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Indirect control is commonly used in industrial applications where the primary controlled variable
is not measured. This paper considers the case of “perfect indirect control” where one attempts
to control a combination of the available measurements such that there is no effect of disturbances
on the primary outputs at steady-state. This is always possible provided the number of
measurements is equal to the number of independent variables (inputs plus disturbances). It is
further shown how extra measurements may be used to minimize the effect of measurement
error. The results in this paper also provide a nice link to previous results on inferential control,
perfect disturbance rejection and decoupling (DRD), and self-optimizing control.

1. Introduction

Indirect control6 is used when we for some reason
cannot control the “primary” outputs y1. Instead, we aim
at indirectly controlling y1 by controlling the “secondary”
variables c (often denoted y2).6 More precisely, it may
be defined as follows.

Indirect control is when we aim at (indirectly)
keeping the primary variables y1 close to their set points
y1s, by controlling the secondary variables c at constant
set points cs.

An example is control of temperature (c) in a distil-
lation column, to indirectly achieve composition control
(y1).

A less obvious example of indirect control, is the
selection of “control configurations” in distillation col-
umns. The term “control configuration” here refers to
which two flows or flow combinations are left as degrees
of freedom after we have closed the stabilizing loops for
the condenser and reboiler levels. Ideally, keeping the
selected two flow combinations (c) constant will indi-
rectly lead to good control of the product compositions
(primary outputs, y1). For example, in the LV-configu-
ration, the condenser and reboiler levels are controlled
such that the flows L (reflux) and V (boilup) are left as
free variables for the layer above. However, keeping
these flows constant (selecting L and V as c’s) gives large
changes in the product compositions (y1) when there are
disturbances in the feed flow rate. Instead, one may use
the L/D V/B-configuration. In this case, keeping L/D and
V/B constant (c’s) gives almost constant product com-
positions (good control of y1) when there disturbances
in the feed flow rate. However, the changes in the
product composition are large (poor control of y1) for feed
composition disturbances (e.g., ref 7). Häggblom and
Waller3 looked for a flow combination that handles all
disturbances, and they proposed the “disturbance reject-

ing and decoupling” configuration. This partially moti-
vated our work, and this is discussed in more detail
below.

In the following, we let the set y denote the “candi-
date” measured variables for indirect control. We will
refer to the entire set y as “measurements”, but note
that we in this set also include the original manipulated
variables (inputs) (e.g., L, V, D and B for the distillation
example). In this paper, we select as “secondary”
controlled variables c a linear combination of the
variables y,

In other words, we want to find a good choice for the
matrix H. In the simplest case individual measurements
y are selected as c’s, and the matrix H consists of zeros
and ones. However, more generally we allow for com-
binations (functions) of the available measurements y,
and H is a “full” matrix with all entries nonzero. In the
paper, we show that if we have as many measurements
as there are independent variables (inputs plus distur-
bances), then we can always achieve at steady state
“perfect indirect control” with perfect disturbance rejec-
tion and in addition with a decoupled response from the
set points cs (the “new” inputs) to the primary variables
y1.

Indirect control may be viewed as a special case of
“self-optimizing control” (ref 4). This is clear from the
following definition.

Self-optimizing control5 is when we can achieve
acceptable (economic) loss with constant set point values
for the controlled variables c (without the need to
reoptimize when disturbances occur).

In most cases the “loss” is an economic loss, but for
indirect control it is the set point deviation, i.e., L )
||y1 - y1s||. The implications of viewing indirect control
as a special case of self-optimizing control are discussed
later in the paper.

Another related idea is inferential control.8 However,
in inferential control the basic idea is to use the
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measurements y to estimate the primary variables y1,
whereas the objective of indirect control is to directly
control a combination c of the measurements y. Hagg-
blom9 proposed a combined internal model and infer-
ential control structure.

In the paper, we only consider the steady-state
behavior. The notation in this paper largely follows that
used by Halvorsen et al.4

2. Perfect Indirect Control

Consider a set point problem where the objective is
to keep the “primary” controlled variables y1 at their
set points y1s. We also have the following definitions.

u: inputs (independent variables available for control
of y1)

d: disturbances (independent variables outside our
control)

y: measurements (may include u and measured d’s)
Problem definition indirect control: Find a set

of (secondary) controlled variables c ) h(y) such that a
constant set point policy (c ) cs) indirectly results in
acceptable control of the primary outputs (y1).

We make the following assumptions.
1. The number of secondary controlled variables c is

equal to the number of inputs u (nc ) nu), and they are
independent such that it is possible to adjust u to get c
) cs.

2. We consider the local behavior based on linear
models.

3. We only consider the steady-state behavior.
4. We neglect the control error (including measure-

ment noise), that is, we assume that we achieve c ) cs
at steady state (this assumption is relaxed later).

5. We assume that the nominal operating point (u*,
d*) is optimal, that is, at the nominal point (where d )
d* and c ) cs) we have y1

/ ) y1s.
The linear models relating the variables are

The controlled variables c are combinations of the
measurements, ∆c ) H∆y, and it follows from (2) and
(4) that

where ∆u ) u - u*, etc. From (4) we can obtain the
inputs ∆u needed to get a given change ∆c:

where G-1 exists because of assumption 1. Substituting
this into (3) yields the corresponding change in the
primary variables

The “partial disturbance gain” Pd gives the effect of
disturbances d on the primary output y1 with closed-

loop (“partial”) control of the variables c, and Pc gives
the effect on y1 of changes in c (e.g., due to a set point
change cs). Acceptable indirect control is achieved if Pd
is sufficiently small. Ideally, we would like to choose H
such that Pd ) 0. Somewhat surprisingly, at least from
a physical point of view, it turns out that this is always
possible provided we have enough measurements y, and
that we in fact have additional degrees of freedom left
which we may use, for example, to specify Pc. For
example, it may be desirable to have Pc ) I, because
this (at least at steady state) gives a decoupled response
from cs (which are our “new inputs”) to the primary
controlled variables y1.

“Perfect indirect control” (refined problem defi-
nition): Find a linear measurement combination, ∆c
) H∆y, such that at steady-state we have perfect
disturbance rejection (Pd ) 0) and a specified set point
response (i.e., Pc ) Pc0, where Pc0 is given.)

We make the following additional assumptions:
6. The number of primary outputs y1 is equal to the

number of secondary controlled variables c (i.e., ny1 )
nc), such that Pc0 is invertible.

7. The number of (independent) measurements y is
equal to the number of inputs plus disturbances (ny )
nu + nd), such that the matrix G̃y is invertible (this
assumption is relaxed later).

Solution to refined problem definition: We have ∆c )
H∆y and want to find H such that

This gives ∆y1 ) Pc0H∆y, and using (2) and (3) gives

which gives G̃1 ) Pc0HG̃y or

which is the solution to the refined problem definition.
Extension 1. More generally, we may specify Pd )

Pd0 (where Pd0 is given and may be nonzero) and the
resulting choice for H is

where

Extension 2. If the measurements y are not inde-
pendent or are closely correlated, then the matrix G̃y in
(7) and (8) will be singular or close to singular, resulting
in infinite or large elements in G̃y-1. In this case, one
needs to consider another set of measurements y or use
more measurements. This is discussed separately below.

3. Application to Control Configurations for
Distillation

The results of Häggblom and Waller3 on control
configurations for “disturbance rejection and decoupling
(DRD) of distillation” provide an interesting special case
of the above results, and actually motivated their
derivation. Häggblom and Waller3 showed that one
could derive a DRD control configuration that achieved
the following points.

∆y ) Gy∆u + Gd
y∆d ) G̃y (∆u

∆d ) (2)

∆y1 ) G1∆u + Gd1∆d ) G̃1 (∆u
∆d ) (3)

∆c ) G∆u + Gd∆d ) G̃ (∆u
∆d ) (4)

G ) HGy; Gd ) HGd
y; G̃ ) HG̃y (5)

∆u ) G-1∆c - G-1Gd∆d

∆y1 ) Pc0∆c + 0‚∆d

∆y1 ) G̃1 (∆u
∆d )) Pc0HG̃y(∆u

∆d )

H ) Pc0
-1G̃1G̃

y-1
(7)

H ) Pc0
-1G̃1G̃

y-1
(8)

G̃1 ) (G1 Gd1 - Pd0) ) G̃1 - (0 Pd0) (9)
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1. Perfect disturbance rejection with the new loops
closed (i.e., Pd ) 0 in our notation).

2. Decoupled response from the new manipulators to
the primary outputs (i.e., Pc ) I in our notation).

Häggblom and Waller3 derived this for distillation
column models. Their results can be derived from
equation (7) when we introduce

Comments:
1. The primary outputs y1 are the product composi-

tions (bottoms and distillate product)
2. The measured variables are y ) u0 where u0 )

(L V D B)T (flows) are the original manipulated inputs
for the distillation column.

3. The inputs u (a subset of u0) are the remaining two
inputs after satisfying the steady-state constraints of
constant MB and MD (reboiler and condenser level have
no steady-state effect). In (10) we have selected u )
(L V)T, but it actually does not matter which two
variables we choose to include in u, as long as the
variables in u are independent.

4. The disturbances d are feed flow rate and feed
composition.

Note that we in (10) only allow for flows as measure-
ments, y ) u0. This implies that we want to achieve
indirect control by keeping flow combinations at con-
stant values. This implicitly requires that the feed
composition zF has an effect on at least one of the flow
rates. This will generally be satisfied in practice where
u0 represents mass or volumetric flows, but it will not
be satisfied in the “academic” case where we use the
“constant molar flows” assumption (simplified energy
balance) and assume that we manipulate molar flows.

We want to use a combination ∆c ) H∆y of the
measurements y as controlled variables,

From (7) we derive the choice for H that gives “perfect
indirect control” at steady state, and we find that it is
identical to that of the DRD configuration in ref 3.

As a specific example, consider the model of a 15-plate
pilot-plant ethanol-water distillation column studied
by Häggblom and Waller.3 The steady-state model in
terms of u ) (L V)T (LV-configuration) is

with (ref 3)

From (7), we derive the fact that the following variable
combination gives perfect disturbances rejection and
decoupling (DRD):

which is identical with the DRD structure found in ref
3.

We note that our derivation is simpler. In addition,
our results generalize the results in ref 3 in two ways:

1. The results are generalized to other measurements
than the choice y ) u0 (flows). For example, it is possible
to derive a DRD configuration based on keeping two
combinations of four temperature measurements con-
stant.

2. The results are generalized to other processes than
distillation.

A further extension is discussed next.

4. Extension 2: Selection of Measurements and
Effect of Measurement Error

Above we assumed that the number of independent
measurements was equal to the number of independent
variables, i.e., ny ) nu + nd (assumption 7), and
neglected the effect of measurement error (noise) and
control error by assuming that we can achieve perfect
control of c, i.e., c ) cs at steady state (assumption 4).
These assumptions are related, since the violation of
assumption 7, will lead to sensitivity in the measure-
ment error neglected in assumption 4.

Let ny denote the measurement error associated with
the measurements y. Since ∆c ) H∆y, the effect on the
controlled variables c is nc ) c - cs ) Hny. This
corresponding error in the primary outputs is then

From (14), we see that the effect of measurement error
is large if the norm of the matrix PcH is large. With
“perfect indirect control” we see from (7) that PcH )
G̃1G̃y-1 which is large if the measurements are closely
correlated since then G̃y is close to singular and the
elements in G̃y-1 are large.

If we have extra measurements, ny > nu + nd, then
we may use these extra measurements to affect PcH and
thus minimize the effect of the measurement noise. This
may be done in two ways as discussed below:

(a) Select the best subset of all the measurements,
(“use the most independent measurements”).

(b) Use all the measurements and select the best
combination (“average out the measurement error”).

Method b, where we use all the measurements, is
always better mathematically, but method a, where we
use only a subset, may be preferred in practice because
it uses fewer measurements.

In addition, there may cases where we have too few
or correlated measurements, so that it is impossible to

y1 ) (yD
xB

), y ) (LVD
B

), u ) (LV ), d ) (FzF
) (10)

∆c1 ) h11∆L + h12∆V + h13∆D + h14∆B

∆c2 ) h21∆L + h22∆V + h23∆D + h24∆B

(∆yD
∆xB

) ) G1 (∆L
∆V )+ Gd1 (∆F

∆zF
)

y ) (∆L
∆V
∆D
∆B

) ) Gy(∆L
∆V )+ Gd

y (∆F
∆zF

)

G1 ) (-0.045 0.048
-0.23 0.55 ) Gd1 ) (-0.001 0.004

-0.16 -0.65 ) (11)

Gy ) (1 0
0 1
-0.61 1.35
0.61 -1.35

) Gd
y ) (0 0

0 0
0.056 1.08
0.944 -1.08

) (23)

H ) (-0.0427 0.0430 0.0025 -0.0012
-0.5971 1.3625 -0.7281 -0.1263 ) (13)

∆y1 ) PcHny (14)
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achieve “perfect” disturbance rejection. We would then
like to do the following.

(c) Select (control) a combination of the available
mesurements so that the effect of disturbances on the
primary variables is minimized.

(a) Best subset of measurements. This is the case
discussed earlier where we select as many measure-
ments as there are inputs and disturbances (ny ) nu +
nd). The matrix G̃y is then invertible and from (7) we
have for “perfect indirect control” that

The issue here is which subset of the measurements to
select.

First, we note that the choice of Pc does not affect the
sensitivity to measurement error G̃1G̃y-1, that is, the
“degree of freedom” in selecting Pc is not useful in terms
of measurement error. Also note that the choice of
measurements y does not influences the matrix G̃1.
However, the choice of measurements y does affect the
matrix G̃y, and if we have extra measurements, then
we should select them such that the effect of measure-
ment error is minimized, that is, such that G̃1G̃y-1 is
minimized. To choose the best measurements we first
need to scale the measured variables:

•Each measured variable y is scaled such that its
associated measurement error ny is of magnitude 1.

Since the induced 2-norm or maximum singular value
of a matrix, σj, provides the worst-case amplication in
terms of the two-norm, we have from (14) and (15) that

This has the following implications:
1. (Optimal) To minimize the worst-case value of

||∆y1||2 for all ||ny||2 e 1, select measurements such that
σj(G̃1G̃y-1) is minimized.

2. (Suboptimal) Recall that the measurement selection
does not affect G̃1. From the inequality in (16), it then
follows that the effect of the measurement error ny will
be small when σ(G̃y) (the minimum singular value of
G̃y) is large. It is therefore reasonable to select measure-
ments y such that σ(G̃y) is maximized. Here G̃y repre-
sents the effect of u and d on y.

(b) Best Combination of all the Measurements.
Let G̃y represent the effect of the independent vari-
ables on all the available measurements. A derivation
similar to (7) gives that “perfect indirect control” is
achieved when

However, we now have ny > nu + nd, and (17) has an
infinite number of solutions for H. We want to find the
solution that minimizes the effect of measurement error
on the primary outputs y1. The solution that minimizes
the 2-norm of y1 is the one with the smallest 2-norm of
PcH, see (14). With P ) Pc0 ) I (decoupling) this is
obtained from (17) by making use of the pseudoinverse:

In this case G̃y † is the left inverse of G̃y. With this
choice the effect of measurement error is

(c) Few Measurements. We here consider the case
with fewer measurements than indepedendent vari-
ables, i.e., ny < nu + nd. In this case, (17) has no solution,
so perfect disturbance rejection (Pd ) 0) is not possible.
One possibility, is to delete or combine disturbances
such that (17) has a solution. Another possibility, is to
use the pseudoinverse as shown in (18)

but in this case the pseudoinverse is the right inverse.
This corresponds to selecting H such that ||E||2 is
minimized, where E ) Pc0

-1G̃1 - HG̃y. This seems
reasonable as we can show that Pd∆d ) Pc0

-1E (∆d
∆u), so

a small value of E implies a small value of Pd∆d, and
thus a small disturbance sensitivity. However, note that
minimizing E does not necessarily minimize Pd.

Comment. It is appropriate at this point to make a
comment about the pseudoinverse A† of a matrix. Above
we are looking for the best solution for H that satisfies
the equation set HG̃y ) Pc0

-1G̃1. In general, we can
write the solution of HA ) B as H ) BA† where the
following points are true.

(i) A† ) (ATA)-1AT is the left inverse for the case when
A has full column rank (we have extra measurements).
In this case, there are an infinite number of solutions
and we seek the solution that minimizes H.

(ii) A† ) AT(AAT)-1 is the right inverse for the case
when A has row column rank (we have too few mea-
surements). In this case there is no solution and we seek
the solution that minimizes the two-norm of E ) B -
HA (“regular least squares”).

(iii) In the general case with extra mesurements, but
where some are correlated, A has neither full column
or row rank, and the singular value decomposition may
be used to compute the pseudoinverse A+.

5. Discussion: Link to Previous Work

Inferential Control. If we choose Pd ) 0 and Pc0 )
I, then we have ∆y1 ) ∆c, and we find, not unexpectedly,
that (7) is the same as Brosilow’s static inferential
estimator; see eq 2.4 in ref 8. To more clearly see the
link, recall that the idea in inferential control is to first
“infer” from the measurements ∆y the inputs and
disturbances, and from this estimate the primary
output. From (2), the inferred input and disturbance is

and from (3), the resulting estimated value of the
primary output is

On the other hand, in indirect control, the idea is to
control a measurement combination, and from (7), with
Pc ) I, the resulting measurement combination is

which is identical to the estimated primary output found
with inferential control. The advantage with the deriva-
tion in our paper is that it provides a link to control

PcH ) G̃1G̃
y-1

(15)

max
||ny||2e1

||∆y1||2 ) σj(G̃1G̃
y-1

) e σj(G̃1)σ(G̃y-1
) )

σj(G̃1)/σ(G̃y) (16)

HG̃y ) Pc0
-1G̃1 (17)

H ) G̃1G̃
y † (18)

PcH ) G̃1G̃
y †

H ) G̃1G̃
y † (19)

(∆u
∆d )) G̃y-1∆y

∆y1 ) G̃1G̃
y-1∆y

∆c ) H∆y ) G̃1G̃
y-1 ∆y
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configurations, regulatory control, cascade control, in-
direct control and self-optimizing control, and also
provides the generalization (8).

Self-Optimizing Control. The results in this paper
on perfect indirect control provide a nice generalization
of the distillation results of Häggblom and Waller3 but
are themselves a special case of the work of Alstad and
Skogestad (2002) on self-optimizing control with perfect
disturbance rejection.1,2 To see this link we need to write
the cost function as

Differentiation gives

and we can compute the matrix M in the exact method
of Alstad and Skogestad1 and search for the optimal
measurement combination. We find that the follwoing
is true.

(i) Pd ) 0 (“perfect control” with zero sensitivity to
disturbances) implies Md ) 0 (zero loss for distur-
bances). To prove this premuliply Pd by G1

† and note
that G1

†G1 ) I since G1
† is a left inverse.

(ii) However, unless ny1 e nu we do not have G1
†G1 )

I, so Md ) 0 (zero loss) does not generally imply Pd ) 0
(“perfect control”). This is easily explained: We can only
perfectly control as many outputs (y1) as we have
independent inputs (u).

6. Conclusion

Indirect control is commonly used in industrial ap-
plications where the primary controlled variable is not
measured. In this paper we considered the case of

“perfect steady-state indirect control” where one at-
tempts to control a combination of the available mea-
surements such that there is no effect of disturbances
at steady-state. This is always possible provided the
number of measurements is equal to the number of
independent variables (inputs plus disturbances). It is
further shown how extra measurements may be used
to minimize the effect of measurement error. This paper
generalizes the work of Häggblom and Waller,3 but is
itself a special case of the work of Halvorsen et al.4 and
Alstad and Skogestad1 on self-optimizing control.
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J ) 1
2

(y1 - y1s)
T(y1 - y1s) (20)

Ju ) (G1∆u + Gd1∆d)TG1, Juu ) G1
TG1,

Jud ) G1
TGd1 (21)
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