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In this paper, a laboratory experiment has been used to investigate some aspects related to
integral action in model predictive control (MPC). Simulations using the same model as that
used for control design may indicate that integral action is present and that disturbances are
handled well with no steady-state offset, but in practice, unmodeled phenomena may give a
poor response, including a steady-state offset. The reason is that the controller may not contain
feedback with integral action, although the zero offset seems to indicate it. The experiments on
a two-tank process verify that output feedback with input-disturbance estimation is efficient,
provided that the disturbances to estimate are correctly chosen.

1. Introduction
In this paper, we use an experiment to illustrate some

important aspects regarding model predictive control
(MPC) under uncertainty. MPC uses a process model
to predict the future behavior of the process and uses
this prediction to determine an optimal sequence of
adjustments of the manipulated variables. At a given
time, the first value of this optimal sequence is applied
to the process. Since the model is not perfect, measure-
ments are used. When a new set of measurements is
available to the controller, a reoptimization is per-
formed, and the first value of this new optimal sequence
of manipulated variables is implemented.

In many cases, one would like certain process vari-
ables (outputs) to follow given references, i.e., to obtain
offset-free tracking. In most MPC applications, this is
achieved by simply adding the difference between the
measurements and the model prediction. However, for
many processes, especially those with long time con-
stants, it has been shown that this approach is not
efficient and that estimation of input disturbances in
such cases improved the performance.1-4 Furthermore,
simulations may indicate offset-free control even if this
is not the case when the controller is applied to the
actual plant. Recently, several papers have described
how to rectify these problems.4-7 In this paper, we use
an experiment to illustrate that when input disturbance
estimation is not correctly done, one may get steady-
state offset.

An MPC controller is applied since this is the most
commonly used multivariable controller in the process
industry, even though the constraints are never ex-
ceeded and a linear quadratic Guassian (LQG ) control-
ler could equally well have been used.

The experimental setup is shown in Figure 1. The aim
of the process is to keep the temperature in the

circulation loop (as measured by TI2) constant by
adjusting the cold-water flow rate (marked with u in
the figure) despite disturbances (marked d1 and d2). The
level in the mixing tank is kept constant with an
overflow drain, whereas in the main tank the level is
kept within a band with an on/off valve. A detailed
description of the equipment is given in Appendix A.

The experimental work was carried out during Octo-
ber 2001, and the main content of the paper was written
at that time; the work was, therefore, not motivated by
the work of Muske and Badgwell,4 Pannoccia and
Rawlings,5 and A° keson and Hagander.6 This also ex-
plains why the theory derived in these references has
not been analyzed in the present paper.

2. Process Model

We assume perfect mixing in both tanks, constant
volumes, constant density, constant heat capacity, and
no heat loss. We model the main tank with its circula-
tion loop as one (mixing) tank. Combination of the mass
and energy balance for the mixing tank (numbered 1)
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Figure 1. Experimental setup.
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and the main tank (numbered 2) yields

where t is time and the other variables are explained
in Table 1. Here, we have assumed that the outlet flow
from the mixing tank is identical to the inflow (i.e.
constant level in the tank). Superscript m denotes
measurement. There is a delay θ1 in tank 1 and a delay
θ2 in tank 2, representing transportation delays and
neglected dynamics.

Linearization around a nominal point, denoted with
an asterisk, yields

where the model variables are given in Table 2 and the
model parameters are given in Table 3 in Appendix B.

The linear model is discretized with a zero-order hold,
using the Matlab Control Toolbox routine c2d, with a
sample time of 1 s. The delays are implemented as extra
poles in the origin in the model (by delay2z in Matlab
Control Toolbox). Note that this is an exact representa-
tion of the delays. The linear discrete model has 27
states, of which the 25 last states are related to the
delays. We define xk ) [x1 x2]k

T as the state vector, yk )
y2,k as the output variable, yk

m ) [y1
m y2

m]k
T as the

measurement vector, dk ) [d1 d2]k
T as the disturbance

vector, and uk as the control input u, all taken at sample
number k. Then the linear discrete model may be
formulated as

where A, B, C, Cm, and Ed are time-independent
matrices.

In this work we have used the linear model (eq 3) for
the controller, whereas the nonlinear model (eq 1) is
used as the process for the simulations in section 5.

Most of the process parameters can be determined
directly by inspection or individual measurements. The
delays, θ1 and θ2, and the nominal volume, V2

/, of the
main tank are more difficult to quantify, since they
represent more than one phenomena. The main tank
volume includes the recirculation loop, and the delays
represent both the transportation of water and other
neglected dynamics. Therefore, three open loop experi-
ments have been performed to determine these three
parameters (see Figure 2).

The linear model (eq 2) was simulated with the actual
u and d1 as inputs. The nominal volume, V2

/, and the
delays, θ1 and θ2, were determined by trial and error.
Simulation results with the final model are compared
with the experiments in Figure 2. The resulting param-
eter values are given in Table 3 in Appendix B.

3. Controller

The MPC used for temperature control is based on
the controller proposed by Muske and Rawlings1 with
a discrete model of the form

This model is the same as eq 3, except that the
disturbance term is omitted. The control input, uk, is

Table 1. Variables in the Nonlinear Model (Eq 1)

name explanation unit

T1 temperature in the mixing tank °C
T2 temperature in the main tank °C
V1 volume of the mixing tank mL
V2 volume of the main tank mL
TC,1 temperature of cold water into the mixing tank °C
TH temperature of hot water into the mixing tank °C
TC,2 temperature of cold water into the main tank °C
qC,1 flow rate of cold water into the mixing tank mL/min
qH flow rate of hot water into the mixing tank mL/min
qC,2 flow rate of cold water into the main tank mL/min

dT1(t)
dt

) 1
V1

[qC,1(t) (TC,1(t) - T1(t)) + qH(t) (TH(t) -

T1(t))] (1a)

dT2(t)
dt

) 1
V2

[(qC,1(t) + qH(t))(T1(t-θ1) - T2(t)) +

qC,2(t) (TC,2(t) - T2(t))] (1b)

T1
m ) T1(t-θ1) (1c)

T2
m ) T2(t-θ2) (1d)

d
dt

x1(t) ) - q*
V1

/
x1(t) +

TC,1
/ - T1

/

V1
/

u(t) +
TH

/ - T1
/

V1
/

d1(t)

(2a)

d
dt

x2(t) ) q*
V2

/
x1(t-θ1) -

q* + qC,2
/

V2
/

x2(t) +
TC,2

/ - T2
/

V2
/

d2(t)

(2b)

y1
m(t) ) x1(t-θ1) (2c)

y2
m(t) ) x2(t-θ2) (2d)

y(t) ) x2(t-θ2) (2e)

Table 2. Variables in Linear Model (Eq 2)

name explanation unit

x1 variation in temperature in the mixing tank (T1 - T1
/) °C

x2 variation in temperature in the main tank (T2 - T2
/) °C

y1
m ) (T1 - T1

/)m measurement 1 (deviation from the nominal value) °C
y2

m ) (T2 - T2
/)m measurement 2 (deviation from the nominal value) °C

y ) y2 primary output that we want to control (deviation from the setpoint) °C
u variation in cold-water flow rate into the mixing tank (qC,1 - qC,1

/ ) mL/min
d1 variation in hot-water flow rate into the mixing tank (qH - qH

/ ) mL/min
d2 variation in cold-water flow rate into the main tank (qC,2 - qC,2

/ ) mL/min

xk+1 ) Axk + Buk + Eddk (3a)

yk ) Cxk (3b)

yk
m ) Cmxk (3c)

xk+1 ) Axk + Buk (4a)

yk + Cxk (4b)
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found by minimizing the infinite horizon criterion

where yk+j is the deviation in the main tank temperature
at sample number (k + j) and uk

N ) [uk uk+1 ... uk+N-1]T

is a vector of N future moves of the control input, of
which only the first is actually implemented. The control
input uk+j is assumed zero for all j g N. A term for the
control input change may also be included, but this is
omitted here. Q and R are time-independent weight
matrices.

Muske and Rawlings1 show how to formulate eq 5 as
a finite optimization problem. Upon the assumption that
the constraints are never active, the optimal control
input is given by the state feedback law

The control input, uk, is assumed to be constant from k
to k + 1. The matrix K is time invariant and is given
by the model matrices A, B, and C and the weight
matrices Q and R.

However, the control law (eq 6) has no integral action,
so we get a steady-state offset if we have a nonzero
reference yr for y or we have external disturbances.
There are many ways to obtain integral action, and one
is to use the modification

where xs is the state corresponding to the desired
steady-state value of yk (yr ) Cxs) and us is the
corresponding steady-state control input. The variables
xs and us are both functions of the reference yr and the
disturbances. In our case, yr is known and is held
constant during the experiments. Disturbances, how-
ever, are here assumed unknown and must, therefore,
be estimated from the temperature measurements.

Figure 2. Resulting linear model: Open loop simulations compared with the open loop experiments.

min
uk

N
∑
j)0

∞

(yk+j
T Qyk+j + uk+j

T Ruk+j) (5)

uk ) Kxk (6)

uk ) K(xk - xs) + us (7)
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For processes with large time constants (near-
integrating processes), it has been demonstrated that
good performance is obtained by using estimates of the
disturbances d̂k acting directly on the near-integrating
states,2-4 and we will follow this approach here. Since
we do not know the future behavior of the disturbance
vector, we assume that it will be constant, i.e., the
steady-state disturbance estimate d̂s ) d̂k. The steady-
state solutions xs and us can then be found by solving1

The matrix Ẽd represents the direct effect of the
estimated disturbance on the state and is specified in
eq 12. Note that the estimated disturbance, d̂k, will not
represent the value of the actual disturbances since Ẽd
differs from Ed. Even the sign is opposite for one of the
disturbances. Thus, in the results, comparing the nu-
merical values of dk and d̂k has no meaning.

Provided the constraints are not active, the vectors
xs and us can explicitly be expressed by the disturbance
estimate, d̂k ) d̂s, and the reference, yr (see ref 7 or
chapter 5 in ref 8):

where Γy and Γd are given by the matrices A, B, C, and
Ẽd.

When the states xk are not measured, they must also
be estimated, since xk is needed in the control equation
(eq 7). To obtain estimates of both xk and dk, we define
an extended state vector:

We assume that the disturbances are integrated white
noise and introduce the extended model

where each disturbance acts directly on the states

and wk and vk are zero-mean, uncorrelated, normally
distributed white noise processes with covariance ma-
trices of Qw and Rv, respectively. Ind is the identity
matrix of dimension nd × nd, where nd is the length of
the disturbance vector. We design a Kalman filter

where x̃j and x̂̃ are a priori and a posteriori estimates of
x̃k, respectively, and L is the estimator gain matrix given
by

where P is the solution of the Riccati equation

By applying the a posteriori estimates, the following
control law is obtained and used in this work:

where

The following weight and covariance matrices were
used:

where n is the number of states and nd is the number
of estimated disturbances. The control horizon, N, has
been selected to be 40 s.

The large difference in magnitude between Q and R
is a result of not having scaled the model. For a
variation in y between -0.3 and 0.3 and in u between
-500 and 500, the two terms are in the same order of
magnitude for the limiting values:

4. Experimental Procedure

The aim of the experiments was to investigate the
effect of different disturbance vectors, d̂k, to be esti-
mated and used by the MPC in the calculation of the
steady-state control input, us, and state vector, xs. In
addition to the experiments, we performed a simulation
with the nonlinear model of the process (eq 1), which
was implemented in Simulink (a Matlab toolbox).

Simulation and Experiment A: An MPC with an
estimate of disturbance d1 only (the length of d̂k is nd )
1).

Experiment B: An MPC with an estimate of both
disturbances d1 and d2 (nd ) 2).

Prior to the experiments, the process was run to a
steady-state working point. The following sequence of
disturbances was then introduced in each experiment:

[I - A - B
C 0 ][xs

us ] ) [Ẽdd̂s
yr ] (8)

[xs
us ] ) Γyyr + Γdds (9)

x̃k ) [xk
dk ] (10)

Ẽd ) [Ind

0
l
0

] (12)

x̃jk+1 ) Ãx̂̃k + B̃uk (13a)

x̂̃k ) x̃jk + L(yk
m - C̃x̃jk) (13b)

L ) PC̃T(C̃PC̃T + Rv)
-1 (14)

P ) Ã[P - PC̃T(C̃PC̃T + Rv)
-1C̃P]ÃT + Qw (15)

uk ) K̃x̂̃k + Kryr (16)

K̃ ) [K -(K - I)Γd] (17a)

Kr ) -(K - I)Γy (17b)

Q ) 1; R ) (1/6) × 10-5 (18a)

Qw ) [In 0
0 0.05Ind

]; Rv ) 1000I2 (18b)

yTQy ) 0.32 × 1 ) 0.09 (19a)

uTRu ) 5002 × (1/6) × 10-5 ) 0.42 (19b)
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The change in the hot-water flow rate was done by
adjusting the speed of the peristaltic pump via a Matlab
user interface. The addition of cold water to the main
tank was done by pouring water from a jug. During 7
min, a total of 430 mL (experiment A) and 450 mL
(experiment B) of cold water was added. This gives a
mean flow rate of 61.4 and 64.3 mL/min, respectively,
for the two experiments. During the two experiments,
the hot-water temperature varied between 48 and 51
°C, whereas during the simulations the temperature
was held constant.

5. Results

In Figure 3, we show the closed loop simulation of an
MPC with an estimate of d1 only. Note that y2 (solid
line) is the important output (temperature), which we
want to return to its setpoint as quickly as possible. We
see that, for disturbance d1, the control of y2 is good with
(seemingly) no steady-state offset. The reason we write
“seemingly” is that there is, in fact, no integral action,
so in reality there will be an upset. As seen from Figure
3, we get a steady-state offset for disturbance d2. In
practice, the engineer will not simulate all possible
disturbances and may incorrectly conclude (if d2 had not
been tested) that the controller has integral action.

In Figures 4 and 5 we show the results of the two
experiments. In contrast to the simulation, the control-
ler with the estimation of only disturbance d1 (experi-
ment A) fails to achieve the desired steady state, both
before and after the disturbances are introduced. This
is due to model error and unmodeled disturbances.

We also see that y1 ) T1 is higher than y2 ) T2. The
reason for this is mainly heat loss, and there was also
a small difference in the calibration of the temperature
elements. The model does not cover these effects.

However, in Figure 5 we can see that, with the
estimation of both disturbances (experiment B), we get
no steady-state offset for y2. Simulations (not shown)
give the same result. To compensate for the heat loss,
the controller increases the temperature in tank 1 (y1).
We see that both disturbances are handled well, al-
though the actual estimate of disturbance 2 is not very
good. The large variations in u arise from the measure-
ment’s noise.

The disturbance estimates cannot be compared in
value with the real disturbance, since Ẽd has been
chosen different from Ed. If the estimate of the distur-
bance is of interest, one must seek to find Ed and use
this in the estimator. In Figure 5 we see, for example,
that the estimated disturbance d2 has the opposite sign
of the real one.

6. Discussion

With the estimation of two input disturbances (d1 and
d2), an offset-free steady state was obtained, whereas,
with only one input estimate (d1), insufficient integral

Disturbance d1:

(1a) reduce the hot-water flow rate
from 500 to 400 mL/min

(1b) increase the hot-water flow rate back
from 400 to 500 mL/min

Disturbance d2:

(2a) start the addition of cold water
to the main tank

(2b) stop the addition of cold water
to the main tank

Figure 3. Simulation of an MPC with an estimate of d1.

Figure 4. Experiment A: An MPC with an estimate of d1 (steady-
state offset in y2).

Figure 5. Experiment B: An MPC with an estimate of d1 and d2
(no steady-state offset in y2).
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action was obtained. This is in accordance with the
theoretical results in refs 5, 7, and 8 (chapter 5). In these
references, it is found that the number of estimated
input disturbances must equal the number of measure-
ments if a steady-state offset shall be avoided. A similar
result was also derived by A° keson and Hagander,6
although they proposed to use a combination of input
disturbances and output bias estimation.

We have also simulated the case when y1 is omitted,
i.e., only y2 is used by the MPC. In this case, it is
sufficient to only estimate one disturbance in the second
tank (d2). Normally this controller will give a poorer
performance, since the early information of disturbances
to the first tank from y1 ) T1 is not exploited, but for
the controller tunings we have chosen, the performance
was actually slightly improved. Elsewhere,9 an example
with tanks in series is presented where the use of
measurements from the upstream tanks improves the
performance.

We now return to the case when both measurements
y1 and y2 are used and compare our MPC controllers
(with estimation of d1 only and estimation of d1 and d2)
in the frequency domain. This is possible since the
constraints in the control input u are never active. In
another paper (ref 7 or chapter 5 of ref 8), a state-space
formulation is derived for the combination of the
controller and the estimator for this case. The controller
may further be expressed by an approximated continu-
ous state-space formulation (by d2c in Control Toolbox
in Matlab), which is easily converted to a transfer
function formulation:

To study the magnitude of the elements in K, it is
convenient to introduce scaled variables. The maximum
possible variation in u in each direction is umax ) 500
mL/min, and ymax ) 0.3 °C is the maximum desired
variation in y. By defining the scaled variables u′ )
u/umax and y′ ) y/ymax, both u′ and y′ stay within (1.
The corresponding controller equation for the scaled
system is

where K′(jω) ) K(jω) ymax/umax.
In Figure 6 we plot the magnitude of the elements in

K′(jω) for the two types of controllers. The most impor-
tant element is the gain from the primary output y′2 to
u. We see that the controller with only one disturbance
estimate has low gains at low frequencies (Figure 6a),
whereas, for the controller with two disturbances, the
low-frequency gain from y2 is high beacuse of the
integral action (Figure 6b). Figure 6b also reveals that
the gain from y1 is low for all frequencies, which

explains why the use of y1 in the control did not improve
performance.

7. Conclusions

In a laboratory experiment, we have used an MPC
combined with an estimator for the temperature control
of a process with two tanks in series. Since this often
improves performance, we used the temperature mea-
surements of both tanks in the controller, even if we
are only interested in the last temperature and we have
only one control input. To avoid steady-state offset, we
have estimated the input disturbances and used these
estimates in the calculation of the steady-state control
input.

Simulations may indicate that disturbances are
handled well with no steady-state offset. However, if
apparent integral action is actually due to a model-based
“feedforward correction”, then unmodeled phenomena
may give poor results in the actual plant, also at steady
state.

To obtain integral action, the number of disturbance
estimates must equal the number of measurements.5-7

In our experiment, the use of estimates of the input
disturbances to both tanks gave satisfactory perfor-
mance with no steady-state error.
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Appendix A. Experimental Setup

A.1. Equipment. The experimental setup is illus-
trated in Figure 1. Hot and cold water from two
reservoirs are mixed in a mixing tank. The water flow
rates are controlled with peristaltic pumps (Watson
Marlow 505Du/RL). There is an overflow drain, and the
mixed water flows through a flexible tube to the main
tank, which is situated at a lower altitude.

The main tank has a circulation loop with a pump
(Johnson pump F4B-8) and a flow-rate measurement
device (tecfluid SC-250). The main tank temperature
measurement device is placed in the circulation loop,
which gives an adjustable delay in the measurement.
In addition, the circulation serves for mixing.

In the circulation loop, below the main tank, there is
drainage. The drainage flow rate is controlled with an
on-off valve (Asco SCE030A017). The drainage keeps
the level in the main tank approximately constant
despite the inflow from the mixing tank. The reservoirs

Figure 6. Controller gain elements |K′(jω)|.

u(jω) ) K(jω) y(jω) (20)

u′(jω) ) K′(jω) y′(jω) (21)
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and the tanks are all modified beakers. The pipes of the
circulation loop are made of glass.

The experiments take place at room temperature
(about 20 °C). Since the hot-water temperature (48-51
°C) deviates considerably from this, the hot-water
reservoir is placed on a hot plate with a thermostat to
keep the hot-water temperature approximately con-
stant. Since the two reservoirs do not contain a sufficient
amount for the whole experiment, refill is necessary.
The cold water is about 13-15 °C, which is considered
fairly close to room temperature. Magnetic stirrers are
placed in the hot-water reservoir and in the mixing
tank.

A.2. Instrumentation and Logging. Pt-100 ele-
ments (class B, 3 wire, single, diameter ) 3 mm, and
length ) 150 mm) are placed in the hot-water reservoir,
in the mixing tank, and in the circulation loop of the
main tank. The main tank level is measured with a
capacitance probe (Endress+Hauser Multicap DC11
TEN). The instruments are connected to National
Instruments Fieldpoint modules, which are further
connected to a PC via the serial port. In the PC,
Bridgeview (National Instruments) is used for data
display and basic control. Bridgeview also provides an
OPC (an industrial communication standard) server
interface, such that an OPC client may read off mea-
sured data and give values to the actuators. The
temperature controller is implemented in Matlab. The
temperature measurements are read into Matlab, and
the flow rates for the peristaltic pumps are determined
in Matlab and provided to Bridgeview via the OPC
interface. Matlab is also used to plot the results.

A.3. Basic Control. The following basic control is
implemented in Bridgeview on the connected PC:

1. The level in the main tank is controlled by opening
the drainage valve when the main tank level reaches
above 2.0 L and closing it when it is below 1.9 L. A
manually adjustable valve is installed on the drainage
tube to reduce the drainage flow (otherwise the main
tank empties too quickly compared to the response time
of the level control loop).

2. The rotational speed of the circulation pump is set
to a constant value, which in this setup gives a constant
circulation flow rate.

3. The speed of the peristaltic pumps is determined
from the desired flow rate by a linear relationship. A
two-point calibration is used.

Appendix B. Model Parameters

The model parameters of the linear model (eq 2) are
given in Table 3.
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Table 3. Model Parameters

name explanation value unit

T1
/ nominal temperature in the mixing tank 31.75, 31.08a °C

T2
/ nominal temperature in the main tank ()setpoint) 31.75, 31.08a °C

V1
/ nominal liquid volume of the mixing tank (tank no. 1) 1000 mL

V2
/ nominal liquid volume of the main tank, including the circulation loop (tank no. 2) 5000 mL

TC,1
/ , TC,2

/ cold-water temperatures (assumed constant) 13.5 °C
TH

/ hot-water temperature 48-51 °C
q* nominal total flow from the mixing tank ()qH

/ + qC,1
/ ) 1000 mL/min

qH
/ nominal flow rate from the hot reservoir 500 mL/min

qC,1
/ nominal flow rate from the cold reservoir into the mixing tank 500 mL/min

qC,2
/ nominal flow rate from the cold reservoir into the main tank 0 mL/min

θ1 transportation and measurement delay in T1 5 s
θ2 transportation and measurement delay in T2 15 s
a For experiments A and B, repectively.
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