_d = \begin{bmatrix} 0_{3n_y \times (N-1)n_u} \\ 0_{Nn_x \times n_x + n_d + n_y} \end{bmatrix}.$$ \hfill (41)

Here n_d is the number of integrating disturbances and n_y is the number of integrators in the controller. We have that $n_d = n_y = n_y = 1$.

We can now calculate \tilde{F}, and solve the convex optimization problem that finds the minimum of $\| H \tilde{F} \|$ subject to $H G^y = J_{ uu}^{1/2}$. As indicated above, H can be written as $H = [H^x \ H^y]$ and another matrix that minimizes the norm is $H^x = (H^y)^{-1} H^y m \ I$. By considering the first row of this matrix we find that

$$u_k + 0.54 y_k + 0.53 \sum_{i=0}^k y_i + 0.11 (y_k - y_{k-1}) = 0.$$ \hfill (42)

This variable combination that gives the minimum loss when we impose a PID-structure for the controller to the original problem. In feedback form:

$$u_k = -\frac{0.54 y_k - 0.53 \sum_{i=0}^k y_i - 0.11 (y_k - y_{k-1})}{\Delta}.$$ \hfill (43)

Note that in the original problem formulation we obtain $y_{k+1} - y_k$ for the derivative, but since this is non-causal we have shifted the derivative one step back in the implementation.

Figure 3 shows a plot of the temperature loop in open and closed loop, where in closed loop we implemented the LQ-optimal PID controller. No filter on the derivative part was used. One observes that under closed loop the temperature is kept at its set-point at 35°C, even with the integrating disturbances from the fan, whilst in open loop the temperature drifts away when the plant is subjected to the same disturbances. In closed loop is seems like the noise is slightly amplified, this is probably due to the derivative term in the controller. This can be fixed by placing a filter

Fig. 3. Experimental data.
in front of the derivative term. Here we want to demonstrate the design of the controller rather than tuning, so we will not pursue this issue further.

Discussion

Above we used pure integrators in the derivation, and we used a penalty on \(\Delta u_1^T \hat{R} \Delta u_k \) rather than \(u_1^T \hat{R} u_k \) in the objective function. The reasoning was that since we want integral action we want to use the input to counteract the integrating disturbances, therefore it is not reasonable to require that the inputs return to the nominal point. We saw that by using \(\hat{u} = K \hat{x} \) we could fit the penalty of the input-change into the normal objective function \(J = \sum_{k=0}^{\infty} x_k^T Q x_k + u_1^T \hat{R} u_k + 2 \alpha^2 N u_k \), but in order to get the optimal controller we had to iterate, since the weights \((Q, \hat{R}, N) \) are functions of the controller itself.

Another obvious approach is to not use pure integrators, but rather add disturbances with very large time constants. This way we do not have to iterate on the controller. In this setting we can also add a weight on \(u_1^T \hat{R} u_k \), since the states eventually will be driven back to the origin. The main gain from the method above seems to be that we can reduce the input horizon \(N \), and hence the number of the degrees of freedom, compared to the approach of adding disturbances with large time constants, as in order to capture the behaviour of the process a larger input horizon \(N \) is needed.

VI. CONCLUSION

In this work we have presented a convex approach to the design of fixed order linear quadratic controllers. In particular, we have shown how to derive PD and PID controllers for a linear plant with a quadratic control objective. From Theorem 2 we have derived expressions for fixed-order controller both for the case of noisy and noise-free measurements.

In example we 2 gave all steps necessary to derive a PID controller for a given linear plant, and we tested the controller on a laboratory temperature loop. The framework is general in the sense that it can be applied directly to MIMO systems to get MIMO PID controller. In a forthcoming contribution we will indeed give guidelines for setting up a MIMO PID controller using the ideas presented here.

REFERENCES

APPENDIX

A. Proof of gain reduction for LQ control

Assume \(W_d = I \) and

\[W_n^\beta = \begin{bmatrix} \alpha I & \beta I \end{bmatrix} \]

Here \(\alpha \) is the measurement noise and \(\beta \) is additive noise to the inputs. (We will show that \(\beta \) does not affect the solution.) Define \(J = -J_{nu}^{-1} J_{ud} \). We have that \(\hat{F} X \hat{T} = F W_d W_d^T F^T + W_n^\beta W_n^\beta \). By the above assumptions we get that

\[\hat{F} X \hat{T} = F W_d W_d^T F^T + W_n^\beta W_n^\beta = \begin{bmatrix} (1+\alpha^2)I & J^T \end{bmatrix} \begin{bmatrix} J^T & \beta^2 I \end{bmatrix} \]

Due to the assumptions on \(W_n^\beta \) we get

\[\hat{F} X \hat{T} = F W_d W_d^T F^T + W_n^\beta W_n^\beta = \begin{bmatrix} (1+\alpha^2)I & J^T \end{bmatrix} \begin{bmatrix} J^T & \beta^2 I \end{bmatrix} \]

This matrix has to be inverted. This can be done using Lemma A.2 (Inverse of a partitioned matrix) in [12], with \(A_{11} = (1+\alpha^2)I, A_{12} = J^T, A_{21} = J, A_{22} = J J^T + \beta^2 I \). Further we have \(X = A_{22} - A_{21} A_{21}^\dagger A_{12} = \cdots = \left(\frac{\alpha^2}{1+\alpha^2} J J^T + \beta^2 I \right) \). We observe that the inverse of \(X \) exists.

Using the Lemma, we get that the inverse of \(\hat{F} X \hat{T} \) is:

\[\left(\hat{F} X \hat{T} \right)^{-1} = \left[\frac{1}{1+\alpha^2} I + \frac{1+\alpha^2}{(1+\alpha^2)^2} J^T X^{-1} J \right] \left(\frac{1+\alpha^2}{(1+\alpha^2)^2} J^T X^{-1} X^{-1} \right) \]

We now need to evaluate \(G^\beta (\hat{F} X \hat{T})^{-1} G^\beta \). For the current problem formulation we have that \(G^\beta = [0_{n_u \times n_l}, I_{n_l \times n_u}] \).
and after doing the multiplication we get that
\[G^T(\tilde{F}F)^{-1}G = X^{-1} \Rightarrow (G^T(\tilde{F}F)^{-1}G)^{-1} = X \] (47)

Further,
\[(\tilde{F}F)^{-1}G = \left[-\frac{1}{\delta^2}F^T X^{-1} \right] \] (48)
and finally we get that
\[H^T = (\tilde{F}F)^{-1}G \left(G^T(\tilde{F}F)^{-1}G \right)^{-1}J^{1/2}_{uu} \]
\[= \left[\frac{1}{1+\delta^2}J^{1/2}_{uu} J_{ud} \right] \] (49)
\[or \]
\[H = \left[\frac{1}{1+\delta^2}J^{1/2}_{uu} J_{ud} J^{1/2}_{uu} \right] \] (50)

We now scale \(H \) matrix by \(J^{-1/2}_{uu} \) to decouple the inputs and to get an expression for the controller gains:
\[(J^{1/2}_{uu})^{-1}H = \left[\frac{1}{1+\delta^2}J^{-1}_{uu} J_{ud} 1 \right] \] (52)
and we observe that optimally we should reduce the controller gains by \(1/(1+\alpha^2) \) when there is noise on the states on the form \(\alpha I \). To see this, remember that \(y = (x, u) \), and hence we get \(c \)'s on the form
\[c = Hy = \frac{1}{1+\alpha^2}J^{-1}_{uu} J_{ud}x + U \] (53)
which is on exactly the same form as (17).

Remark 5: From the above derivation one notes that noise entering on the inputs does not affect the optimal solution. This may also be seen from the norm of \(Hy \):
\[\|Hy\| = \|(uk + Kx_k) + nu + Kn^\alpha\| \leq \|Kx_k + uk\| + \|Kn^\alpha\| + \|nu\| \] (54)

We observe that there is a trade-off by using \(uk \) to keep \(\|Kx_k + uk\| \) small, but avoiding amplification of \(\|Kn^\alpha\| \). However, \(nu \) does not affect this trade-off. Remember that for the noise-free case with full information, the optimal setpoint for \(c = Hy = u - Kx = 0 \).

B. Change from infinite to finite horizon problem with cross-term

Assume we have the following objective
\[J(u, x) = \sum_{i=0}^{\infty} \left[x_i^TQx_i + u_i^TRu_i + 2x_i^TNu_i \right] \] (55)

This infinite horizon optimization problem can be changed to finite horizon by assuming \(uk = -K_{lqr}x_k \) for \(k \geq N \). Then, for \(k \geq N \), \(x_{N+i} = (A - BK_{lqr})^i x_N \) and \(u_{N+i} = -K_{lqr}((A - BK_{lqr})^i x_N \). This implies that
\[\sum_{i=N}^{\infty} \left[x_i^TQx_i + u_i^TRu_i + 2x_i^TNu_i \right] = \]
\[= x_N^T \left(\sum_{i=0}^{\infty} (A - BK_{lqr})^T (Q + K_{lqr} RK_{lqr} - NK_{lqr})(A - BK_{lqr}) \right) x_N \] (56)